Skip to main content

Supervised Deep Kriging for Single-Image Super-Resolution

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11269))

Abstract

We propose a novel single-image super-resolution approach based on the geostatistical method of kriging. Kriging is a zero-bias minimum-variance estimator that performs spatial interpolation based on a weighted average of known observations. Rather than solving for the kriging weights via the traditional method of inverting covariance matrices, we propose a supervised form in which we learn a deep network to generate said weights. We combine the kriging weight generation and kriging process into a joint network that can be learned end-to-end. Our network achieves competitive super-resolution results as other state-of-the-art methods. In addition, since the super-resolution process follows a known statistical framework, we are able to estimate bias and variance, something which is rarely possible for other deep networks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We refer the reader to our supplementary materials for a more detailed comparison of the two.

  2. 2.

    For concise notation, we use \(\hat{f}_*\) to denote \(\widehat{f}(x^*)\), \(f_i\) to denote \(f(x_i)\) and \(w_i^* =w_i(x^*)\).

  3. 3.

    Of course, we cannot account for the low resolution process that produced \(\tilde{F}\).

References

  1. Anbarjafari, G., Demirel, H.: Image super resolution based on interpolation of wavelet domain high frequency subbands and the spatial domain input image. ETRI J. 32(3), 390–394 (2010)

    Article  Google Scholar 

  2. Bevilacqua, M., Roumy, A., Guillemot, C., Alberi-Morel, M.: Low-complexity single-image super-resolution based on nonnegative neighbor embedding (2012)

    Google Scholar 

  3. De Brabandere, B., Jia, X., Tuytelaars, T., Gool, L.V.: Dynamic filter networks. In: NIPS (2016)

    Google Scholar 

  4. Chang, H., Yeung, D., Xiong, Y.: Super-resolution through neighbor embedding. In: CVPR, vol. 1, p. I. IEEE (2004)

    Google Scholar 

  5. Cressie, N.: Statistics for Spatial Data. Wiley, Hoboken (2015)

    MATH  Google Scholar 

  6. Damianou, A., Lawrence, N.: Deep Gaussian processes. In: Artificial Intelligence and Statistics, pp. 207–215 (2013)

    Google Scholar 

  7. Dong, W., Zhang, L., Shi, G., Wu, X.: Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization. IEEE Trans. Image Process. (TIP) 20(7), 1838–1857 (2011)

    Article  MathSciNet  Google Scholar 

  8. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  9. Freeman, W., Jones, T., Pasztor, E.: Example-based super-resolution. IEEE Comput. Graph. Appl. 22(2), 56–65 (2002)

    Article  Google Scholar 

  10. He, H., Siu, W.C.: Single image super-resolution using Gaussian process regression. In: CVPR (2011)

    Google Scholar 

  11. Huang, J., Singh, A., Ahuja, N.: Single image super-resolution from transformed self-exemplars. In: CVPR, pp. 5197–5206 (2015)

    Google Scholar 

  12. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015)

    Google Scholar 

  13. Keys, R.: Cubic convolution interpolation for digital image processing. IEEE Trans. Acoust. Speech Signal Process. 29(6), 1153–1160 (1981)

    Article  MathSciNet  Google Scholar 

  14. Kim, J., Lee, J.K., Lee, K.M.: Accurate image super-resolution using very deep convolutional networks. In: CVPR (2016)

    Google Scholar 

  15. Kim, J., Lee, J.K., Lee, K.M.: Deeply-recursive convolutional network for image super-resolution. In: CVPR (2016)

    Google Scholar 

  16. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  17. Lim, B., Son, S., Kim, H., Nah, S., Lee, K.M.: Enhanced deep residual networks for single image super-resolution. In: CVPR Workshops (2017)

    Google Scholar 

  18. Marquina, A., Osher, S.: Image super-resolution by TV-regularization and Bregman iteration. J. Sci. Comput. 37(3), 367–382 (2008)

    Article  MathSciNet  Google Scholar 

  19. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: ICCV, vol. 2, pp. 416–423 (2001)

    Google Scholar 

  20. Matheron, G.: Random Sets and Integral Geometry. Wiley, Hoboken (1975)

    MATH  Google Scholar 

  21. Meier, F., Hennig, P., Schaal, S.: Local Gaussian regression. arXiv preprint arXiv:1402.0645 (2014)

  22. Peleg, T., Elad, M.: A statistical prediction model based on sparse representations for single image super-resolution. IEEE Trans. Image Process. (TIP) 23(6), 2569–2582 (2014)

    Article  MathSciNet  Google Scholar 

  23. Pronzato, L., Rendas, M.J.: Bayesian local kriging. Technometrics 59, 293–304 (2017)

    Article  MathSciNet  Google Scholar 

  24. Sajjadi, M.S.M., Scholkopf, B., Hirsch, M.: EnhanceNet: single image super-resolution through automated texture synthesis. In: ICCV, October 2017

    Google Scholar 

  25. Tai, Y., Yang, J., Liu, X.: Image super-resolution via deep recursive residual network. In: CVPR, June 2017

    Google Scholar 

  26. Tong, T., Li, G., Liu, X., Gao, Q.: Image super-resolution using dense skip connections. In: ICCV, October 2017

    Google Scholar 

  27. Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. (TIP) 13(4), 600–612 (2004)

    Article  Google Scholar 

  28. Wilson, A.G., Hu, Z., Salakhutdinov, R., Xing, E.P.: Deep kernel learning. In: AISTATS (2016)

    Google Scholar 

  29. Xu, L., Jia, J.: Two-phase kernel estimation for robust motion deblurring. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6311, pp. 157–170. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15549-9_12

    Chapter  Google Scholar 

  30. Yang, J., Wang, Z., Lin, Z., Cohen, S., Huang, T.: Coupled dictionary training for image super-resolution. IEEE Trans. Image Process. (TIP) 21(8), 3467–3478 (2012)

    Article  MathSciNet  Google Scholar 

  31. Yang, J., Wright, J., Huang, T., Ma, Y.: Image super-resolution via sparse representation. IEEE Trans. Image Process. (TIP) 19(11), 2861–2873 (2010)

    Article  MathSciNet  Google Scholar 

  32. Zhang, K., Gao, X., Tao, D., Li, X.: Single image super-resolution with non-local means and steering kernel regression. IEEE Trans. Image Process. (TIP) 21(11), 4544–4556 (2012)

    Article  MathSciNet  Google Scholar 

  33. Zhao, S., Han, H., Peng, S.: Wavelet-domain HMT-based image super-resolution. In: International Conference on Image Processing (ICIP), vol. 2, pp. II–953. IEEE (2003)

    Google Scholar 

Download references

Acknowledgement

This research was funded by the German Research Foundation (DFG) as part of the research training group GRK 1564 Imaging New Modalities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianni Franchi .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 16310 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Franchi, G., Yao, A., Kolb, A. (2019). Supervised Deep Kriging for Single-Image Super-Resolution. In: Brox, T., Bruhn, A., Fritz, M. (eds) Pattern Recognition. GCPR 2018. Lecture Notes in Computer Science(), vol 11269. Springer, Cham. https://doi.org/10.1007/978-3-030-12939-2_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12939-2_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12938-5

  • Online ISBN: 978-3-030-12939-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics