Skip to main content

Motion Planning

  • Chapter
  • First Online:

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 129))

Abstract

This chapter presents a kinodynamic motion planner for computing agile motions of quad-rotor-like aerial robots in constrained environments. Based on a simple dynamic model of the UAV, a computationally-efficient local planner is proposed to generate flyable trajectories of minimal time. This local planner is then integrated as a key component for global motion planning using different approaches. The good performance of the proposed methods is illustrated with results in simulation, as well as a preliminary experimentation with a real quad-rotor.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The code (C and MATLAB versions) is available upon request.

  2. 2.

    The steering method has been has been implemented as a general-purpose and standalone C++ library named KDTP (for KinoDynamic Trajectory Planner) and a git repository is available at git://git.openrobots.org/robots/libkdtp.git.

  3. 3.

    A quasi-metric has all the properties of a metric, symmetry excepted.

References

  1. LaValle, S.M., Kuffner, J.J.: Randomized kinodynamic planning. Int. J. Robot. Res. 20(5), 378–400 (2001)

    Article  Google Scholar 

  2. LaValle, S.: Planning Algorithms. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  3. Haddad, M., Bouktir, Y., Chettibi, T.: Trajectory planning for a quadrotor helicopter. In: 16th Mediterranean Conference on Control and Automation, 2008 (2008)

    Google Scholar 

  4. Mellinger, D., Kumar, V.: Minimum snap trajectory generation and control for quadrotors. In: Proceedings of the IEEE ICRA (2011)

    Google Scholar 

  5. Hehn, M., D’Andrea, R.: Quadrocopter trajectory generation and control. IFAC Proc. Vol. 44(1), 1485–1491 (2011)

    Article  Google Scholar 

  6. Koyuncu, E., Inalhan, G.: A probabilistic b-spline motion planning algorithm for unmanned helicopters flying in dense 3D environments. In: Proceedings of the IEEE/RSJ IROS 2008 (2008)

    Google Scholar 

  7. Bouffard, P.M., Waslander, S.L.: A hybrid randomized/nonlinear programming technique for small aerial vehicle trajectory planning in 3D. In: Planning, Perception and Navigation for Intelligent Vehicles (PPNIV) 63, 2009 (2009)

    Google Scholar 

  8. Richter, C., Bry, A., Roy, N.: Polynomial trajectory planning for aggressive quadrotor flight in dense indoor environments. In: Proceedings of the ISRR (2013)

    Google Scholar 

  9. Mueller, M.W., Hehn, M., D’Andrea, R.: A computationally efficient algorithm for state-to-state quadrocopter trajectory generation and feasibility verification. In: Proceedings of the IEEE/RSJ IROS (2013)

    Google Scholar 

  10. Boeuf, A., Cortés, J., Alami, R., Siméon, T.: Planning agile motions for quadrotors in constrained environments. In: Proceedings of the IEEE/RSJ IROS (2014)

    Google Scholar 

  11. A. Boeuf. Kinodynamic motion planning for quadrotor-like aerial robots. Ph.D. Toulouse University (2017)

    Google Scholar 

  12. Geraerts, R., Overmars, M.H.: Creating high-quality paths for motion planning. Int. J. Robot. Res. 26(8), 845–863 (2007)

    Article  Google Scholar 

  13. Bertsekas, D.P.: Dynamic Programming and Optimal Control, vol. I. Athena Scientific (2005)

    Google Scholar 

  14. Boeuf, A., Cortés, J., Alami, R., Siméon, T.: Enhancing sampling-based kinodynamic motion planning for quadrotors. In: Proceedings of the IEEE/RSJ IROS (2015)

    Google Scholar 

  15. LaValle, S., Kuffner, J.: Rapidly-exploring random trees: progress and prospects. In: Algorithmic and Computational Robotics. New Directions. A. K. Peters, Wellesley (2001)

    Google Scholar 

  16. Kavraki, L.E., Svestka, P., Latombe, J.-C., Overmars, M.H.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 12(4), 566–580 (1996)

    Article  Google Scholar 

  17. Siméon, T., Laumond, J.-P., Lamiraux, F.: Move3D: a generic platform for path planning. In: Proceedings of the IEEE ISATP (2001)

    Google Scholar 

  18. Taeyoung Lee, Melvin Leoky, and N Harris McClamroch. Geometric tracking control of a quadrotor uav on se (3). In: 2010 49th IEEE Conference on Decision and Control (CDC), pp. 5420–5425. IEEE (2010)

    Google Scholar 

  19. Devaurs, D., Siméon, T., Cortés, J.: Optimal path planning in complex cost spaces with sampling-based algorithms. IEEE Trans. Autom. Sci. Eng. 13(2), 415–424 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Boeuf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Boeuf, A., Cortés, J., Siméon, T. (2019). Motion Planning. In: Ollero, A., Siciliano, B. (eds) Aerial Robotic Manipulation. Springer Tracts in Advanced Robotics, vol 129. Springer, Cham. https://doi.org/10.1007/978-3-030-12945-3_23

Download citation

Publish with us

Policies and ethics