Advertisement

Decoupling Respiratory and Angular Variation in Rotational X-ray Scans Using a Prior Bilinear Model

  • Tobias GeimerEmail author
  • Paul Keall
  • Katharina Breininger
  • Vincent Caillet
  • Michelle Dunbar
  • Christoph Bert
  • Andreas Maier
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11269)

Abstract

Data-driven respiratory signal extraction from rotational X-ray scans is a challenge as angular effects overlap with respiration-induced change in the scene. In this paper, we use the linearity of the X-ray transform to propose a bilinear model based on a prior 4D scan to separate angular and respiratory variation. The bilinear estimation process is supported by a B-spline interpolation using prior knowledge about the trajectory angle. Consequently, extraction of respiratory features simplifies to a linear problem. Though the need for a prior 4D CT seems steep, our proposed use-case of driving a respiratory motion model in radiation therapy usually meets this requirement. We evaluate on DRRs of 5 patient 4D CTs in a leave-one-phase-out manner and achieve a mean estimation error of \(3.01\%\) in the gray values for unseen viewing angles. We further demonstrate suitability of the extracted weights to drive a motion model for treatments with a continuously rotating gantry.

Keywords

Bilinear model Motion model Respiratory signal X-ray projection Feature extraction 

Notes

Acknowledgement

This work was partially conducted at the ACRF Image X Institute as part of a visiting research scholar program. The authors gratefully acknowledge funding of this research stay by the Erlangen Graduate School in Advanced Optical Technologies (SAOT).

References

  1. 1.
    Aichert, A., et al.: Epipolar consistency in transmission imaging. IEEE Trans. Med. Imaging 34(11), 2205–2219 (2015).  https://doi.org/10.1109/TMI.2015.2426417CrossRefGoogle Scholar
  2. 2.
    Çimen, S., Hoogendoorn, C., Morris, P.D., Gunn, J., Frangi, A.F.: Reconstruction of coronary trees from 3DRA using a 3D+t statistical cardiac prior. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8674, pp. 619–626. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10470-6_77CrossRefGoogle Scholar
  3. 3.
    Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models - their training and application. Comput. Vis. Image Underst. 61(1), 38–59 (1995)CrossRefGoogle Scholar
  4. 4.
    De Lathauwer, L., De Moor, B., Vandewalle, J.: A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 21(4), 1253–1278 (2000)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Fassi, A., et al.: Surrogate-driven deformable motion model for organ motion tracking in particle radiation therapy. Phys. Med. Biol. 60(4), 1565–1582 (2015).  https://doi.org/10.1088/0031-9155/60/4/1565CrossRefGoogle Scholar
  6. 6.
    Fischer, P., Pohl, T., Faranesh, A., Maier, A., Hornegger, J.: Unsupervised learning for robust respiratory signal estimation from x-ray fluoroscopy. IEEE Trans. Med. Imaging 36(4), 865–877 (2017).  https://doi.org/10.1109/TMI.2016.2609888CrossRefGoogle Scholar
  7. 7.
    Geimer, T., Unberath, M., Birlutiu, A., Wölfelschneider, J., Bert, C., Maier, A.: A kernel-based framework for intra-fractional respiratory motion estimation in radiation therapy. In: Proceedings of IEEE International Symposium on Biomed Imaging, pp. 1036–1039 (2017)Google Scholar
  8. 8.
    Keall, P.J., et al.: The management of respiratory motion in radiation oncology report of AAPM Task Group 76. Med. Phys. 33(10), 3874–3900 (2006).  https://doi.org/10.1118/1.2349696CrossRefGoogle Scholar
  9. 9.
    Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009).  https://doi.org/10.1137/07070111XMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Maier, A., et al.: CONRAD-a software framework for cone-beam imaging in radiology. Med. Phys. 40(11), 111914 (2013).  https://doi.org/10.1118/1.4824926CrossRefGoogle Scholar
  11. 11.
    McClelland, J.R., Hawkes, D.J., Schaeffter, T., King, A.P.: Respiratory motion models: a review. Med. Image Anal. 17(1), 19–42 (2013).  https://doi.org/10.1016/j.media.2012.09.005CrossRefGoogle Scholar
  12. 12.
    Prasetio, H., Wölfelschneider, J., Ziegler, M., Serpa, M., Witulla, B., Bert, C.: Dose calculation and verification of the vero gimbal tracking treatment delivery. Phys. Med. Biol. 63(3), 035043 (2018).  https://doi.org/10.1088/1361-6560/aaa617CrossRefGoogle Scholar
  13. 13.
    Tenenbaum, J.B., Freeman, W.T.: Separating style and content with bilinear models. Neural Comput. 12(6), 1247–1283 (2000)CrossRefGoogle Scholar
  14. 14.
    Wilms, M., Werner, R., Ehrhardt, J., Schmidt-Richberg, A., Schlemmer, H.P., Handels, H.: Multivariate regression approaches for surrogate-based diffeomorphic estimation of respiratory motion in radiation therapy. Phys. Med. Biol. 59(5), 1147–1164 (2014).  https://doi.org/10.1088/0031-9155/59/5/1147CrossRefGoogle Scholar
  15. 15.
    Yan, H., et al.: Extracting respiratory signals from thoracic cone beam CT projections. Phys. Med. Biol. 58(5), 1447–64 (2013).  https://doi.org/10.1088/0031-9155/58/5/1447CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Pattern Recognition Lab, Department of Computer ScienceFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany
  2. 2.Erlangen Graduate School in Advanced Optical Technologies (SAOT)Friedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany
  3. 3.Department of Radiation OncologyUniversitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany
  4. 4.ACRF Image X InstituteThe University of SydneySydneyAustralia

Personalised recommendations