Advertisement

3D Fluid Flow Estimation with Integrated Particle Reconstruction

  • Katrin LasingerEmail author
  • Christoph Vogel
  • Thomas Pock
  • Konrad Schindler
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11269)

Abstract

The standard approach to densely reconstruct the motion in a volume of fluid is to inject high-contrast tracer particles and record their motion with multiple high-speed cameras. Almost all existing work processes the acquired multi-view video in two separate steps: first, a per-frame reconstruction of the particles, usually in the form of soft occupancy likelihoods in a voxel representation; followed by 3D motion estimation, with some form of dense matching between the precomputed voxel grids from different time steps. In this sequential procedure, the first step cannot use temporal consistency considerations to support the reconstruction, while the second step has no access to the original, high-resolution image data. We show, for the first time, how to jointly reconstruct both the individual tracer particles and a dense 3D fluid motion field from the image data, using an integrated energy minimization. Our hybrid Lagrangian/Eulerian model explicitly reconstructs individual particles, and at the same time recovers a dense 3D motion field in the entire domain. Making particles explicit greatly reduces the memory consumption and allows one to use the high-resolution input images for matching. Whereas the dense motion field makes it possible to include physical a-priori constraints and account for the incompressibility and viscosity of the fluid. The method exhibits greatly (\({\approx }70\%\)) improved results over a recent baseline with two separate steps for 3D reconstruction and motion estimation. Our results with only two time steps are comparable to those of state-of-the-art tracking-based methods that require much longer sequences.

Notes

Acknowledgements

This work was supported by ETH grant 29 14-1. Christoph Vogel acknowledges support from the ERC starting grant 640156, ‘HOMOVIS’.

Supplementary material

480455_1_En_22_MOESM1_ESM.pdf (3.6 mb)
Supplementary material 1 (pdf 3673 KB)

Supplementary material 2 (mp4 33805 KB)

References

  1. 1.
    Adams, B., Pauly, M., Keiser, R., Guibas, L.J.: Adaptively sampled particle fluids. In: ACM SIGGRAPH (2007)Google Scholar
  2. 2.
    Adrian, R., Westerweel, J.: Particle Image Velocimetry. Cambridge University Press, Cambridge (2011)zbMATHGoogle Scholar
  3. 3.
    Atkinson, C., Soria, J.: An efficient simultaneous reconstruction technique for tomographic particle image velocimetry. Exp. Fluids 47(4), 553 (2009)CrossRefGoogle Scholar
  4. 4.
    Barbu, I., Herzet, C., Mémin, E.: Joint estimation of volume and velocity in TomoPIV. In: 10th International Symposium on Particle Image Velocimetry - PIV13 (2013)Google Scholar
  5. 5.
    Basha, T., Moses, Y., Kiryati, N.: Multi-view scene flow estimation: a view centered variational approach. In: CVPR (2010)Google Scholar
  6. 6.
    Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and Distributed Computation: Numerical Methods. Prentice-Hall, Upper Saddle River (1989)zbMATHGoogle Scholar
  8. 8.
    Bolte, J., Daniilidis, A., Lewis, A.: The Lojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems. SIAM J. Optim. 17(4), 1205–1223 (2007)CrossRefGoogle Scholar
  9. 9.
    Bolte, J., Sabach, S., Teboulle, M.: Proximal alternating linearized minimization for nonconvex and nonsmooth problems. Math Program. 146(1), 459–494 (2014)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Champagnat, F., Plyer, A., Le Besnerais, G., Leclaire, B., Davoust, S., Le Sant, Y.: Fast and accurate PIV computation using highly parallel iterative correlation maximization. Exp. Fluids 50(4), 1169 (2011)CrossRefGoogle Scholar
  11. 11.
    Cheminet, A., Leclaire, B., Champagnat, F., Plyer, A., Yegavian, R., Le Besnerais, G.: Accuracy assessment of a Lucas-Kanade based correlation method for 3D PIV. In: International Symposium Applications of Laser Techniques to Fluid Mechanics (2014)Google Scholar
  12. 12.
    Dalitz, R., Petra, S., Schnörr, C.: Compressed motion sensing. In: Lauze, F., Dong, Y., Dahl, A.B. (eds.) SSVM 2017. LNCS, vol. 10302, pp. 602–613. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-58771-4_48CrossRefGoogle Scholar
  13. 13.
    Discetti, S., Astarita, T.: Fast 3D PIV with direct sparse cross-correlations. Exp. Fluids 53(5), 1437–1451 (2012)CrossRefGoogle Scholar
  14. 14.
    Elsinga, G.E., Scarano, F., Wieneke, B., Oudheusden, B.W.: Tomographic particle image velocimetry. Exp. Fluids 41(6), 933–947 (2006)CrossRefGoogle Scholar
  15. 15.
    Gesemann, S., Huhn, F., Schanz, D., Schröder, A.: From noisy particle tracks to velocity, acceleration and pressure fields using B-splines and penalties. In: International Symposium on Applications of Laser Techniques to Fluid Mechanics (2016)Google Scholar
  16. 16.
    Gregson, J., Ihrke, I., Thuerey, N., Heidrich, W.: From capture to simulation: connecting forward and inverse problems in fluids. ACM ToG 33(4), 139 (2014)CrossRefGoogle Scholar
  17. 17.
    Huguet, F., Devernay, F.: A variational method for scene flow estimation from stereo sequences. In: ICCV (2007)Google Scholar
  18. 18.
    Kähler, C.J., et al.: Main results of the 4th international PIV challenge. Exp. Fluids 57(6), 97 (2016)CrossRefGoogle Scholar
  19. 19.
    Ladický, L., Jeong, S., Solenthaler, B., Pollefeys, M., Gross, M.: Data-driven fluid simulations using regression forests. ACM ToG 34(6), 199 (2015)CrossRefGoogle Scholar
  20. 20.
    Lasinger, K., Vogel, C., Schindler, K.: Volumetric flow estimation for incompressible fluids using the stationary stokes equations. In: ICCV (2017)Google Scholar
  21. 21.
    Li, Y., et al.: A public turbulence database cluster and applications to study Lagrangian evolution of velocity increments in turbulence. J. Turbul. 9, N31 (2008).  https://doi.org/10.1080/14685240802376389CrossRefGoogle Scholar
  22. 22.
    Maas, H.G., Gruen, A., Papantoniou, D.: Particle tracking velocimetry in three-dimensional flows. Exp. Fluids 15(2), 133–146 (1993)CrossRefGoogle Scholar
  23. 23.
    Menze, M., Geiger, A.: Object scene flow for autonomous vehicles. In: CVPR (2015)Google Scholar
  24. 24.
    Michaelis, D., Poelma, C., Scarano, F., Westerweel, J., Wieneke, B.: A 3D time-resolved cylinder wake survey by tomographic PIV. In: ISFV12 (2006)Google Scholar
  25. 25.
    Michalec, F.G., Schmitt, F., Souissi, S., Holzner, M.: Characterization of intermittency in zooplankton behaviour in turbulence. Eur. Phys. J. 38(10), 108 (2015)Google Scholar
  26. 26.
    Monaghan, J.J.: Smoothed particle hydrodynamics. Rep. Progress Phys. 68(8), 1703 (2005)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Perlman, E., Burns, R., Li, Y., Meneveau, C.: Data exploration of turbulence simulations using a database cluster. In: Conference on Supercomputing (2007)Google Scholar
  28. 28.
    Petra, S., Schröder, A., Wieneke, B., Schnörr, C.: On sparsity maximization in tomographic particle image reconstruction. In: Rigoll, G. (ed.) DAGM 2008. LNCS, vol. 5096, pp. 294–303. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-69321-5_30CrossRefGoogle Scholar
  29. 29.
    Petra, S., Schröder, A., Schnörr, C.: 3D tomography from few projections in experimental fluid dynamics. In: Nitsche, W., Dobriloff, C. (eds.) Imaging Measurement Methods for Flow Analysis. NNFM, vol. 106, pp. 63–72. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-01106-1_7CrossRefGoogle Scholar
  30. 30.
    Pock, T., Sabach, S.: Inertial proximal alternating linearized minimization (iPALM) for nonconvex and nonsmooth problems. SIAM J. Imaging Sci. 9(4), 1756–1787 (2016)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Rabe, C., Müller, T., Wedel, A., Franke, U.: Dense, robust, and accurate motion field estimation from stereo image sequences in real-time. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 582–595. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15561-1_42CrossRefGoogle Scholar
  32. 32.
    Raffel, M., Willert, C.E., Wereley, S., Kompenhans, J.: Particle Image Velocimetry: A Practical Guide. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-540-72308-0CrossRefGoogle Scholar
  33. 33.
    Ruhnau, P., Guetter, C., Putze, T., Schnörr, C.: A variational approach for particle tracking velocimetry. Meas. Sci. Technol. 16(7), 1449 (2005)CrossRefGoogle Scholar
  34. 34.
    Ruhnau, P., Schnörr, C.: Optical stokes flow estimation: an imaging-based control approach. Exp. Fluids 42(1), 61–78 (2007)CrossRefGoogle Scholar
  35. 35.
    Ruhnau, P., Stahl, A., Schnörr, C.: On-line variational estimation of dynamical fluid flows with physics-based spatio-temporal regularization. In: Franke, K., Müller, K.-R., Nickolay, B., Schäfer, R. (eds.) DAGM 2006. LNCS, vol. 4174, pp. 444–454. Springer, Heidelberg (2006).  https://doi.org/10.1007/11861898_45CrossRefGoogle Scholar
  36. 36.
    Schanz, D., Gesemann, S., Schröder, A.: Shake-the-box: Lagrangian particle tracking at high particle image densities. Exp. Fluids 57(5), 70 (2016)CrossRefGoogle Scholar
  37. 37.
    Schanz, D., Gesemann, S., Schröder, A., Wieneke, B., Novara, M.: Non-uniform optical transfer functions in particle imaging: calibration and application to tomographic reconstruction. Meas. Sci. Technol. 24(2), 024009 (2012).  https://doi.org/10.1088/0957-0233/24/2/024009CrossRefGoogle Scholar
  38. 38.
    Schneiders, J.F., Scarano, F.: Dense velocity reconstruction from tomographic PTV with material derivatives. Exp. Fluids 57(9), 139 (2016)CrossRefGoogle Scholar
  39. 39.
    Tompson, J., Schlachter, K., Sprechmann, P., Perlin, K.: Accelerating eulerian fluid simulation with convolutional networks. CoRR abs/1607.03597 (2016)Google Scholar
  40. 40.
    Valgaerts, L., Bruhn, A., Zimmer, H., Weickert, J., Stoll, C., Theobalt, C.: Joint estimation of motion, structure and geometry from stereo sequences. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 568–581. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15561-1_41CrossRefGoogle Scholar
  41. 41.
    Vogel, C., Schindler, K., Roth, S.: Piecewise rigid scene flow. In: ICCV (2013)Google Scholar
  42. 42.
    Vogel, C., Schindler, K., Roth, S.: 3D scene flow estimation with a rigid motion prior. In: ICCV (2011)Google Scholar
  43. 43.
    Vogel, C., Schindler, K., Roth, S.: 3D scene flow estimation with a piecewise rigid scene model. IJCV 115(1), 1–28 (2015)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Wedel, A., Brox, T., Vaudrey, T., Rabe, C., Franke, U., Cremers, D.: Stereoscopic scene flow computation for 3D motion understanding. IJCV 95(1), 29–51 (2011)CrossRefGoogle Scholar
  45. 45.
    Wieneke, B.: Volume self-calibration for 3D particle image velocimetry. Exp. Fluids 45(4), 549–556 (2008)CrossRefGoogle Scholar
  46. 46.
    Wieneke, B.: Iterative reconstruction of volumetric particle distribution. Meas. Sci. Technol. 24(2), 024008 (2012).  https://doi.org/10.1088/0957-0233/24/2/024008CrossRefGoogle Scholar
  47. 47.
    Xiong, J., et al.: Rainbow particle imaging velocimetry for dense 3D fluid velocity imaging. ACM Trans. Graph. 36(4), 36:1–36:14 (2017)CrossRefGoogle Scholar
  48. 48.
    Zhu, Y., Bridson, R.: Animating sand as a fluid. ACM ToG 24(3), 965–972 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Photogrammetry and Remote SensingETH ZurichZürichSwitzerland
  2. 2.Institute of Computer Graphics and VisionGraz University of TechnologyGrazAustria
  3. 3.AIT Austrian Institute of TechnologyViennaAustria

Personalised recommendations