Skip to main content

3D Fluid Flow Estimation with Integrated Particle Reconstruction

  • Conference paper
  • First Online:
Book cover Pattern Recognition (GCPR 2018)

Abstract

The standard approach to densely reconstruct the motion in a volume of fluid is to inject high-contrast tracer particles and record their motion with multiple high-speed cameras. Almost all existing work processes the acquired multi-view video in two separate steps: first, a per-frame reconstruction of the particles, usually in the form of soft occupancy likelihoods in a voxel representation; followed by 3D motion estimation, with some form of dense matching between the precomputed voxel grids from different time steps. In this sequential procedure, the first step cannot use temporal consistency considerations to support the reconstruction, while the second step has no access to the original, high-resolution image data. We show, for the first time, how to jointly reconstruct both the individual tracer particles and a dense 3D fluid motion field from the image data, using an integrated energy minimization. Our hybrid Lagrangian/Eulerian model explicitly reconstructs individual particles, and at the same time recovers a dense 3D motion field in the entire domain. Making particles explicit greatly reduces the memory consumption and allows one to use the high-resolution input images for matching. Whereas the dense motion field makes it possible to include physical a-priori constraints and account for the incompressibility and viscosity of the fluid. The method exhibits greatly (\({\approx }70\%\)) improved results over a recent baseline with two separate steps for 3D reconstruction and motion estimation. Our results with only two time steps are comparable to those of state-of-the-art tracking-based methods that require much longer sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams, B., Pauly, M., Keiser, R., Guibas, L.J.: Adaptively sampled particle fluids. In: ACM SIGGRAPH (2007)

    Google Scholar 

  2. Adrian, R., Westerweel, J.: Particle Image Velocimetry. Cambridge University Press, Cambridge (2011)

    MATH  Google Scholar 

  3. Atkinson, C., Soria, J.: An efficient simultaneous reconstruction technique for tomographic particle image velocimetry. Exp. Fluids 47(4), 553 (2009)

    Article  Google Scholar 

  4. Barbu, I., Herzet, C., Mémin, E.: Joint estimation of volume and velocity in TomoPIV. In: 10th International Symposium on Particle Image Velocimetry - PIV13 (2013)

    Google Scholar 

  5. Basha, T., Moses, Y., Kiryati, N.: Multi-view scene flow estimation: a view centered variational approach. In: CVPR (2010)

    Google Scholar 

  6. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

    Article  MathSciNet  Google Scholar 

  7. Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and Distributed Computation: Numerical Methods. Prentice-Hall, Upper Saddle River (1989)

    MATH  Google Scholar 

  8. Bolte, J., Daniilidis, A., Lewis, A.: The Lojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems. SIAM J. Optim. 17(4), 1205–1223 (2007)

    Article  Google Scholar 

  9. Bolte, J., Sabach, S., Teboulle, M.: Proximal alternating linearized minimization for nonconvex and nonsmooth problems. Math Program. 146(1), 459–494 (2014)

    Article  MathSciNet  Google Scholar 

  10. Champagnat, F., Plyer, A., Le Besnerais, G., Leclaire, B., Davoust, S., Le Sant, Y.: Fast and accurate PIV computation using highly parallel iterative correlation maximization. Exp. Fluids 50(4), 1169 (2011)

    Article  Google Scholar 

  11. Cheminet, A., Leclaire, B., Champagnat, F., Plyer, A., Yegavian, R., Le Besnerais, G.: Accuracy assessment of a Lucas-Kanade based correlation method for 3D PIV. In: International Symposium Applications of Laser Techniques to Fluid Mechanics (2014)

    Google Scholar 

  12. Dalitz, R., Petra, S., Schnörr, C.: Compressed motion sensing. In: Lauze, F., Dong, Y., Dahl, A.B. (eds.) SSVM 2017. LNCS, vol. 10302, pp. 602–613. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58771-4_48

    Chapter  Google Scholar 

  13. Discetti, S., Astarita, T.: Fast 3D PIV with direct sparse cross-correlations. Exp. Fluids 53(5), 1437–1451 (2012)

    Article  Google Scholar 

  14. Elsinga, G.E., Scarano, F., Wieneke, B., Oudheusden, B.W.: Tomographic particle image velocimetry. Exp. Fluids 41(6), 933–947 (2006)

    Article  Google Scholar 

  15. Gesemann, S., Huhn, F., Schanz, D., Schröder, A.: From noisy particle tracks to velocity, acceleration and pressure fields using B-splines and penalties. In: International Symposium on Applications of Laser Techniques to Fluid Mechanics (2016)

    Google Scholar 

  16. Gregson, J., Ihrke, I., Thuerey, N., Heidrich, W.: From capture to simulation: connecting forward and inverse problems in fluids. ACM ToG 33(4), 139 (2014)

    Article  Google Scholar 

  17. Huguet, F., Devernay, F.: A variational method for scene flow estimation from stereo sequences. In: ICCV (2007)

    Google Scholar 

  18. Kähler, C.J., et al.: Main results of the 4th international PIV challenge. Exp. Fluids 57(6), 97 (2016)

    Article  Google Scholar 

  19. Ladický, L., Jeong, S., Solenthaler, B., Pollefeys, M., Gross, M.: Data-driven fluid simulations using regression forests. ACM ToG 34(6), 199 (2015)

    Article  Google Scholar 

  20. Lasinger, K., Vogel, C., Schindler, K.: Volumetric flow estimation for incompressible fluids using the stationary stokes equations. In: ICCV (2017)

    Google Scholar 

  21. Li, Y., et al.: A public turbulence database cluster and applications to study Lagrangian evolution of velocity increments in turbulence. J. Turbul. 9, N31 (2008). https://doi.org/10.1080/14685240802376389

    Article  Google Scholar 

  22. Maas, H.G., Gruen, A., Papantoniou, D.: Particle tracking velocimetry in three-dimensional flows. Exp. Fluids 15(2), 133–146 (1993)

    Article  Google Scholar 

  23. Menze, M., Geiger, A.: Object scene flow for autonomous vehicles. In: CVPR (2015)

    Google Scholar 

  24. Michaelis, D., Poelma, C., Scarano, F., Westerweel, J., Wieneke, B.: A 3D time-resolved cylinder wake survey by tomographic PIV. In: ISFV12 (2006)

    Google Scholar 

  25. Michalec, F.G., Schmitt, F., Souissi, S., Holzner, M.: Characterization of intermittency in zooplankton behaviour in turbulence. Eur. Phys. J. 38(10), 108 (2015)

    Google Scholar 

  26. Monaghan, J.J.: Smoothed particle hydrodynamics. Rep. Progress Phys. 68(8), 1703 (2005)

    Article  MathSciNet  Google Scholar 

  27. Perlman, E., Burns, R., Li, Y., Meneveau, C.: Data exploration of turbulence simulations using a database cluster. In: Conference on Supercomputing (2007)

    Google Scholar 

  28. Petra, S., Schröder, A., Wieneke, B., Schnörr, C.: On sparsity maximization in tomographic particle image reconstruction. In: Rigoll, G. (ed.) DAGM 2008. LNCS, vol. 5096, pp. 294–303. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69321-5_30

    Chapter  Google Scholar 

  29. Petra, S., Schröder, A., Schnörr, C.: 3D tomography from few projections in experimental fluid dynamics. In: Nitsche, W., Dobriloff, C. (eds.) Imaging Measurement Methods for Flow Analysis. NNFM, vol. 106, pp. 63–72. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01106-1_7

    Chapter  Google Scholar 

  30. Pock, T., Sabach, S.: Inertial proximal alternating linearized minimization (iPALM) for nonconvex and nonsmooth problems. SIAM J. Imaging Sci. 9(4), 1756–1787 (2016)

    Article  MathSciNet  Google Scholar 

  31. Rabe, C., Müller, T., Wedel, A., Franke, U.: Dense, robust, and accurate motion field estimation from stereo image sequences in real-time. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 582–595. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_42

    Chapter  Google Scholar 

  32. Raffel, M., Willert, C.E., Wereley, S., Kompenhans, J.: Particle Image Velocimetry: A Practical Guide. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-540-72308-0

    Book  Google Scholar 

  33. Ruhnau, P., Guetter, C., Putze, T., Schnörr, C.: A variational approach for particle tracking velocimetry. Meas. Sci. Technol. 16(7), 1449 (2005)

    Article  Google Scholar 

  34. Ruhnau, P., Schnörr, C.: Optical stokes flow estimation: an imaging-based control approach. Exp. Fluids 42(1), 61–78 (2007)

    Article  Google Scholar 

  35. Ruhnau, P., Stahl, A., Schnörr, C.: On-line variational estimation of dynamical fluid flows with physics-based spatio-temporal regularization. In: Franke, K., Müller, K.-R., Nickolay, B., Schäfer, R. (eds.) DAGM 2006. LNCS, vol. 4174, pp. 444–454. Springer, Heidelberg (2006). https://doi.org/10.1007/11861898_45

    Chapter  Google Scholar 

  36. Schanz, D., Gesemann, S., Schröder, A.: Shake-the-box: Lagrangian particle tracking at high particle image densities. Exp. Fluids 57(5), 70 (2016)

    Article  Google Scholar 

  37. Schanz, D., Gesemann, S., Schröder, A., Wieneke, B., Novara, M.: Non-uniform optical transfer functions in particle imaging: calibration and application to tomographic reconstruction. Meas. Sci. Technol. 24(2), 024009 (2012). https://doi.org/10.1088/0957-0233/24/2/024009

    Article  Google Scholar 

  38. Schneiders, J.F., Scarano, F.: Dense velocity reconstruction from tomographic PTV with material derivatives. Exp. Fluids 57(9), 139 (2016)

    Article  Google Scholar 

  39. Tompson, J., Schlachter, K., Sprechmann, P., Perlin, K.: Accelerating eulerian fluid simulation with convolutional networks. CoRR abs/1607.03597 (2016)

    Google Scholar 

  40. Valgaerts, L., Bruhn, A., Zimmer, H., Weickert, J., Stoll, C., Theobalt, C.: Joint estimation of motion, structure and geometry from stereo sequences. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 568–581. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_41

    Chapter  Google Scholar 

  41. Vogel, C., Schindler, K., Roth, S.: Piecewise rigid scene flow. In: ICCV (2013)

    Google Scholar 

  42. Vogel, C., Schindler, K., Roth, S.: 3D scene flow estimation with a rigid motion prior. In: ICCV (2011)

    Google Scholar 

  43. Vogel, C., Schindler, K., Roth, S.: 3D scene flow estimation with a piecewise rigid scene model. IJCV 115(1), 1–28 (2015)

    Article  MathSciNet  Google Scholar 

  44. Wedel, A., Brox, T., Vaudrey, T., Rabe, C., Franke, U., Cremers, D.: Stereoscopic scene flow computation for 3D motion understanding. IJCV 95(1), 29–51 (2011)

    Article  Google Scholar 

  45. Wieneke, B.: Volume self-calibration for 3D particle image velocimetry. Exp. Fluids 45(4), 549–556 (2008)

    Article  Google Scholar 

  46. Wieneke, B.: Iterative reconstruction of volumetric particle distribution. Meas. Sci. Technol. 24(2), 024008 (2012). https://doi.org/10.1088/0957-0233/24/2/024008

    Article  Google Scholar 

  47. Xiong, J., et al.: Rainbow particle imaging velocimetry for dense 3D fluid velocity imaging. ACM Trans. Graph. 36(4), 36:1–36:14 (2017)

    Article  Google Scholar 

  48. Zhu, Y., Bridson, R.: Animating sand as a fluid. ACM ToG 24(3), 965–972 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by ETH grant 29 14-1. Christoph Vogel acknowledges support from the ERC starting grant 640156, ‘HOMOVIS’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrin Lasinger .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 2 (mp4 33805 KB)

Supplementary material 1 (pdf 3673 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lasinger, K., Vogel, C., Pock, T., Schindler, K. (2019). 3D Fluid Flow Estimation with Integrated Particle Reconstruction. In: Brox, T., Bruhn, A., Fritz, M. (eds) Pattern Recognition. GCPR 2018. Lecture Notes in Computer Science(), vol 11269. Springer, Cham. https://doi.org/10.1007/978-3-030-12939-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12939-2_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12938-5

  • Online ISBN: 978-3-030-12939-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics