Skip to main content

Structural Health Monitoring of Wind Turbines Using a Digital Image Correlation System on a UAV

  • Conference paper
  • First Online:
Rotating Machinery, Optical Methods & Scanning LDV Methods, Volume 6

Abstract

Unmanned aerial vehicles (UAVs) have recently emerged as a robust tool for remote inspection and data acquisition at places that are either inaccessible or riskier to perform measurements. To quantify the level of strain/stress and loading conditions that the rotating structures such as wind turbine experience during operation, an approach is proposed that can perform a nondestructive evaluation of these rotating structures using non-contact, three-dimensional (3D) digital image correlation (DIC). This technique addresses the benefit of non-interference with structure functionality and can be used for rotating or non-rotating structures. In this project, a synchronized set of a stereo camera system is used to acquire the images of a rotating turbine. These images are processed to obtain displacement, geometry, and strain over the wind turbine blades during deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ciang, C.C., Lee, J.-R., Bang, H.-J.: Structural health monitoring for a wind turbine system: a review of damage detection methods. Meas. Sci. Technol. 19, 122001 (2008)

    Article  Google Scholar 

  2. Larsen, F.M., Sorensen, T.: New lightning qualification test procedure for large wind turbine blades. In: Proceedings of International Conference on Lightning and Static Electricity, Blackpool, UK, 2003

    Google Scholar 

  3. Baqersad, J., Niezrecki, C., Avitabile, P.: Numerical and experimental analysis of the boundary conditions effects on the dynamics of wind turbines. Wind Eng. 39, 437–452 (2015)

    Article  Google Scholar 

  4. Baqersad, J., Niezrecki, C., Avitabile, P., Slattery, M.: Dynamic characterization of a free-free wind turbine blade assembly. In: Special Topics in Structural Dynamics, vol. 6, pp. 303–312. Springer (2013)

    Google Scholar 

  5. Baqersad, J., Poozesh, P., Niezrecki, C., Avitabile, P.: Comparison of modal parameters extracted using MIMO, SIMO, and impact hammer tests on a three-bladed wind Turbine. In: Topics in Modal Analysis II, vol. 8, pp. 185–197. Springer (2014)

    Google Scholar 

  6. Obando, S.E., Baqersad, J., Avitabile, P.: Improved modal characterization using hybrid data. Sound Vib. 48, 8–12 (2014)

    Google Scholar 

  7. Yang, S., Allen, M.S.: Output-only modal analysis using continuous-scan laser Doppler Vibrometry and application to a 20 kW wind turbine. Mech. Syst. Signal Process. 31, 228–245 (2012). https://doi.org/10.1016/j.ymssp.2012.04.012

    Article  Google Scholar 

  8. Ozbek, M., Rixen, D.J., Erne, O., Sanow, G.: Feasibility of monitoring large wind turbines using photogrammetry. Energy. 35, 4802–4811 (2010). https://doi.org/10.1016/j.energy.2010.09.008

    Article  Google Scholar 

  9. Ehrhardt, D.A., Allen, M.S., Yang, S., Beberniss, T.J.: Full-field linear and nonlinear measurements using continuous-scan laser Doppler Vibrometry and high speed three-dimensional digital image correlation. Mech. Syst. Signal Process. 86, 82–97. https://doi.org/10.1016/j.ymssp.2015.12.003

  10. Baqersad, J., Poozesh, P., Niezrecki, C., Avitabile, P.: Photogrammetry and optical methods in structural dynamics – a review. Mech. Syst. Signal Process. 86, 17–34. https://doi.org/10.1016/j.ymssp.2016.02.011

  11. Sarrafi, A., Poozesh, P., Mao, Z.: A comparison of computer-vision-based structural dynamics characterizations. In: Barthorpe, R., Platz, R., Lopez, I., Moaveni, B., Papadimitriou, C. (eds.) Model Validation and Uncertainty Quantification, Volume 3: Proceedings of the 35th IMAC, A Conference and Exposition on Structural Dynamics 2017, pp. 295–301. Springer International Publishing, Cham (2017). https://doi.org/10.1007/978-3-319-54858-6_29

    Chapter  Google Scholar 

  12. Niezrecki, C., Baqersad, J., Sabato, A.: Digital image correlation techniques for NDE and SHM. In: Handbook of Advanced Non-Destructive Evaluation, pp. 1–46 (2018). https://doi.org/10.1007/978-3-319-30050-4_47-1

    Chapter  Google Scholar 

  13. Baqersad, J., Carr, J., Lundstrom, T., Niezrecki, C., Avitabile, P., Slattery, M.: Dynamic characteristics of a wind turbine blade using 3D digital image correlation. In: SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring, International Society for Optics and Photonics, pp. 83482I-83482I-83489 (2012)

    Google Scholar 

  14. Carr, J., Baqersad, J., Niezrecki, C., Avitabile, P., Slattery, M.: Dynamic stress–strain on turbine blades using digital image correlation techniques part 2: dynamic measurements. In: Topics in Experimental Dynamics Substructuring and Wind Turbine Dynamics, vol. 2, pp. 221–226. Springer, New York, NY (2012)

    Google Scholar 

  15. Lundstrom, T., Baqersad, J., Niezrecki, C., Avitabile, P.: Using high-speed stereophotogrammetry techniques to extract shape information from wind turbine/rotor operating data. In: 30th IMAC, A Conference on Structural Dynamics, 2012, January 30, 2012–February 2, 2012, Springer New York, Jacksonville, 2012, pp. 269–275. https://doi.org/10.1007/978-1-4614-2419-2_26

  16. Poozesh, P., Sarrafi, A., Mao, Z., Avitabile, P., Niezrecki, C.: Feasibility of extracting operating shapes using phase-based motion magnification technique and stereo-photogrammetry. J. Sound Vib. 407, 350–366 (2017). https://doi.org/10.1016/j.jsv.2017.06.003

    Article  Google Scholar 

  17. Poozesh, P., Sarrafi, A., Mao, Z., Niezrecki, C.: Modal parameter estimation from optically-measured data using a hybrid output-only system identification method. Measurement. 110, 134–145 (2017)

    Article  Google Scholar 

  18. Sarrafi, A., Mao, Z.: Wind turbine blade damage detection via 3-dimensional phase-based motion estimation. In: Proceedings of the 11th International Workshop on Structural Heath Monitoring 2017, (2017). https://doi.org/10.12783/shm2017/14154

  19. Sarrafi, A., Poozesh, P., Niezrecki, C., Mao, Z.: Mode extraction on wind turbine blades via phase-based video motion estimation. In: SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring, International Society for Optics and Photonics, pp. 101710E-101710E-101712, 2017

    Google Scholar 

  20. Lundstrom, T., Baqersad, J., Niezrecki, C.: Monitoring the dynamics of a helicopter Main rotor with high-speed Stereophotogrammetry. Exp. Tech. (2015). https://doi.org/10.1111/ext.12127

  21. Schneider, O.: Analysis of SPR measurements from HART II. Aerosp. Sci. Technol. 9, 409–420 (2005). https://doi.org/10.1016/j.ast.2005.01.013

    Article  MATH  Google Scholar 

  22. Patil, K., Baqersad, J., Sheidaei, A.: A multi-view digital image correlation for extracting mode shapes of a tire. In: Shock & Vibration, Aircraft/Aerospace, Energy Harvesting, Acoustics & Optics, vol. 9, pp. 211–217. Springer, Cham (2017)

    Chapter  Google Scholar 

  23. Mange, A., Srivastava, V., More, J., Baqersad, J.: Using digital image correlation to measure dynamics of rolling tires. In: SAE World Congress, SAE Technical Paper, Detroit (2018). https://doi.org/10.4271/2018-01-1217

  24. Patil, K., Srivastava, V., Baqersad, J.: A Multi-view optical technique to obtain mode shapes of structures. Measurement. 122, 358–367 (2018). https://doi.org/10.1016/j.measurement.2018.02.059

    Article  Google Scholar 

  25. Srivastava, V., Patil, K., Baqersad, J., Zhang, J.: A multi-view DIC approach to extract operating mode shapes of structures. In: Structural Health Monitoring, Photogrammetry & DIC, vol. 6, pp. 43–48. Springer (2019)

    Google Scholar 

  26. Kim, S.-W., Kim, N.-S.: Dynamic characteristics of suspension bridge hanger cables using digital image processing. NDT & E Int. 59, 25–33 (2013). https://doi.org/10.1016/j.ndteint.2013.05.002

    Article  Google Scholar 

  27. Busca, G., Cigada, A., Mazzoleni, P., Zappa, E.: Vibration monitoring of multiple bridge points by means of a unique vision-based measuring system. Exp. Mech. 54, 255–271 (2014). https://doi.org/10.1007/s11340-013-9784-8

    Article  Google Scholar 

  28. Baqersad, J., Niezrecki, C., Avitabile, P.: Extracting full-field dynamic strain on a wind turbine rotor subjected to arbitrary excitations using 3D point tracking and a modal expansion technique. J. Sound Vib. 352, 16–29 (2015). https://doi.org/10.1016/j.jsv.2015.04.026

    Article  Google Scholar 

  29. Baqersad, J., Niezrecki, C., Avitabile, P.: Full-field dynamic strain prediction on a wind turbine using displacements of optical targets measured by stereophotogrammetry. Mech. Syst. Signal Process. 62, 284–295 (2015). https://doi.org/10.1016/j.ymssp.2015.03.021

    Article  Google Scholar 

  30. Carr, J., Baqersad, J., Niezrecki, C., Avitabile, P.: Full-field dynamic strain on wind turbine blade using digital image correlation techniques and limited sets of measured data from photogrammetric targets. Exp. Tech. (2015). https://doi.org/10.1111/ext.12129

  31. Baqersad, J., Poozesh, P., Niezrecki, C., Avitabile, P.: A noncontacting approach for full-field strain monitoring of rotating structures. J. Vib. Acoust. 138, 031008–031008 (2016). https://doi.org/10.1115/1.4032721

    Article  Google Scholar 

  32. Baqersad, J., Bharadwaj, K., Poozesh, P.: Modal expansion using strain mode shapes. In: Shock & Vibration, Aircraft/Aerospace, Energy Harvesting, Acoustics & Optics, vol. 9, pp. 219–226. Springer (2017)

    Google Scholar 

  33. Bharadwaj, K., Baqersad, J.: Strain Expansion Using Mode Shapes Obtained with Digital Image Correlation, Composite Structures (2018, in press)

    Google Scholar 

  34. Chen, Y., Joffre, D., Avitabile, P.: Underwater dynamic response at limited points expanded to full-field strain response. J. Vib. Acoust. 140, 051016 (2018)

    Article  Google Scholar 

  35. Rahneshin, V., Chierichetti, M.: An integrated approach for non-periodic dynamic response prediction of complex structures: numerical and experimental analysis. J. Sound Vib. 378, 38–55 (2016). https://doi.org/10.1016/j.jsv.2016.05.017

    Article  Google Scholar 

  36. Reagan, D., Sabato, A., Niezrecki, C.: Feasibility of using digital image correlation for unmanned aerial vehicle structural health monitoring of bridges. Struct. Health Monit. 17(5), 1056–1072 (2018). https://doi.org/10.1177/1475921717735326

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Baqersad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khadka, A., Dong, Y., Baqersad, J. (2019). Structural Health Monitoring of Wind Turbines Using a Digital Image Correlation System on a UAV. In: Niezrecki, C., Baqersad, J., Di Maio, D. (eds) Rotating Machinery, Optical Methods & Scanning LDV Methods, Volume 6. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-030-12935-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12935-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12934-7

  • Online ISBN: 978-3-030-12935-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics