Skip to main content

KS(conf): A Light-Weight Test if a ConvNet Operates Outside of Its Specifications

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11269))

Abstract

Computer vision systems for automatic image categorization have become accurate and reliable enough that they can run continuously for days or even years as components of real-world commercial applications. A major open problem in this context, however, is quality control. Good classification performance can only be expected if systems run under the specific conditions, in particular data distributions, that they were trained for. Surprisingly, none of the currently used deep network architectures have a built-in functionality that could detect if a network operates on data from a distribution it was not trained for, such that potentially a warning to the human users could be triggered.

In this work, we describe KS(conf), a procedure for detecting such outside of specifications (out-of-specs) operation, based on statistical testing of the network outputs. We show by extensive experiments using the ImageNet, AwA2 and DAVIS datasets on a variety of ConvNets architectures that KS(conf) reliably detects out-of-specs situations. It furthermore has a number of properties that make it a promising candidate for practical deployment: it is easy to implement, adds almost no overhead to the system, works with all networks, including pretrained ones, and requires no a priori knowledge of how the data distribution could change.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We use the pretrained models from https://github.com/taehoonlee/tensornets.

References

  1. Bansal, A., Farhadi, A., Parikh, D.: Towards transparent systems: semantic characterization of failure modes. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 366–381. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10599-4_24

    Chapter  Google Scholar 

  2. Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., Vaughan, J.W.: A theory of learning from different domains. Mach. Learn. 79(1–2), 151–175 (2010)

    Article  MathSciNet  Google Scholar 

  3. Bendale, A., Boult, T.: Towards open world recognition. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2015)

    Google Scholar 

  4. Bendale, A., Boult, T.: Towards open set deep networks. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  5. Daftry, S., Zeng, S., Bagnell, J.A., Hebert, M.: Introspective perception: learning to predict failures in vision systems. In: International Conference on Intelligent Robots (IROS) (2016)

    Google Scholar 

  6. Dunning, T., Ertl, O.: Computing extremely accurate quantiles using t-digests (2014). github.com

  7. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. In: International Conference on Machine Learing (ICML) (2015)

    Google Scholar 

  8. Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural networks. In: International Conference on Machine Learing (ICML) (2017)

    Google Scholar 

  9. Harel, M., Mannor, S., El-Yaniv, R., Crammer, K.: Concept drift detection through resampling. In: International Conference on Machine Learning (ICML) (2014)

    Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  11. Howard, A.G., et al.: Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv:1704.04861 (2017)

  12. Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.: SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and \({<}\)0.5 MB model size. arXiv:1602.07360 (2016)

  13. Jain, L.P., Scheirer, W.J., Boult, T.E.: Multi-class open set recognition using probability of inclusion. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 393–409. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10578-9_26

    Chapter  Google Scholar 

  14. Kuncheva, L.I., Faithfull, W.J.: PCA feature extraction for change detection in multidimensional unlabeled data. IEEE Trans. Neural Netw. (T-NN) 25(1), 69–80 (2014)

    Article  Google Scholar 

  15. Marsaglia, G., Tsang, W.W., Wang, J.: Evaluating Kolmogorov’s distribution. J. Stat. Softw. Articles 8(18), 1–4 (2003)

    Google Scholar 

  16. Massey Jr., F.J.: The Kolmogorov-Smirnov test for goodness of fit. J. Am. Stat. Assoc. 46(253), 68–78 (1951)

    Article  Google Scholar 

  17. Perazzi, F., Pont-Tuset, J., McWilliams, B., Van Gool, L., Gross, M., Sorkine-Hornung, A.: A benchmark dataset and evaluation methodology for video object segmentation. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  18. Platt, J.: Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In: Advances in Large Margin Classifiers. Cambridge University Press (1999)

    Google Scholar 

  19. Rebuffi, S.A., Kolesnikov, A., Sperl, G., Lampert, C.H.: iCaRL: incremental classifier and representation learning. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  20. dos Reis, D.M., Flach, P., Matwin, S., Batista, G.: Fast unsupervised online drift detection using incremental Kolmogorov-Smirnov test. In: SIGKDD (2016)

    Google Scholar 

  21. Royer, A., Lampert, C.H.: Classifier adaptation at prediction time. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2015)

    Google Scholar 

  22. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. (IJCV) 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  23. Sethi, T.S., Kantardzic, M., Hu, H.: A grid density based framework for classifying streaming data in the presence of concept drift. J. Intell. Inf. Syst. 46(1), 179–211 (2016)

    Article  Google Scholar 

  24. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556 (2014)

  25. Sun, R., Lampert, C.H.: KS(conf): A light-weight test if a ConvNet operates outside of its specifications. arXiv:1804.04171 (2018)

  26. Tange, O.: Gnu parallel - the command-line power tool. USENIX Mag. 36(1), 42–47 (2011). http://www.gnu.org/s/parallel

  27. Wang, H., Abraham, Z.: Concept drift detection for streaming data. In: International Joint Conference on Neural Networks (IJCNN) (2015)

    Google Scholar 

  28. Xian, Y., Lampert, C.H., Schiele, B., Akata, Z.: Zero-shot learning - a comprehensive evaluation of the good, the bad and the ugly. IEEE Trans. Pattern Anal. Mach. Intell. (T-PAMI) (2018)

    Google Scholar 

  29. Zhang, P., Wang, J., Farhadi, A., Hebert, M., Parikh, D.: Predicting failures of vision systems. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2014)

    Google Scholar 

  30. Zliobaite, I.: Change with delayed labeling: when is it detectable? In: International Conference on Data Mining Workshops (2010)

    Google Scholar 

  31. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures for scalable image recognition. arXiv:1707.07012 (2017)

Download references

Acknowledgments

This work was funded in parts by the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 308036.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph H. Lampert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, R., Lampert, C.H. (2019). KS(conf): A Light-Weight Test if a ConvNet Operates Outside of Its Specifications. In: Brox, T., Bruhn, A., Fritz, M. (eds) Pattern Recognition. GCPR 2018. Lecture Notes in Computer Science(), vol 11269. Springer, Cham. https://doi.org/10.1007/978-3-030-12939-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12939-2_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12938-5

  • Online ISBN: 978-3-030-12939-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics