Skip to main content

Object Detection and Probabilistic Object Representation for Grasping with Two Arms

  • Chapter
  • First Online:
Aerial Robotic Manipulation

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 129))

  • 989 Accesses

Abstract

This chapter explains a technique for detection and grasping of objects using two arms of an aerial robot. The method robustly obtains the 6D pose of the robot to grasp it regardless the environment. The method is based on modeling the objects surfaces under the probabilistic framework of Gaussian Processes. A probabilistic framework has been proposed to tackle the problem of shape uncertainty when the robot has partial information about the object to be manipulated. This uncertainty is modeled using GPIS and evaluated using the quality metric: probability of force closure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miller, A.T., Knoop, S., Christensen, H.I., Allen, P.K.: Automatic grasp planning using shape primitives. In: Proceedings of IEEE ICRA (2003)

    Google Scholar 

  2. Song, D., Huebner, K., Kyrki, V., Kragic, D.: Learning task constraints for robot grasping using graphical models. In: Proceedings of IEEE/RSJ IROS (2010)

    Google Scholar 

  3. Saxena, A., Driemeyer, J., Ng, A.Y.: Robotic grasping of novel objects using vision. Int. J. Robot. Res. 27(2), 157–173 (2008)

    Google Scholar 

  4. Baier-Lowenstein, T., Zhang, J.: Learning to grasp everyday objects using reinforcement-learning with automatic value cut-off. In: Proceedings of IEEE/RSJ IROS, pp. 1551–1556 (2007)

    Google Scholar 

  5. Roa, M.A., Suárez, R.: Grasp quality measures: review and performance. Auton. Robots 38(1), 65–88 (2015)

    Article  Google Scholar 

  6. León, B., Morales, A., Sancho-Bru, J.: Robot Grasping Foundations, pp. 15–31. Springer International Publishing, Berlin (2014)

    Google Scholar 

  7. Miller, A.T., Knoop, S., Christensen, H.I., Allen, P.K.: Automatic grasp planning using shape primitives. In: 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422), vol. 2, pp. 1824–1829 (2003)

    Google Scholar 

  8. Williams, O., Fitzgibbon, A.: Gaussian process implicit surfaces. In: Gaussian Processes in Practice (2006)

    Google Scholar 

  9. Gerardo-Castro, M.P., Peynot, T., Ramos, F., Fitch, R.: Robust multiple-sensing-modality data fusion using gaussian process implicit surfaces. In: Proceedings of Fusion, pp. 1–8 (2014)

    Google Scholar 

  10. Dragiev, S., Toussaint, M., Gienger, M.: Gaussian process implicit surfaces for shape estimation and grasping. In: Proceedings of IEEE/RSJ ICRA, pp. 2845–2850 (2011)

    Google Scholar 

  11. Björkman, M., Bekiroglu, Y., Högman, V., Kragic, D.: Enhancing visual perception of shape through tactile glances. In: Proceedings of IEEE/RSJ IROS, pp. 3180–3186 (2013)

    Google Scholar 

  12. Kim, S., Kim, J.: GPmap: a unified framework for robotic mapping based on sparse gaussian processes. In: Results of the 9th International Conference, Field and Service Robotics, pp. 319–332. Springer International Publishing, Berlin (2015)

    Google Scholar 

  13. Martens, W., Poffet, Y., Soria, P.R., Fitch, R., Sukkarieh, S.: Geometric priors for gaussian process implicit surfaces. IEEE Robot. Autom. Lett. 2(2), 373–380 (2017)

    Google Scholar 

  14. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT Press, USA (2006)

    Google Scholar 

  15. Adler, R.: The Geometry of Random Fields. Society for Industrial and Applied Mathematics (2010)

    Google Scholar 

  16. Borst, C., Fischer, M., Hirzinger, G.: A fast and robust grasp planner for arbitrary 3d objects. In: Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C), vol. 3, pp. 1890–1896 (1999)

    Google Scholar 

  17. Biegelbauer, G., Vincze, M., Wohlkinger, W.: Model-based 3d object detection. Mach. Vis. Appl. 21(4), 497–516 (2010)

    Article  Google Scholar 

  18. Papon, J., Abramov, A., Schoeler, M., Wörgötter, F.: Voxel cloud connectivity segmentation - supervoxels for point clouds. In: Proceedings of the 2013 IEEE CVPR, CVPR 2013, pp. 2027–2034. IEEE Computer Society, Washington (2013)

    Google Scholar 

  19. Gschwandtner, M., Kwitt, R., Uhl, A., Pree, W.: BlenSor: Blender Sensor Simulation Toolbox Advances in Visual Computing. Lecture Notes in Computer Science, vol. 6939, pp. 199–208. Springer, Heidelberg (2011). Chap. 20

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Ramon Soria .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ramon Soria, P., Arrue, B.C. (2019). Object Detection and Probabilistic Object Representation for Grasping with Two Arms. In: Ollero, A., Siciliano, B. (eds) Aerial Robotic Manipulation. Springer Tracts in Advanced Robotics, vol 129. Springer, Cham. https://doi.org/10.1007/978-3-030-12945-3_21

Download citation

Publish with us

Policies and ethics