Skip to main content

Composites

  • Chapter
  • First Online:
Polypropylene Handbook

Abstract

The current chapter is dedicated to polypropylene (PP) based composites. The material grouping and presentation in the chapter follows the logic of the reinforcement length gain and covers the areas from nano- to macro-composites. Thus, separate sections are devoted to PP-nanocomposites, discontinuous fiber-reinforced, mat-reinforced, fabric-reinforced and aligned fiber-reinforced composites. Each section describes the aspects of manufacturing techniques, structure development, properties characterization as well as processing and application of the related composites. As PP matrix belongs to the family of fairly unexpensive high-volume thermoplastics and related composites are feasible for semi-structural and structural applications, the chapter is mostly concentrated in PP-composites for automotive application.

József Karger-Kocsis is deceased

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

0D:

Zero-dimensional

1D:

One-dimensional

2D:

Two-dimensional

3D:

Three-dimensional

ACN:

Addressable conducting network

AFM:

Atomic force microscopy

C:

Central layers

CAD:

Computer aided design

CEC:

Cation exchange capacity

CF:

Carbon fiber

CMT:

Carbon fiber mat thermoplastic

CNT:

Carbon nanotubes

CT:

Compact tension

DBP:

Double-belt press

D-LFT:

Directly produced long fiber reinforced thermoplastics

DMTA:

Dynamic-mechanical thermal analysis

EMI:

Electromagnetic interference

ETC:

Extreme temperature conditions

EWF:

Essential work of fracture

FCP:

Fatigue crack propagation

FDM:

Fused deposition modelling

FE:

Finite element

FR-PP:

Fabric reinforced polypropylene

FTIR:

Fourier-transform infrared

GF:

Glass fiber

GMT:

Glass mat-reinforced thermoplastics

GMT-C:

Continuous fiber GMT

GMT-D:

Discrete fiber GMT

GO:

Graphene oxide

GR:

Graphene

HDT:

Heat distortion temperature

HDT-B:

Heat distortion temperature tested by B-method

HPSC:

High pressure stiffness conditions

HRR:

Heat release rate

IFR:

Intumescent flame retardant

L:

Longitudinal

LEFM:

Linear elastic fracture mechanics

LGF:

Long glass fiber

LOI:

Limiting oxygen index

LPSC:

Low pressure stamping conditions

LTCE:

Linear thermal coefficient of expansion

LWRT:

Lightweight reinforced thermoplastics

MAO:

Methylaluminoxane

MFD:

Mold filling direction

MMT:

Sodium montmorillonite

MRT:

Mat-reinforced thermoplastics

MWCNT:

Multiwall carbon nanotube

NF:

Natural fibers

NMT:

Natural mat thermoplastic

PA:

Polyamide

POSS:

Polyhedral oligomeric silsesquioxane

PP-g-MA:

Maleic anhydride grafted PP

PP-g-MAA:

PP grafted with maleic acid

PYFM:

Post-yield fracture mechanics

RC:

Reference forming conditions

RT:

Room temperature

S:

Surface layers

SCC:

Slow cooling conditions

SCF:

Short carbon fiber

SEM:

Scanning electron microscopy

SGF:

Short glass fiber

SMC:

Sheet molding compound

SR-PP:

Self-reinforced PP

T:

Transverse

TC:

Transcrystalline

TEM:

Transmission electron microscopy

TGA:

Thermogravimetric analysis

TTSP:

Time-temperature superposition principle

UD:

Unidirectional

XRD:

X-ray diffraction

ZN:

Ziegler-Natta

ε:

Strain

E :

Flexural modulus

E f :

Flexural modulus of the fibers

E m :

Flexural modulus of the matrix

K Q :

Fracture toughness

R :

Reinforcing effectiveness term

T g :

Glass transition temperature

T m :

Melting temperature

V f :

Fiber volume fraction

V m :

Matrix volume fraction

ρ:

Density

σ:

Normal stress

τ:

Shear stress

μ :

Dynamic viscosity of the resin

References

  1. Karger-Kocsis J, Kmetty Á, Lendvai L et al (2015) Water-assisted production of thermoplastic nanocomposites: a review. Materials 8(1):72–95. https://doi.org/10.3390/ma8010072

    Article  CAS  Google Scholar 

  2. Zapata P, Quijada R (2012) Polypropylene nanocomposites obtained by in situ polymerization using metallocene catalyst: influence of the nanoparticles on the final polymer morphology. J Nanomater 2012:6. https://doi.org/10.1155/2012/194543

    Article  CAS  Google Scholar 

  3. Azinfar B, Ahmad Ramazani SA, Jafariesfad N (2014) In situ preparation and property investigation of polypropylene/fumed silica nanocomposites. Polym Compos 35(1):37–44. https://doi.org/10.1002/pc.22631

    Article  CAS  Google Scholar 

  4. Ahmad Ramazani SA, Tavakolzadeh F, Baniasadi H (2010) Synthesis of polypropylene/clay nanocomposites using bisupported Ziegler-Natta catalyst. J Appl Polym Sci 115(1):308–314. https://doi.org/10.1002/app.31102

    Article  CAS  Google Scholar 

  5. Cardoso RDS, Oliveira JDS, Ramis LB et al (2018) Ziegler-Natta catalyst based on MgCl2/clay/ID/TiCl4 for the synthesis of spherical particles of polypropylene nanocomposites. J Nanosci Nanotechnol 18(7):5124–5132. https://doi.org/10.1166/jnn.2018.15308

    Article  CAS  Google Scholar 

  6. Milani MA, González D, Quijada R et al (2013) Polypropylene/graphene nanosheet nanocomposites by in situ polymerization: synthesis, characterization and fundamental properties. Compos Sci Technol 84:1–7. https://doi.org/10.1016/j.compscitech.2013.05.001

    Article  CAS  Google Scholar 

  7. Funck A, Kaminsky W (2007) Polypropylene carbon nanotube composites by in situ polymerization. Compos Sci Technol 67(5):906–915. https://doi.org/10.1016/j.compscitech.2006.01.034

    Article  CAS  Google Scholar 

  8. Huang Y, Qin Y, Zhou Y et al (2010) Polypropylene/graphene oxide nanocomposites prepared by in situ Ziegler − Natta polymerization. Chem Mater 22(13):4096–4102. https://doi.org/10.1021/cm100998e

    Article  CAS  Google Scholar 

  9. Kaminsky W (ed) (2013) Polyolefins: 50 years after Ziegler and Natta II. Polyolefins by metallocenes and other single-site catalyst. Advances in polymer science, vol 258. Springer, Heidelberg. https://doi.org/10.1007/978-3-642-40805-2

  10. Kalaitzidou K, Fukushima H, Drzal LT (2007) A new compounding method for exfoliated graphite–polypropylene nanocomposites with enhanced flexural properties and lower percolation threshold. Compos Sci Technol 67(10):2045–2051. https://doi.org/10.1016/j.compscitech.2006.11.014

    Article  CAS  Google Scholar 

  11. Chiu F-C, Chu P-H (2006) Characterization of solution-mixed polypropylene/clay nanocomposites without compatibilizers. J Polym Res 13(1):73–78. https://doi.org/10.1007/s10965-005-9009-7

    Article  CAS  Google Scholar 

  12. Ljungberg N, Bonini C, Bortolussi F et al (2005) New nanocomposite materials reinforced with cellulose whiskers in atactic polypropylene: effect of surface and dispersion characteristics. Biomacromol 6(5):2732–2739. https://doi.org/10.1021/bm050222v

    Article  CAS  Google Scholar 

  13. Karger-Kocsis J, Lendvai L (2018) Polymer/boehmite nanocomposites: a review. J Appl Polym Sci 135(24):45573. https://doi.org/10.1002/app.45573

    Article  CAS  Google Scholar 

  14. Kato M, Matsushita M, Fukumori K (2004) Development of a new production method for a polypropylene-clay nanocomposite. Polym Eng Sci 44(7):1205. https://doi.org/10.1002/pen.20115.

  15. Karger-Kocsis J (2000) Reinforced polymer blends. In: Paul DR, Bucknall CB (eds) Polymer blends, vol 2. Wiley, New York, pp 395–428

    Google Scholar 

  16. Song P, Cao Z, Cai Y et al (2011) Fabrication of exfoliated graphene-based polypropylene nanocomposites with enhanced mechanical and thermal properties. Polymer 52(18):4001–4010. https://doi.org/10.1016/j.polymer.2011.06.045

    Article  CAS  Google Scholar 

  17. Bouaziz A, Jaziri M, Dalmas F et al (2014) Nanocomposites of silica reinforced polypropylene: correlation between morphology and properties. Polym Eng Sci 54(9):2187–2196. https://doi.org/10.1002/pen.23768

    Article  CAS  Google Scholar 

  18. Dabrowska I, Fambri L, Pegoretti A et al (2015) Spinning, drawing and physical properties of polypropylene nanocomposite fibers with fumed nanosilica. Express Polym Lett 9:277–290. https://doi.org/10.3144/expresspolymlett.2015.25

    Article  CAS  Google Scholar 

  19. Zohrevand A, Ajji A, Mighri F (2014) Morphology and properties of highly filled iPP/TiO2 nanocomposites. Polym Eng Sci 54(4):874–886. https://doi.org/10.1002/pen.23625

    Article  CAS  Google Scholar 

  20. Lin Y, Chen H, Chan C-M et al (2008) High impact toughness polypropylene/CaCO3 nanocomposites and the toughening mechanism. Macromolecules 41(23):9204–9213. https://doi.org/10.1021/ma801095d

    Article  CAS  Google Scholar 

  21. Zhao H, Li RKY (2005) Crystallization, mechanical, and fracture behaviors of spherical alumina-filled polypropylene nanocomposites. J Polym Sci, Part B: Polym Phys 43(24):3652–3664. https://doi.org/10.1002/polb.20654

    Article  CAS  Google Scholar 

  22. Pracella M, Chionna D, Fina A et al (2006) Polypropylene-POSS nanocomposites: morphology and crystallization behaviour. Macromol Symp 234(1):59–67. https://doi.org/10.1002/masy.200650209

    Article  CAS  Google Scholar 

  23. Prashantha K, Lacrampe MF, Krawczak P (2011) Processing and characterization of halloysite nanotubes filled polypropylene nanocomposites based on a masterbatch route: effect of halloysites treatment on structural and mechanical properties. Express Polym Lett 5(4):295–307. https://doi.org/10.3144/expresspolymlett.2011.30

    Article  CAS  Google Scholar 

  24. Prashantha K, Soulestin J, Lacrampe MF et al (2009) Masterbatch-based multi-walled carbon nanotube filled polypropylene nanocomposites: assessment of rheological and mechanical properties. Compos Sci Technol 69(11):1756–1763. https://doi.org/10.1016/j.compscitech.2008.10.005

    Article  CAS  Google Scholar 

  25. Szentes A, Varga C, Horváth G et al (2012) Electrical resistivity and thermal properties of compatibilized multi-walled carbon nanotube/polypropylene composites. Express Polym Lett 6(6):494–502. https://doi.org/10.3144/expresspolymlett.2012.52

    Article  CAS  Google Scholar 

  26. Prashantha K, Soulestin J, Lacrampe MF et al (2009) Taguchi analysis of shrinkage and warpage of injection-moulded polypropylene/multiwall carbon nanotubes nanocomposites. Express Polym Lett 3(10):630–638. https://doi.org/10.3144/expresspolymlett.2009.79

    Article  CAS  Google Scholar 

  27. Hassan ML, Mathew AP, Hassan EA et al (2014) Improving cellulose/polypropylene nanocomposites properties with chemical modified bagasse nanofibers and maleated polypropylene. J Reinf Plast Compos 33(1):26–36. https://doi.org/10.1177/0731684413509292

    Article  CAS  Google Scholar 

  28. Hubbe MA, Rojas OJ, Lucia LA et al (2008) Cellulosic nanocomposites: a review. BioResources 3(3):929–980

    Article  Google Scholar 

  29. Utracki LA, Sepehr M, Boccaleri E (2007) Synthetic, layered nanoparticles for polymeric nanocomposites (PNCs). Polym Adv Technol 18(1):1–37. https://doi.org/10.1002/pat.852

    Article  CAS  Google Scholar 

  30. Utracki LA, Kamal MR (2002) Clay-containing polymeric nanocomposites. Arab J Sci Eng 27(1):43–67

    CAS  Google Scholar 

  31. Gao Y, Zhang Y, Williams GR et al (2016) Layered double hydroxide-oxidized carbon nanotube hybrids as highly efficient flame retardant nanofillers for polypropylene. Sci Rep 6:35502. https://doi.org/10.1038/srep35502

    Article  CAS  Google Scholar 

  32. Nagendra B, Rosely CVS, Leuteritz A et al (2017) Polypropylene/layered double hydroxide nanocomposites: influence of LDH intralayer metal constituents on the properties of polypropylene. ACS Omega 2(1):20–31. https://doi.org/10.1021/acsomega.6b00485

    Article  CAS  Google Scholar 

  33. Tripathi SN, Srinivasa Rao GS, Mathur AB et al (2017) Polyolefin/graphene nanocomposites: a review. RSC Adv 7(38):23615–23632. https://doi.org/10.1039/C6RA28392F

    Article  CAS  Google Scholar 

  34. Hári J, Horváth F, Móczó J et al (2017) Competitive interactions, structure and properties in polymer/layered silicate nanocomposites. Express Polym Lett 11(6):479–492. https://doi.org/10.3144/expresspolymlett.2017.45

  35. Hári J, Dominkovics Z, Fekete E et al (2009) Kinetics of structure formation in PP/layered silicate nanocomposite. Express Polym Lett 3(11):692–702. https://doi.org/10.3144/expresspolymlett.2009.87

    Article  CAS  Google Scholar 

  36. Lee SH, Youn JR (2008) Experimental and theoretical study on shear flow behavior of polypropylene/layered silicate nanocomposites. Adv Compos Mater 17(3):191–214. https://doi.org/10.1163/156855108X345225

    Article  CAS  Google Scholar 

  37. He S, Zhang J, Xiao X et al (2017) Study on the morphology development and dispersion mechanism of polypropylene/graphene nanoplatelets composites for different shear field. Compos Sci Technol 153:209–221. https://doi.org/10.1016/j.compscitech.2017.10.024

    Article  CAS  Google Scholar 

  38. Battisti M, Perko L, Arunachalam S et al (2018) Influence of elongational flow generating nozzles on material properties of polypropylene nanocomposites. Polym Eng Sci 58(1):3–12. https://doi.org/10.1002/pen.24361

    Article  CAS  Google Scholar 

  39. Huang Z-X, Meng C, Zhang G et al (2017) Manufacturing polymer/clay nanocomposites through elongational flow technique. Mater Manuf Process 32(12):1409–1415. https://doi.org/10.1080/10426914.2017.1339316

    Article  CAS  Google Scholar 

  40. Reichert P, Nitz H, Klinke S et al (2000) Poly(propylene)/organoclay nanocomposite formation: influence of compatibilizer functionality and organoclay modification. Macromol Mater Eng 275(1):8–17. https://doi.org/10.1002/(SICI)1439-2054(20000201)275:1%3c8:AID-MAME8%3e3.0.CO;2-6

    Article  CAS  Google Scholar 

  41. Garcıa-López D, Picazo O, Merino JC et al (2003) Polypropylene–clay nanocomposites: effect of compatibilizing agents on clay dispersion. Eur Polym J 39(5):945–950. https://doi.org/10.1016/S0014-3057(02)00333-6

    Article  CAS  Google Scholar 

  42. Koo CM, Kim MJ, Choi MH et al (2003) Mechanical and rheological properties of the maleated polypropylene–layered silicate nanocomposites with different morphology. J Appl Polym Sci 88(6):1526–1535. https://doi.org/10.1002/app.11782

    Article  CAS  Google Scholar 

  43. Li W, Karger-Kocsis J, Thomann R (2009) Compatibilization effect of TiO2 nanoparticles on the phase structure of PET/PP/TiO2 nanocomposites. J Polym Sci, Part B: Polym Phys 47:1616–1624. https://doi.org/10.1002/polb.21752

    Article  CAS  Google Scholar 

  44. Ray SS (2010) A new possibility for microstructural investigation of clay-based polymer nanocomposite by focused ion beam tomography. Polymer 51(17):3966–3970. https://doi.org/10.1016/j.polymer.2010.06.025

    Article  CAS  Google Scholar 

  45. Schneider S, Eppler F, Weber M et al (2016) Multiscale dispersion-state characterization of nanocomposites using optical coherence tomography. Sci Rep 6:31733. https://doi.org/10.1038/srep31733

    Article  CAS  Google Scholar 

  46. Karger-Kocsis J, Varga J (1999) Interfacial morphology and its effects in polypropylene composites. In: Karger-Kocsis J (ed) Polypropylene: an A-Z reference, vol 2. Polymer Science and Technology Series. Springer Netherlands, Dordrecht, Netherlands, pp 348–356. https://doi.org/10.1007/978-94-011-4421-6_50

  47. Zhang S, Minus ML, Zhu L et al (2008) Polymer transcrystallinity induced by carbon nanotubes. Polymer 49(5):1356–1364. https://doi.org/10.1016/j.polymer.2008.01.018

    Article  CAS  Google Scholar 

  48. Abdou JP, Braggin GA, Luo Y et al (2015) Graphene-induced oriented interfacial microstructures in single fiber polymer composites. ACS Appl Mater Interfaces 7(24):13620–13626. https://doi.org/10.1021/acsami.5b03269

    Article  CAS  Google Scholar 

  49. Nakajima H, Yamada K, Iseki Y et al (2003) Preparation and characterization of polypropylene/mesoporous silica nanocomposites with confined polypropylene. J Polym Sci, Part B: Polym Phys 41(24):3324–3332. https://doi.org/10.1002/polb.10700

    Article  CAS  Google Scholar 

  50. Zhang MQ, Rong MZ, Friedrich K (2003) Processing and properties of nonlayered nanoparticle reinforced thermoplastic composites. In: Nalwa HS (ed) Handbook of organic-inorganic hybrid materials and nanocomposites, vol 2. Nanocomposites. American Scientific Publishers, Los Angeles, pp 113–150

    Google Scholar 

  51. Karamipour S, Ebadi-Dehaghani H, Ashouri D et al (2011) Effect of nano-CaCO3 on rheological and dynamic mechanical properties of polypropylene: experiments and models. Polym Test 30(1):110–117. https://doi.org/10.1016/j.polymertesting.2010.10.009

  52. Hu H, Onyebueke L, Abatan A (2010) Characterizing and modeling mechanical properties of nanocomposites-review and evaluation. J Miner Mater Charact Eng 9(4):275–319. https://doi.org/10.4236/jmmce.2010.94022

    Article  Google Scholar 

  53. Kalaitzidou K, Fukushima H, Miyagawa H et al (2007) Flexural and tensile moduli of polypropylene nanocomposites and comparison of experimental data to Halpin-Tsai and Tandon-Weng models. Polym Eng Sci 47(11):1796–1803. https://doi.org/10.1002/pen.20879

    Article  CAS  Google Scholar 

  54. Rouhi S, Alizadeh Y, Ansari R (2016) Molecular dynamics simulations of the interfacial characteristics of polypropylene/single-walled carbon nanotubes. Proc Inst Mech Eng Part L: J Mater: Des Appl 230(1):190–205. https://doi.org/10.1177/1464420714557167

    Article  CAS  Google Scholar 

  55. Rezaiean N, Ebadi-Dehaghani H, Khonakdar HA et al (2016) Microstructure and properties of polypropylene/clay nanocomposites. J Macromol Sci Part B 55(10):1022–1038. https://doi.org/10.1080/00222348.2016.1230462

    Article  CAS  Google Scholar 

  56. Spencer PE, Sweeney J (2009) Modeling of polymer clay nanocomposites for a multiscale approach. In: Karger-Koscis J, Fakirov S (eds) Nano- and micromechanics of polymer blends and composites. Carl Hanser Verlag GmbH & Co. KG, Munich, pp 545–578

    Chapter  Google Scholar 

  57. Mallick PK, Zhou Y (2003) Yield and fatigue behavior of polypropylene and polyamide-6 nanocomposites. J Mater Sci 38(15):3183–3190. https://doi.org/10.1023/A:1025161215708

    Article  CAS  Google Scholar 

  58. Lv Y, Huang Y, Kong M et al (2014) Creep lifetime prediction of polypropylene/clay nanocomposites based on a critical failure strain criterion. Compos Sci Technol 96:71–79. https://doi.org/10.1016/j.compscitech.2014.03.011

    Article  CAS  Google Scholar 

  59. Pedrazzoli D, Pegoretti A (2014) Long-term creep behavior of polypropylene/fumed silica nanocomposites estimated by time–temperature and time–strain superposition approaches. Polym Bull 71(9):2247–2268. https://doi.org/10.1007/s00289-014-1185-3

    Article  CAS  Google Scholar 

  60. Drozdov AD, Høg Lejre AL, Christiansen Jd (2009) Viscoelasticity, viscoplasticity, and creep failure of polypropylene/clay nanocomposites. Compos Sci Technol 69(15):2596–2603. https://doi.org/10.1016/j.compscitech.2009.07.018

    Article  CAS  Google Scholar 

  61. Ramsaroop A, Kanny K, Mohan T (2010) Fracture toughness studies of polypropylene- clay nanocomposites and glass fibre reinforced polypropylene composites. Mater Sci Appl 1(5):301–309. https://doi.org/10.4236/msa.2010.15044

    Article  CAS  Google Scholar 

  62. Karger-Kocsis J (1989) Fracture of short-fibre reinforced thermoplastics. In: Friedrich K (ed) Application of fracture mechanics to composite materials, vol 6. Composite Materials Series. Elsevier Applied Science, Amsterdam, pp 189–247

    Chapter  Google Scholar 

  63. Pegoretti A (2009) Creep and fatigue behavior of polymer nanocomposites. In: Karger-Koscis J, Fakirov S (eds) Nano- and micromechanics of polymer blends and composites. Hanser, Munich, pp 301–339. https://doi.org/10.3139/9783446430129.009

  64. Karger-Kocsis J (2009) On the toughness of “nanomodified” polymers and their traditional polymer composites. In: Karger-Kocsis J, Fakirov S (eds) Nano- and micromechnaics of polymer blends and composites. Hanser, Munich, pp 425–470. https://doi.org/10.3139/9783446430129.012

  65. Chen L, Wong SC, Pisharath S (2003) Fracture properties of nanoclay-filled polypropylene. J Appl Polym Sci 88(14):3298–3305. https://doi.org/10.1002/app.12153

    Article  CAS  Google Scholar 

  66. Bureau MN, Perrin-Sarazin F, Ton-That MT (2004) Polyolefin nanocomposites: essential work of fracture analysis. Polym Eng Sci 44(6):1142–1151. https://doi.org/10.1002/pen.20107

    Article  CAS  Google Scholar 

  67. Chan C-M, Wu J, Li J-X et al (2002) Polypropylene/calcium carbonate nanocomposites. Polymer 43(10):2981–2992. https://doi.org/10.1016/S0032-3861(02)00120-9

    Article  CAS  Google Scholar 

  68. Karger-Kocsis J (1999) Dependence of the fracture and fatigue performance of polyolefins and related blends and composites on microstructural and molecular characteristics. Macromol Symp 143(1):185–205. https://doi.org/10.1002/masy.19991430115

    Article  CAS  Google Scholar 

  69. Ou Y, Yang F, Yu ZZ (1998) A new conception on the toughness of nylon 6/silica nanocomposite prepared via in situ polymerization. J Polym Sci, Part B: Polym Phys 36(5):789–795. https://doi.org/10.1002/(SICI)1099-0488(19980415)36:5%3c789:AID-POLB6%3e3.0.CO;2-G

    Article  CAS  Google Scholar 

  70. Argon AS, Cohen RE (2003) Toughenability of polymers. Polymer 44(19):6013–6032. https://doi.org/10.1016/S0032-3861(03)00546-9

    Article  CAS  Google Scholar 

  71. Lauke B (2017) Fracture toughness modelling of polymers filled with inhomogeneously distributed rigid spherical particles. Express Polym Lett 11(7):545–554. https://doi.org/10.3144/expresspolymlett.2017.52

    Article  Google Scholar 

  72. Arencón D, Velasco JI (2009) Fracture toughness of polypropylene-based particulate composites. Materials 2(4):2046. https://doi.org/10.3390/ma2042046

    Article  CAS  Google Scholar 

  73. Bárány T, Czigány T, Karger-Kocsis J (2010) Application of the essential work of fracture (EWF) concept for polymers, related blends and composites: a review. Prog Polym Sci 35(10):1257–1287. https://doi.org/10.1016/j.progpolymsci.2010.07.001

    Article  CAS  Google Scholar 

  74. Turcsán T, Mészáros L, Khumalo VM et al (2014) Fracture behavior of boehmite‐filled polypropylene block copolymer nanocomposites as assessed by the essential work of fracture concept. J Appl Polym Sci 131(13). https://doi.org/10.1002/app.40447

  75. Pedrazzoli D, Tuba F, Khumalo V et al (2014) Mechanical and rheological response of polypropylene/boehmite nanocomposites. J Reinf Plast Compos 33(3):252–265. https://doi.org/10.1177/0731684413505787

    Article  CAS  Google Scholar 

  76. Satapathy BK, Ganß M, Weidisch R et al (2007) Ductile-to-semiductile transition in PP-MWNT nanocomposites. Macromol Rapid Commun 28(7):834–841. https://doi.org/10.1002/marc.200600892

    Article  CAS  Google Scholar 

  77. Karger-Kocsis J, Khumalo VM, Bárány T et al (2013) On the toughness of thermoplastic polymer nanocomposites as assessed by the essential work of fracture (EWF) approach. Compos Interfaces 20(6):395–404. https://doi.org/10.1080/15685543.2013.807145

    Article  CAS  Google Scholar 

  78. Bureau MN, Ton-That M-T, Perrin-Sarazin F (2006) Essential work of fracture and failure mechanisms of polypropylene–clay nanocomposites. Eng Fract Mech 73(16):2360–2374. https://doi.org/10.1016/j.engfracmech.2006.04.012

    Article  Google Scholar 

  79. Saminathan K, Selvakumar P, Bhatnagar N (2008) Fracture studies of polypropylene/nanoclay composite. Part I: effect of loading rates on essential work of fracture. Polym Test 27(3):296–307. https://doi.org/10.1016/j.polymertesting.2007.11.008

  80. Karger-Kocsis J (1996) For what kind of polymer is the toughness assessment by the essential work concept straightforward? Polym Bull 37(1):119–126. https://doi.org/10.1007/bf00313827

    Article  CAS  Google Scholar 

  81. Utracki LA, Simha R, Garcia-Rejon A (2003) Pressure − volume − temperature dependence of poly-ε-caprolactam/clay nanocomposites. Macromolecules 36(6):2114–2121. https://doi.org/10.1021/ma0215464

    Article  CAS  Google Scholar 

  82. Giannelis EP, Krishnamoorti R, Manias E (1999) Polymer-silicate nanocomposites: model systems for confined polymers and polymer brushes. In: Granick S (ed) Polymers in confined environments. Advances in Polymer Science, vol 138. Springer, Berlin, pp 107–147. https://doi.org/10.1007/3-540-69711-x_3

  83. Privalko VP, Shumsky VF, Privalko EG et al (2002) Viscoelasticity and flow behavior of irradiation grafted nano-inorganic particle filled polypropylene composites in the melt state. Sci Technol Adv Mater 3(2):111. https://doi.org/10.1016/S1468-6996(00)00011-6

    Article  CAS  Google Scholar 

  84. Gu SY, Ren J, Wang QF (2004) Rheology of poly(propylene)/clay nanocomposites. J Appl Polym Sci 91(4):2427–2434. https://doi.org/10.1002/app.13403

    Article  CAS  Google Scholar 

  85. Trinkle S, Friedrich C (2001) Van Gurp-Palmen-plot: a way to characterize polydispersity of linear polymers. Rheol Acta 40(4):322–328. https://doi.org/10.1007/s003970000137

    Article  CAS  Google Scholar 

  86. Chafidz A, Kaavessina M, Al-Zahrani S et al (2014) Multiwall carbon nanotubes filled polypropylene nanocomposites: rheological and electrical properties. Polym Eng Sci 54(5):1134–1143. https://doi.org/10.1002/pen.23647

    Article  CAS  Google Scholar 

  87. Sinha Ray S, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28(11):1539–1641. https://doi.org/10.1016/j.progpolymsci.2003.08.002

    Article  CAS  Google Scholar 

  88. Okamoto M, Nam PH, Maiti P et al (2001) A house of cards structure in polypropylene/clay nanocomposites under elongational flow. Nano Lett 1(6):295–298. https://doi.org/10.1021/nl0100163

    Article  CAS  Google Scholar 

  89. Reichert P, Hoffmann B, Bock T et al (2001) Morphological stability of poly(propylene) nanocomposites. Macromol Rapid Commun 22(7):519–523. https://doi.org/10.1002/1521-3927(20010401)22:7%3c519:AID-MARC519%3e3.0.CO;2-W

    Article  CAS  Google Scholar 

  90. Solomon MJ, Almusallam AS, Seefeldt KF et al (2001) Rheology of polypropylene/clay hybrid materials. Macromolecules 34(6):1864–1872. https://doi.org/10.1021/ma001122e

    Article  CAS  Google Scholar 

  91. Bikiaris D (2010) Microstructure and properties of polypropylene/carbon nanotube nanocomposites. Materials 3(4):2884–2946. https://doi.org/10.3390/ma3042884

    Article  CAS  Google Scholar 

  92. Karian H (ed) (2003) Handbook of polypropylene and polypropylene composites. CRC Press, Boca Raton (Revised and Expanded. Plastics Engineering)

    Google Scholar 

  93. Yoon PJ, Fornes TD, Paul DR (2002) Thermal expansion behavior of nylon 6 nanocomposites. Polymer 43(25):6727–6741. https://doi.org/10.1016/S0032-3861(02)00638-9

    Article  CAS  Google Scholar 

  94. Manias E, Touny A, Wu L et al (2001) Polypropylene/montmorillonite nanocomposites. Review of the synthetic routes and materials properties. Chem Mater 13(10):3516–3523. https://doi.org/10.1021/cm0110627

  95. Fornes TD, Paul DR (2003) Modeling properties of nylon 6/clay nanocomposites using composite theories. Polymer 44(17):4993–5013. https://doi.org/10.1016/S0032-3861(03)00471-3

    Article  CAS  Google Scholar 

  96. Bharadwaj RK (2001) Modeling the barrier properties of polymer-layered silicate nanocomposites. Macromolecules 34(26):9189–9192. https://doi.org/10.1021/ma010780b

    Article  CAS  Google Scholar 

  97. Martinez-Hermosilla GA, Mesic B, Bronlund JE (2015) A review of thermoplastic composites vapour permeability models: applicability for barrier dispersion coatings. Packag Technol Sci 28(7):565–578. https://doi.org/10.1002/pts.2125

    Article  CAS  Google Scholar 

  98. Ellis TS, D’Angelo JS (2003) Thermal and mechanical properties of a polypropylene nanocomposite. J Appl Polym Sci 90(6):1639–1647. https://doi.org/10.1002/app.12830

    Article  CAS  Google Scholar 

  99. Gorrasi G, Tortora M, Vittoria V et al (2003) Transport properties of organic vapors in nanocomposites of organophilic layered silicate and syndiotactic polypropylene. Polymer 44(13):3679–3685. https://doi.org/10.1016/S0032-3861(03)00284-2

    Article  CAS  Google Scholar 

  100. Gómez M, Bracho D, Palza H et al (2015) Effect of morphology on the permeability, mechanical and thermal properties of polypropylene/SiO2 nanocomposites. Polym Int 64(9):1245–1251. https://doi.org/10.1002/pi.4909

    Article  CAS  Google Scholar 

  101. Tang Y, Hu Y, Song L et al (2003) Preparation and thermal stability of polypropylene/montmorillonite nanocomposites. Polym Degrad Stab 82(1):127–131. https://doi.org/10.1016/S0141-3910(03)00173-3

    Article  CAS  Google Scholar 

  102. Wang L, He X, Wilkie CA (2010) The utility of nanocomposites in fire retardancy. Materials 3(9):4580–4606. https://doi.org/10.3390/ma3094580

    Article  CAS  Google Scholar 

  103. Wagenknecht U, Kretzschmar B, Reinhardt G (2003) Investigations of fire retardant properties of polypropylene-clay-nanocomposites. Macromol Symp 194(1):207–212. https://doi.org/10.1002/masy.200390084

    Article  CAS  Google Scholar 

  104. Gilman JW, Jackson CL, Morgan AB et al (2000) Flammability properties of polymer − layered-silicate nanocomposites. Polypropylene polystyrene nanocomposites. Chem Mater 12(7):1866–1873. https://doi.org/10.1021/cm0001760

  105. Arao Y (2015) Flame retardancy of polymer nanocomposite. In: Visakh PM, Arao Y (eds) Flame retardants: polymer blends, composites and nanocomposites. Engineering Materials. Springer International Publishing, Cham, pp 15–44. https://doi.org/10.1007/978-3-319-03467-6_2

  106. Le Bras M, Bourbigot S (1999) Intumescent fire retardant polypropylene formulations. In: Karger-Kocsis J (ed) Polypropylene: an A-Z reference. Polymer Science and Technology Series, vol 2. Springer Netherlands, Dordrecht, pp 357–365. https://doi.org/10.1007/978-94-011-4421-6_51

  107. Tang Y, Hu Y, Wang S et al (2003) Intumescent flame retardant–montmorillonite synergism in polypropylene-layered silicate nanocomposites. Polym Int 52(8):1396–1400. https://doi.org/10.1002/pi.1270

    Article  CAS  Google Scholar 

  108. Manikantan MR, Varadharaju N (2011) Preparation and properties of polypropylene-based nanocomposite films for food packaging. Packag Technol Sci 24(4):191–209. https://doi.org/10.1002/pts.925

    Article  CAS  Google Scholar 

  109. Garcés JM, Moll DJ, Bicerano J et al (2000) Polymeric nanocomposites for automotive applications. Adv Mater 12(23):1835–1839. https://doi.org/10.1002/1521-4095(200012)12:23%3c1835:AID-ADMA1835%3e3.0.CO;2-T

    Article  Google Scholar 

  110. Utracki LA (1987) Present and future trends in polymer blends technology. Int Polym Process 2(1):3–12. https://doi.org/10.3139/217.870003

    Article  CAS  Google Scholar 

  111. Lutz A, Harmia T (1999) Impregnation techniques for fiber bundles or tows. In: Karger-Kocsis J (ed) Polypropylene: an A-Z reference, vol 2. Springer Netherlands, Dordrecht, pp 301–306. https://doi.org/10.1007/978-94-011-4421-6_43

  112. Uawongsuwan P, Yang Y, Hamada H (2015) Long jute fiber-reinforced polypropylene composite: effects of jute fiber bundle and glass fiber hybridization. J Appl Polym Sci 132(15). https://doi.org/10.1002/app.41819

  113. Hawley RC, Jones RF (2005) In-line compounding of long-fiber thermoplastics for injection molding. J Thermoplast Compos Mater 18(5):459–464. https://doi.org/10.1177/0892705705054413

    Article  CAS  Google Scholar 

  114. Yan X, Shen H, Yu L et al (2017) Polypropylene–glass fiber/basalt fiber hybrid composites fabricated by direct fiber feeding injection molding process. J Appl Polym Sci 134(44):45472. https://doi.org/10.1002/app.45472

    Article  CAS  Google Scholar 

  115. Bourban P-E, Månson J-A (1999) Integrated manufacturing. In: Karger-Kocsis J (ed) Polypropylene: an A-Z reference, vol 2. Springer Netherlands, Dordrecht, pp 341–347. https://doi.org/10.1007/978-94-011-4421-6_49

  116. Carneiro OS, Silva AF, Gomes R (2015) Fused deposition modeling with polypropylene. Mater Des 83:768–776. https://doi.org/10.1016/j.matdes.2015.06.053

    Article  CAS  Google Scholar 

  117. Milosevic M, Stoof D, Pickering K (2017) Characterizing the mechanical properties of fused deposition modelling natural fiber recycled polypropylene composites. J Compos Sci 1(1):7. https://doi.org/10.3390/jcs1010007

    Article  CAS  Google Scholar 

  118. Yang C, Huang H-X, Li K (2010) Investigation of fiber orientation states in injection-compression molded short-fiber-reinforced thermoplastics. Polym Compos 31(11):1899–1908. https://doi.org/10.1002/pc.20986

    Article  CAS  Google Scholar 

  119. Giusti R, Zanini F, Lucchetta G (2018) Automatic glass fiber length measurement for discontinuous fiber-reinforced composites. Compos Part A: Appl Sci Manuf 112:263–270. https://doi.org/10.1016/j.compositesa.2018.06.016

    Article  CAS  Google Scholar 

  120. Inoue A, Morita K, Tanaka T et al (2015) Effect of screw design on fiber breakage and dispersion in injection-molded long glass-fiber-reinforced polypropylene. J Compos Mater 49(1):75–84. https://doi.org/10.1177/0021998313514872

    Article  Google Scholar 

  121. Vaxman A, Narkis M, Siegmann A et al (2012) Short-fiber thermoplastics composites: fiber fracture during melt processing. In: Nicolais L (ed) Wiley encyclopedia of composites. Wiley, New York. https://doi.org/10.1002/9781118097298.weoc225

  122. Barbosa SE, Kenny JM (1999) Processing of short fiber reinforced polypropylene. II: statistical study of the effects of processing conditions on the impact strength. Polym Eng Sci 39(10):1880–1890. https://doi.org/10.1002/pen.11581

  123. Puch F, Hopmann C (2015) Experimental investigation of the influence of the compounding process and the composite composition on the mechanical properties of a short flax fiber–reinforced polypropylene composite. Polym Compos 36(12):2282–2290. https://doi.org/10.1002/pc.23141

    Article  CAS  Google Scholar 

  124. Nalini R, Kristiina O, Nayak SK et al (2016) Effect of long fiber thermoplastic extrusion process on fiber dispersion and mechanical properties of viscose fiber/polypropylene composites. Polym Adv Technol 27(5):685–692. https://doi.org/10.1002/pat.3742

    Article  CAS  Google Scholar 

  125. Phelps JH, Abd El-Rahman AI, Kunc V et al (2013) A model for fiber length attrition in injection-molded long-fiber composites. Compos Part A: Appl Sci Manuf 51:11–21. https://doi.org/10.1016/j.compositesa.2013.04.002

    Article  CAS  Google Scholar 

  126. Kmetty Á, Bárány T, Karger-Kocsis J (2012) Injection moulded all-polypropylene composites composed of polypropylene fibre and polypropylene based thermoplastic elastomer. Compos Sci Technol 73:72–80. https://doi.org/10.1016/j.compscitech.2012.09.017

    Article  CAS  Google Scholar 

  127. Kmetty Á, Tábi T, Kovács JG et al (2013) Development and characterisation of injection moulded, all-polypropylene composites. Express Polym Lett 7(2):134–145. https://doi.org/10.3144/expresspolymlett.2013.13

    Article  CAS  Google Scholar 

  128. Karger-Kocsis J, Friedrich K (1989) Effect of skin-core morphology on fatigue crack propagation in injection moulded polypropylene homopolymer. Int J Fatigue 11(3):161–168. https://doi.org/10.1016/0142-1123(89)90435-0

    Article  CAS  Google Scholar 

  129. Tadmor Z (1974) Molecular orientation in injection molding. J Appl Polym Sci 18(6):1753–1772. https://doi.org/10.1002/app.1974.070180614

    Article  CAS  Google Scholar 

  130. Rose W (1961) Fluid-fluid interfaces in steady motion. Nature 191:242. https://doi.org/10.1038/191242a0

    Article  Google Scholar 

  131. Hegler RP, Mennig G, Schmauch C (1987) Phase separation effects in processing of glass-bead- and glass-fiber-filled thermoplastics by injection molding. Adv Polym Technol 7(1):3–20. https://doi.org/10.1002/adv.1987.060070102

    Article  CAS  Google Scholar 

  132. Karger-Kocsis J (1989) Chapter 6—Microstructure and fracture mechanical performance of short-fibre reinforced thermoplastics. In: Friedrich K (ed) Composite Materials Series, vol 6. Elsevier, pp 189–247. https://doi.org/10.1016/b978-0-444-87286-9.50010-3

  133. Karger-Kocsis J, Friedrich K (1988) Fracture behavior of injection-molded short and long glass fiber—polyamide 6.6 composites. Compos Sci Technol 32(4):293–325. https://doi.org/10.1016/0266-3538(88)90067-x

  134. Spahr DE, Friedrich K, Schultz JM et al (1990) Microstructure and fracture behaviour of short and long fibre-reinforced polypropylene composites. J Mater Sci 25(10):4427–4439. https://doi.org/10.1007/bf00581104

    Article  CAS  Google Scholar 

  135. Karger-Kocsis J (1995) Microstructural aspects of fracture in polypropylene and in its filled, chopped fiber and fiber mat reinforced composites. In: Karger-Kocsis J (ed) Polypropylene structure, blends and composites, vol 3. Springer Netherlands, Dordrecht, pp 142–201. https://doi.org/10.1007/978-94-011-0523-1_4

  136. Clegg DW, Collyer AA (eds) (1986) Mechanical properties of reinforced thermoplastics. Springer, Netherlands. https://doi.org/10.1007/978-94-009-4193-9

  137. Garcea SC, Wang Y, Withers PJ (2018) X-ray computed tomography of polymer composites. Compos Sci Technol 156:305–319. https://doi.org/10.1016/j.compscitech.2017.10.023

    Article  CAS  Google Scholar 

  138. Köpplmayr T, Milosavljevic I, Aigner M et al (2013) Influence of fiber orientation and length distribution on the rheological characterization of glass-fiber-filled polypropylene. Polym Test 32(3):535–544. https://doi.org/10.1016/j.polymertesting.2013.02.002

    Article  CAS  Google Scholar 

  139. Alemdar A, Zhang H, Sain M et al (2008) Determination of fiber size distributions of injection moulded polypropylene/natural fibers using X-ray microtomography. Adv Eng Mater 10(1–2):126–130. https://doi.org/10.1002/adem.200700232

    Article  CAS  Google Scholar 

  140. Hannesschläger C, Revol V, Plank B et al (2015) Fibre structure characterisation of injection moulded short fibre-reinforced polymers by X-ray scatter dark field tomography. Case Stud Nondestr Test Eval 3:34–41. https://doi.org/10.1016/j.csndt.2015.04.001

    Article  Google Scholar 

  141. Fischer G, Eyerer P (1988) Measuring spatial orientation of short fiber reinforced thermoplastics by image analysis. Polym Compos 9(4):297–304. https://doi.org/10.1002/pc.750090409

    Article  CAS  Google Scholar 

  142. Hermans PH (1946) Contributions to the physics of cellulose fibres. J Polym Sci. (Elsevier, New York). https://doi.org/10.1002/pol.1947.120020321

  143. Pipes BR, McCullough RL, Taggart DG (1982) Behavior of discontinuous fiber composites: fiber orientation. Polym Compos 3(1):34–39. https://doi.org/10.1002/pc.750030107

    Article  CAS  Google Scholar 

  144. Krenchel H (1964) Fibre reinforcement: theoretical and practical investigations of the elasticity and strength of fibre-reinforced materials. Akademisk Forlag, Copenhagen

    Google Scholar 

  145. Advani SG, Tucker CL (1987) The use of tensors to describe and predict fiber orientation in short fiber composites. J Rheol 31(8):751–784. https://doi.org/10.1122/1.549945

    Article  CAS  Google Scholar 

  146. Friedrich K (1985) Microstructural efficiency and fracture toughness of short fiber/thermoplastic matrix composites. Compos Sci Technol 22(1):43–74. https://doi.org/10.1016/0266-3538(85)90090-9

    Article  CAS  Google Scholar 

  147. Hull D (1981) An introduction to composite materials. Cambridge University Press, Cambridge

    Google Scholar 

  148. Bader MG, Hill AR (1993) Short fiber composites. In: Chou T-W (ed) Materials science and technology. VCH, Weinheim, pp 293–338. https://doi.org/10.1002/maco.19940450218

  149. Fu S-Y, Lauke B, Mai Y-W (2009) Science and engineering of short fibre reinforced polymer composites. CRC Press

    Google Scholar 

  150. Cox HL (1952) The elasticity and strength of paper and other fibrous materials. Br J Appl Phys 3(3):72. https://doi.org/10.1088/0508-3443/3/3/302

    Article  Google Scholar 

  151. Kelly A, Tyson WR (1965) Tensile properties of fibre-reinforced metals: copper/tungsten and copper/molybdenum. J Mech Phys Solids 13(6):329–336. https://doi.org/10.1016/0022-5096(65)90035-9

    Article  CAS  Google Scholar 

  152. Thomason JL (1999) Mechanical and thermal properties of long glass fiber reinforced polypropylene. In: Karger-Kocsis J (ed) Polypropylene: an A-Z reference, vol 2. Springer Netherlands, Dordrecht, pp 407–414. https://doi.org/10.1007/978-94-011-4421-6_57

  153. Bowyer WH, Bader MG (1972) On the re-inforcement of thermoplastics by imperfectly aligned discontinuous fibres. J Mater Sci 7(11):1315–1321. https://doi.org/10.1007/bf00550698

    Article  CAS  Google Scholar 

  154. Bowyer WH, Bader MG (1972) Reinforcement of thermoplastics using carbon fibres. Faraday Special Discuss Chem Soc 2:165–173. https://doi.org/10.1039/S19720200165

    Article  CAS  Google Scholar 

  155. Affdl JCH, Kardos JL (1976) The Halpin-Tsai equations: a review. Polym Eng Sci 16(5):344–352. https://doi.org/10.1002/pen.760160512

    Article  Google Scholar 

  156. Garesci F, Fliegener S (2013) Young’s modulus prediction of long fiber reinforced thermoplastics. Compos Sci Technol 85:142–147. https://doi.org/10.1016/j.compscitech.2013.06.009

    Article  CAS  Google Scholar 

  157. Yaghoobi H, Fereidoon A (2018) Modeling and optimization of tensile strength and modulus of polypropylene/kenaf fiber biocomposites using Box-Behnken response surface method. Polym Compos 39(S1):E463–E479. https://doi.org/10.1002/pc.24596

    Article  CAS  Google Scholar 

  158. Hoecker F, Karger-Kocsis J (1993) Effects of crystallinity and supermolecular formations on the interfacial shear strength and adhesion in GF/PP composites. Polym Bull 31(6):707–714. https://doi.org/10.1007/BF00300131

    Article  CAS  Google Scholar 

  159. Etaati A, Pather S, Cardona F et al (2016) Injection molded noil hemp fiber composites: interfacial shear strength, fiber strength, and aspect ratio. Polym Compos 37(1):213–220. https://doi.org/10.1002/pc.23172

    Article  CAS  Google Scholar 

  160. Karger-Kocsis J, Czigány T (1998) Effects of interphase on the fracture and failure behavior of knitted fabric reinforced composites produced from commingled GF/PP yarn. Compos Part A: Appl Sci Manuf 29A:1319–1330. https://doi.org/10.1016/S1359-835X(98)00042-6

  161. Wu C-M, Chen M, Karger-Kocsis J (1998) Transcrystallization in syndiotactic polypropylene induced by high-modulus carbon fibers. Polym Bull 41(2):239–245. https://doi.org/10.1007/s002890050357

    Article  CAS  Google Scholar 

  162. Sanadi AR, Caulfield DF (2000) Transcrystalline interphases in natural fiber-PP composites: effect of coupling agent. Compos Interfaces 7(1):31–43. https://doi.org/10.1163/156855400300183560

    Article  CAS  Google Scholar 

  163. Abraham TN, Wanjale SD, Bárány T et al (2009) Tensile mechanical and perforation impact behavior of all-PP composites containing random PP copolymer as matrix and stretched PP homopolymer as reinforcement: effect of β nucleation of the matrix. Compos Part A: Appl Sci Manuf 40(5):662–668. https://doi.org/10.1016/j.compositesa.2009.03.001

    Article  CAS  Google Scholar 

  164. Karger-Kocsis J (2000) Interphase with lamellar interlocking and amorphous adherent—a model to explain effects of transcrystallinity. Adv Compos Lett 9(2):225–227

    Google Scholar 

  165. Pickering KL, Efendy MGA, Le TM (2016) A review of recent developments in natural fibre composites and their mechanical performance. Compos Part A: Appl Sci Manuf 83:98–112. https://doi.org/10.1016/j.compositesa.2015.08.038

    Article  CAS  Google Scholar 

  166. Fu S-Y, Lauke B, Mäder E et al (2001) Hybrid effects on tensile properties of hybrid short-glass-fiber-and short-carbon-fiber-reinforced polypropylene composites. J Mater Sci 36(5):1243–1251. https://doi.org/10.1023/a:1004802530253

    Article  CAS  Google Scholar 

  167. Ranganathan N, Oksman K, Nayak SK et al (2015) Regenerated cellulose fibers as impact modifier in long jute fiber reinforced polypropylene composites: effect on mechanical properties, morphology, and fiber breakage. J Appl Polym Sci 132(3). https://doi.org/10.1002/app.41301

  168. Hartl AM, Jerabek M, Lang RW (2015) Anisotropy and compression/tension asymmetry of PP containing soft and hard particles and short glass fibers. Express Polym Lett 9(7):658–670. https://doi.org/10.3144/expresspolymlett.2015.61

    Article  CAS  Google Scholar 

  169. Diego P, Alessandro P, Kyriaki K (2015) Synergistic effect of graphite nanoplatelets and glass fibers in polypropylene composites. J Appl Polym Sci 132(12). https://doi.org/10.1002/app.41682

  170. Cui-Cui W, Yue-Ying Z, He-Yi G et al (2018) Enhanced mechanical and thermal properties of short carbon fiber reinforced polypropylene composites by graphene oxide. Polym Compos 39(2):405–413. https://doi.org/10.1002/pc.23950

    Article  CAS  Google Scholar 

  171. Atkins AG, Mai YW (1988) Elastic and plastic fracture: metals, polymers, ceramics, composites, biological materials. Ellis Horwood, Chichester

    Google Scholar 

  172. Glellmann W, Seidler S (eds) (2013) Polymer testing, 2nd edn. Hunser Publishers, Munich

    Google Scholar 

  173. Karger-Kocsis J (1993) Microstructure-fracture toughness relationship of short fiber-reinforced PP homopolymer and PP/elastomer blends. J Polym Eng 12(1–2):77–108. https://doi.org/10.1515/POLYENG.1993.12.1-2.77

    Article  CAS  Google Scholar 

  174. Karger-Kocsis J (1993) Instrumented impact fracture and related failure behavior in short-and long-glass-fiber-reinforced polypropylene. Compos Sci Technol 48(1–4):273–283. https://doi.org/10.1016/0266-3538(93)90144-6

    Article  CAS  Google Scholar 

  175. Karger-Kocsis J (1993) Instrumented impact fracture and related failure behavior in short- and long-glass-fiber-reinforced polypropylene. Compos Sci Technol 48(1):273–283. https://doi.org/10.1016/0266-3538(93)90144-6

    Article  CAS  Google Scholar 

  176. Nouri H, Meraghni F, Lory P (2009) Fatigue damage model for injection-molded short glass fibre reinforced thermoplastics. Int J Fatigue 31(5):934–942. https://doi.org/10.1016/j.ijfatigue.2008.10.002

    Article  CAS  Google Scholar 

  177. Pegoretti A, Ricco T (1999) Fatigue crack propagation in polypropylene reinforced with short glass fibres. Compos Sci Technol 59(7):1055–1062. https://doi.org/10.1016/S0266-3538(98)00143-2

    Article  CAS  Google Scholar 

  178. Karger-Kocsis J, Friedrich K, Bailey RS (1991) Fatigue and failure behavior of short and long glass fiber reinforced injection-molded polypropylene. Sci Eng Compos Mater 2(1):49–68. https://doi.org/10.1515/SECM.1991.2.1.49

    Article  CAS  Google Scholar 

  179. Karger-Kocsis J, Friedrich K, Bailey RS (1991) Fatigue crack propagation in short and long glass fiber reinforced injection-molded polypropylene composites. Adv Compos Mater 1(2):103–121. https://doi.org/10.1163/156855191X00225

    Article  CAS  Google Scholar 

  180. Pegoretti A, Ricco T (2000) Fatigue fracture of neat and short glass fiber reinforced polypropylene: effect of frequency and material orientation. J Compos Mater 34(12):1009–1027. https://doi.org/10.1177/002199830003401203

    Article  Google Scholar 

  181. Karger-Kocsis J (2004) In: Moore DR (ed) the application of fracture mechanics to polymers, adhesive and composites (European Structural Integrity Society), vol 33, 1st edn. Elsevier, Amsterdam, pp 233–239

    Google Scholar 

  182. Vas LM, Bakonyi P (2012) Estimating the creep strain to failure of PP at different load levels based on short term tests and Weibull characterization. Express Polym Lett 6:987–996. https://doi.org/10.3144/expresspolymlett.2012.104

    Article  CAS  Google Scholar 

  183. Achereiner F, Engelsing K, Bastian M et al (2013) Accelerated creep testing of polymers using the stepped isothermal method. Polym Test 32(3):447–454. https://doi.org/10.1016/j.polymertesting.2013.01.014

    Article  CAS  Google Scholar 

  184. Houshyar S, Shanks RA, Hodzic A (2005) Tensile creep behaviour of polypropylene fibre reinforced polypropylene composites. Polym Test 24(2):257–264. https://doi.org/10.1016/j.polymertesting.2004.07.003

    Article  CAS  Google Scholar 

  185. Vas LM, Bakonyi P (2013) Creep failure strain estimation of glass fibre/polypropylene composites based on short-term tests and Weibull characterisation. J Reinf Plast Compos 32(1):34–41. https://doi.org/10.1177/0731684412453513

    Article  CAS  Google Scholar 

  186. Williams ML, Landel RF, Ferry JD (1955) The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J Am Chem Soc 77(14):3701–3707. https://doi.org/10.1021/ja01619a008

    Article  CAS  Google Scholar 

  187. Karger-Kocsis J (2012) Structure and fracture mechanics of injection-molded composites. In: Nicolais L (ed) Wiley encyclopedia of composites. Wiley, New York, pp 2939–2952

    Google Scholar 

  188. Wetherhold RC (2012) Short-fiber-reinforced polymeric composites: structure–property relations. In: Nicolais L (ed) Wiley encyclopedia of composites. Wiley, pp 1–8. https://doi.org/10.1002/9781118097298.weoc224

  189. Advani SG (2012) Molding: short-fiber composites, flow processing. In: Nicolais L (ed) Wiley encyclopedia of composites. Wiley, New York, pp 1–12. https://doi.org/10.1002/9781118097298.weoc154

  190. Wang Z, Smith DE (2018) Rheology effects on predicted fiber orientation and elastic properties in large scale polymer composite additive manufacturing. J Compos Sci 2(1):18. https://doi.org/10.3390/jcs2010010

    Article  CAS  Google Scholar 

  191. Ausias G, Agassant J-F, Vincent M et al (1992) Rheology of short glass-fiber reinforced polypropylene. J Rheol 36(4):525–542. https://doi.org/10.1122/1.550362

    Article  CAS  Google Scholar 

  192. Matsuoka T (1999) Warpage and its prediction in injection-molded parts. In: Karger-Kocsis J (ed) Polypropylene: an A-Z reference, vol 2. Springer Netherlands, Dordrecht, pp 859–865. https://doi.org/10.1007/978-94-011-4421-6_117

  193. Díez-Pascual AM, Naffakh M (2013) Polypropylene/glass fiber hierarchical composites incorporating inorganic fullerene-like nanoparticles for advanced technological applications. ACS Appl Mater Interfaces 5(19):9691–9700. https://doi.org/10.1021/am402750t

    Article  CAS  Google Scholar 

  194. Djamila K, Ahmed K, Ghezalla T et al (2018) Tensile properties, thermal conductivity, and thermal stability of short carbon fiber reinforced polypropylene composites. Polym Compos 39(S2):E664–E670. https://doi.org/10.1002/pc.24093

    Article  CAS  Google Scholar 

  195. Chen C-H, Wang Y-C (1996) Effective thermal conductivity of misoriented short-fiber reinforced thermoplastics. Mech Mater 23(3):217–228. https://doi.org/10.1016/0167-6636(96)00010-5

    Article  Google Scholar 

  196. Kumlutas D, Tavman IH (2006) A numerical and experimental study on thermal conductivity of particle filled polymer composites. J Thermoplast Compos Mater 19(4):441–455. https://doi.org/10.1177/0892705706062203

    Article  CAS  Google Scholar 

  197. Vuorinen E, Nhlapo N, Mafa T et al (2013) Thermooxidative degradation of LDPE nanocomposites: effect of surface treatments of fumed silica and boehmite alumina. Polym Degrad Stab 98(11):2297–2305. https://doi.org/10.1016/j.polymdegradstab.2013.08.011

    Article  CAS  Google Scholar 

  198. Bellucci F, Camino G (2012) Flammability of polymer composites. In: Nicolais L (ed) Wiley encyclopedia of composites. Wiley, New York, p 17. https://doi.org/10.1002/9781118097298.weoc091

  199. Bourbigot S, Bras ML, Delobel R (1999) Flame-retardant polypropylene compositions. In: Karger-Kocsis J (ed) Polypropylene: an A-Z reference, vol 2. Springer Netherlands, Dordrecht, pp 254–263. https://doi.org/10.1007/978-94-011-4421-6_35

  200. S-l Du, X-b Lin, R-k Jian et al (2015) Flame-retardant wrapped ramie fibers towards suppressing “candlewick effect” of polypropylene/ramie fiber composites. Chin J Polym Sci 33(1):84–94. https://doi.org/10.1007/s10118-015-1560-z

    Article  CAS  Google Scholar 

  201. Vadas D, Kmetty Á, Bárány T et al (2018) Flame retarded self-reinforced polypropylene composites prepared by injection moulding. Polym Adv Technol 29(1):433–441. https://doi.org/10.1002/pat.4132

  202. Yeetsorn R, Fowler MW, Tzoganakis C (2011) A review of thermoplastic composites for bipolar plate materials in PEM fuel cells In: Cuppoletti J (ed) Nanocomposites with unique properties and applications in medicine and industry, InTech, pp 317–344. https://doi.org/10.5772/19262

  203. Hsieh C-T, Pan Y-J, Lin J-H (2017) Polypropylene/high-density polyethylene/carbon fiber composites: manufacturing techniques, mechanical properties, and electromagnetic interference shielding effectiveness. Fibers Polym 18(1):155–161. https://doi.org/10.1007/s12221-017-6371-0

    Article  CAS  Google Scholar 

  204. Huang C-L, Lou C-W, Liu C-F et al (2015) Polypropylene/graphene and polypropylene/carbon fiber conductive composites: mechanical, crystallization and electromagnetic properties. Appl Sci 5(4):1196–1210. https://doi.org/10.3390/app5041196

    Article  CAS  Google Scholar 

  205. Krause B, Pötschke P (2015) Electrical and thermal conductivity of polypropylene filled with combinations of carbon fillers. In: Regional Conference Graz 2015—Polymer Processing Society PPS, Graz, 21–25 September 2015. AIP Conference Proceedings, pp 040003-040001. https://doi.org/10.1063/1.4965494

  206. Kalay G, Bevis MJ (1999) Application of shear-controlled orientation in injection molding of isotactic polypropylene. In: Karger-Kocsis J (ed) Polypropylene: an A-Z reference, vol 2. Springer Netherlands, Dordrecht, pp 38–46. https://doi.org/10.1007/978-94-011-4421-6_6

  207. Wang J, Geng C, Luo F et al (2011) Shear induced fiber orientation, fiber breakage and matrix molecular orientation in long glass fiber reinforced polypropylene composites. Mater Sci Eng, A 528(7):3169–3176. https://doi.org/10.1016/j.msea.2010.12.081

    Article  CAS  Google Scholar 

  208. Fisa B, Meddad A (1999) Weldlines. In: Karger-Kocsis J (ed) Polypropylene: an A-Z reference, vol 2. Springer Netherlands, Dordrecht, pp 874–881. https://doi.org/10.1007/978-94-011-4421-6_119

  209. Tomioka M, Ishikawa T, Okuyama K et al (2017) Recycling of carbon-fiber-reinforced polypropylene prepreg waste based on pelletization process. J Compos Mater 51(27):3847–3858. https://doi.org/10.1177/0021998317694423

    Article  CAS  Google Scholar 

  210. Meng F, McKechnie J, Pickering SJ (2018) An assessment of financial viability of recycled carbon fibre in automotive applications. Compos Part A 109:207–220. https://doi.org/10.1016/j.compositesa.2018.03.011

    Article  Google Scholar 

  211. Karger-Kocsis J (1999) Glass mat reinforced thermoplastic polypropylene. In: Karger-Koscis J (ed) Polypropylene: an A-Z Reference. Polymer Science and Technology Series, vol 2. Springer Netherlands, pp 284–290. https://doi.org/10.1007/978-94-011-4421-6

  212. N/A (1968) Carbide, PPG form G.R.T.L. to make thermoplastic sheet. Chemical & Engineering News 46:15. https://doi.org/10.1021/cen-v046n004.p015

  213. Shah DU (2013) Developing plant fibre composites for structural applications by optimising composite parameters: a critical review. J Mater Sci 48:6083–6107. https://doi.org/10.1007/s10853-013-7458-7

    Article  CAS  Google Scholar 

  214. Kurcz M, Baser B, Dittmar H et al (2005) A case for replacing steel with glass-mat thermoplastic composites in spare-wheel well application. https://doi.org/10.4271/2005-01-1678

  215. Schemme M (2008) LFT—development status and perspectives. Reinf Plast 52(32–34):36–39. https://doi.org/10.1016/S0034-3617(08)70036-5

    Article  Google Scholar 

  216. Oksman K (2000) Mechanical properties of natural fibre mat reinforced thermoplastic. Appl Compos Mater 7(5):403–414. https://doi.org/10.1023/a:1026546426764

    Article  CAS  Google Scholar 

  217. Bárány T, Karger-Kocsis J, Czigány T (2006) Development and characterization of self-reinforced poly(propylene) composites: carded mat reinforcement. Polym Adv Technol 17:818–824. https://doi.org/10.1002/pat.813

    Article  CAS  Google Scholar 

  218. Bárány T, Izer A, Czigány T (2006) On consolidation of self-reinforced polypropylene composites. Plast, Rubber Compos 35(9):375–379

    Article  Google Scholar 

  219. Karger-Kocsis J (2000) Swirl mat- and long discontinuous fiber mat-reinforced polypropylene composites–status and future trends. Polym Compos 221(4):514–522. https://doi.org/10.1002/pc.10206

    Article  Google Scholar 

  220. Benevolenski OI, Karger-Kocsis J, Czigány T et al (2003) Mode I fracture resistance of glass fiber mat-reinforced polypropylene composites at various degree of consolidation. Compos Part A: Appl Sci Manuf 34(3):267–273. https://doi.org/10.1016/S1359-835X(02)00045-3

    Article  CAS  Google Scholar 

  221. Raghavendran V, Haque E (2001) Development of low density GMT headliners with improved acoustic performance. In: Automotive Composites Conference, Troy, MI, p 7, 19–20 Sept 2001

    Google Scholar 

  222. Roch A, Huber T, Henning F et al (2014) LFT foam—lightweight potential for semi-structural components through the use of long-glass-fiber-reinforced thermoplastic foams. In: Altstädt V, Keller J-H, Fathi A (eds) 29th International Conference of the Polymer Processing Society, Nuremberg, Germany. AIP Publishing LLC, pp 471–476. https://doi.org/10.1063/1.4873824

  223. Roch A, Menrath A, Huber T et al (2013) Lightweight potential of fiber-reinforced foams. Cell Polym 32(4):213–227

    Article  CAS  Google Scholar 

  224. Bos HL, Müssig J, van den Oevera MJA (2006) Mechanical properties of short-flax-fibre reinforced compounds. Compos Part A: Appl Sci Manuf 37:1591–1604. https://doi.org/10.1016/j.compositesa.2005.10.011

    Article  CAS  Google Scholar 

  225. http://www.hanwhaus.com/html/gmt.html. Accessed 27 Mar 2018

  226. Knox MP (2001) Continuous fiber reinforced thermoplastic composites in the automotive industry. In: Automotive Composites Conference, Troy, MI, p 5, 19–21 Sept 2001

    Google Scholar 

  227. Caba AC (2005) Characterization of carbon mat thermoplastic composites: flow and mechanical properties. PhD Thesis. Virginia Polytechnic Institute and State University

    Google Scholar 

  228. Karger-Kocsis J, Harmia T, Czigány T (1995) Comparison of the fracture and failure behavior of polypropylene composites reinforced by long glass fibers and by glass mats. Compos Sci Technol 54(3):287–298. https://doi.org/10.1016/0266-3538(95)00068-2

    Article  CAS  Google Scholar 

  229. Karger-Kocsis J, Fejes-Kozma ZS (1994) Failure mode and damage zone development in a GMT-PP by acoustic emission and thermography. J Reinf Plast Compos 13(9):768–792. https://doi.org/10.1177/073168449401300901

    Article  CAS  Google Scholar 

  230. Karger-Kocsis J (1993) Fracture mechanical characterization and damage zone development in glass fiber mat-reinforced thermoplastics. Polym Bull 31(2):235–241. https://doi.org/10.1007/bf00329971

    Article  CAS  Google Scholar 

  231. Benevolenski OI, Karger-Kocsis J (2001) Comparative study of the fracture behavior of flow-molded GMT-PP with random and chopped-fiber mats. Compos Sci Technol 61(16):2413–2423. https://doi.org/10.1016/S0266-3538(01)00160-9

    Article  CAS  Google Scholar 

  232. Bourmaud A, Fazzini M, Renouard N et al (2018) Innovating routes for the reused of PP-flax and PP-glass non woven composites: a comparative study. Polym Degrad Stab 152:259–271. https://doi.org/10.1016/j.polymdegradstab.2018.05.006

    Article  CAS  Google Scholar 

  233. Davies P, Manson J-AE (1993) Rheological properties of stampable thermoplastic composites. J Thermoplast Compos Mater 6:239–254. https://doi.org/10.1177/089270579300600305

    Article  CAS  Google Scholar 

  234. Davis SM, Mcalea KP (1990) Stamping rheology of glass mat reinforced thermoplastic composites. Polym Compos 11(6):368–378. https://doi.org/10.1002/pc.750110610

    Article  CAS  Google Scholar 

  235. Kotsikos G, Bland JH, Gibson AG (1996) Squeeze flow testing of glass mat thermoplastic material. Compos Part A 27 A:1195–1200. https://doi.org/10.1016/1359-835x(96)00077-2

  236. Kotsikos G, Bland JH, Gibson AG (1999) Rheological characterization of commercial glass mat thermoplastics (GMTs) by squeeze flow testing. Polym Compos 20(1):114–123. https://doi.org/10.1002/pc.10339

    Article  CAS  Google Scholar 

  237. Dweib MA, Brádaigh CMÓ (1998) Anisotropic modeling of isothermal squeezing flow of glass-mat reinforced thermoplastics (GMT). Polym Compos 19(5):588–599. https://doi.org/10.1002/pc.10132

    Article  CAS  Google Scholar 

  238. Dweib MA, Brádaigh CMÓ (1999) Extensional and shearing flow of a glass-mat-reinforced thermoplastics (GMT) material as a non-Newtonian viscous Fluid. Compos Sci Technol 59:1399–1410. https://doi.org/10.1016/S0266-3538(98)00182-1

    Article  CAS  Google Scholar 

  239. Gibson AG, Kotsikos G, Bland JH et al (1998) Squeeze flow In: Collyer AA, Clegg DW (eds) Rheological measurement. Springer, Dordrecht, p 779. https://doi.org/10.1007/978-94-011-4934-1

  240. Dasappa P, Lee-Sullivan P, Xiao X (2009) Temperature effect on creep behavior of continuous fiber GMT composites. Compos Part A: Appl Sci Manuf 40:1071–1081. https://doi.org/10.1016/j.compositesa.2009.04.026

    Article  CAS  Google Scholar 

  241. Czigány T, Marosfalvi J, Karger-Kocsis J (2000) An acoustic emission study of the temperature-dependent fracture behavior of polypropylene composites reinforced by continuous and discontinuous fiber mats. Compos Sci Technol 60(8):1203–1212. https://doi.org/10.1016/S0266-3538(00)00059-2

    Article  Google Scholar 

  242. Biro DA, Pleizier G, Deslandes Y (1992) Application of the microbond technique. 3. Effects of plasma treatment on the ultra-high modulus polyethylene fiber epoxy interface. J Mater Sci Lett 11(10):698–701

    Google Scholar 

  243. Vanclooster K, Lomov SV, Vespoest I (2008) Investigation of interply shear in composite forming. In: The 11th International ESAFORM Conference on Material Forming, Lyon, France. Springer, Heidelberg, 23–25 April 2008

    Google Scholar 

  244. Mitschang P, Blinzler M, Woginger A (2003) Processing technologies for continuous fibre reinforced thermoplastics with novel polymer blends. Compos Sci Technol 63:2099–2110. https://doi.org/10.1016/S0266-3538(03)00107-6

    Article  CAS  Google Scholar 

  245. Hine PJ, Ward IM, Jordan ND et al (2003) The hot compaction behaviour of woven oriented polypropylene fibres and tapes. I. Mechanical properties. Polymer 44(4):1117–1131

    Article  CAS  Google Scholar 

  246. Ward IM, Hine PJ (2004) The science and technology of hot compaction. Polymer 45(5):1413–1427. https://doi.org/10.1016/j.polymer.2003.11.050

    Article  CAS  Google Scholar 

  247. Swolfs Y, Zhang Q, Baets J et al (2014) The influence of process parameters on the properties of hot compacted self-reinforced polypropylene composites. Compos Pt A-Appl Sci Manuf 65:38–46. https://doi.org/10.1016/j.compositesa.2014.05.022

    Article  CAS  Google Scholar 

  248. Goodman KE, Loos AC (1990) Thermoplastic prepreg manufacture. J Thermoplast Compos Mater 3(1):34–40. https://doi.org/10.1177/089270579000300104

    Article  Google Scholar 

  249. Turton CN, McAinsh J (1974) Thermoplastic compositions US3785916A Patent US3785916A, 1974-01-15

    Google Scholar 

  250. Iyer SR, Drzal LT (1990) Manufacture of powder-impregnated thermoplastic composites. J Thermoplast Compos Mater 3:325–355. https://doi.org/10.1177/089270579000300404

    Article  Google Scholar 

  251. Sharma M, Bijwe J, Mitschang P (2011) Wear performance of PEEK–carbon fabric composites with strengthened fiber–matrix interface. Wear 271(9):2261–2268. https://doi.org/10.1016/j.wear.2010.11.055

    Article  CAS  Google Scholar 

  252. Kim JW, Lee JS (2016) The effect of the melt viscosity and impregnation of a film on the mechanical properties of thermoplastic composites. Materials 9(6):448. https://doi.org/10.3390/ma9060448

    Article  CAS  Google Scholar 

  253. Gibson AG, Manson J-A (1992) Impregnation technology for thermoplastic matrix composites. Compos Manuf 3(4):223–233. https://doi.org/10.1016/0956-7143(92)90110-G

    Article  CAS  Google Scholar 

  254. Hartness T, Husman G, Koenig J et al (2001) The characterization of low cost fiber reinforced thermoplastic composites produced by the DRIFT™ process. Compos Part A: Appl Sci Manuf 32(8):1155–1160. https://doi.org/10.1016/S1359-835X(01)00061-6

    Article  Google Scholar 

  255. Connor M, Toll S, Manson J-AE et al (1995) A model for the consolidation of aligned thermoplastic powder impregnated composites. J Thermoplast Compos Mater 8:138–162. https://doi.org/10.1177/089270579500800201

    Article  CAS  Google Scholar 

  256. Price RV (1970) Production of impregnated rovings. US3742106 Patent US3742106A

    Google Scholar 

  257. Astrom BT (1997) Thermoplastic composite sheet forming: materials and manufacturing techniques. In: Bhattacharyya D (ed) Composite sheet forming, vol 11. Elsevier, p 530

    Google Scholar 

  258. Wong CC, Long AC, Sherburn M et al (2006) Comparisons of novel and efficient approaches for permeability prediction based on the fabric architecture. Compos Part A: Appl Sci Manuf 37(6):847–857. https://doi.org/10.1016/j.compositesa.2005.01.020

    Article  Google Scholar 

  259. Bird RB, Armstrong RC, Hassager O (eds) (1987) Dynamics of polymeric fluids, vol 1. Wiley Interscience, New York (Fluid Mechanics)

    Google Scholar 

  260. Gutowsky TG, Morigaki T, Cai Z (1987) The consolidation of laminate composites. J Compos Mater 21:172–188. https://doi.org/10.1177/002199838702100207

    Article  Google Scholar 

  261. Wakeman MD, Cain TA, Rudd CD et al (1998) Compression moulding of glass and polypropylene composites for optimised macro- and micro- mechanical properties—1 commingled glass and polypropylene. Compos Sci Technol 58(12):1879–1898. https://doi.org/10.1016/S0266-3538(98)00011-6

    Article  CAS  Google Scholar 

  262. Svensson N, Shishoo R, Gilchrist M (1998) Manufacturing of thermoplastic composites from commingled yarns—a review. J Thermoplast Compos Mater 11:22–56. https://doi.org/10.1177/089270579801100102

    Article  CAS  Google Scholar 

  263. Mäder E, Rausch J, Schmidt N (2008) Commingled yarns—processing aspects and tailored surfaces of polypropylene/glass composites. Compos Part A: Appl Sci Manuf 39(4):612–623. https://doi.org/10.1016/j.compositesa.2007.07.011

    Article  CAS  Google Scholar 

  264. Wiegand N, Mäder E (2017) Commingled yarn spinning for thermoplastic/glass fiber composites. Fibers 5(26):1–15. https://doi.org/10.3390/fib5030026

    Article  CAS  Google Scholar 

  265. Akonda MH, Lawrence CA, Weager BM (2012) Recycled carbon fibre-reinforced polypropylene thermoplastic composites. Compos Part A 43:79–86. https://doi.org/10.1016/j.compositesa.2011.09.014

  266. Van West BP, Pipes BR, Keefe M et al (1991) The draping and consolidation of commingled fabrics. Compos Manuf 2(1):10–22. https://doi.org/10.1016/0956-7143(91)90154-9

    Article  Google Scholar 

  267. Van West BP, Pipes BR, Advani SG (1991) The consolidation of commingled thermoplastic fabrics. Polym Compos 2(6):417–427. https://doi.org/10.1002/pc.750120607

    Article  Google Scholar 

  268. Alcock B, Cabrera NO, Barkoula NM et al (2007) The mechanical properties of woven tape all-polypropylene composites. Compos Pt A-Appl Sci Manuf 38(1):147–161

    Article  Google Scholar 

  269. Peijs T (2003) Composites for recyclability. Mater Today 6(4):30–35

    Article  Google Scholar 

  270. Grünewald J, Parlevliet P, Altstädt V (2017) Manufacturing of thermoplastic composite sandwich structures: a review of literature. J Thermoplast Compos Mater 30(4):437–464. https://doi.org/10.1177/0892705715604681

    Article  CAS  Google Scholar 

  271. Liu D, Ding J, Fan X et al (2014) Non-isothermal forming of glass fiber/polypropylene commingled yarn fabric composites. Mater Des 57:608–615. https://doi.org/10.1016/j.matdes.2014.01.027

    Article  CAS  Google Scholar 

  272. Bureau MN, Denault J (2004) Fatigue resistance of continuous glass fiber/polypropylene composites: consolidation dependence. Compos Sci Technol 64(12):1785–1794. https://doi.org/10.1016/j.compscitech.2004.01.016

    Article  CAS  Google Scholar 

  273. Bernhardsson J, Shishoo R (2000) Effect of processing parameters on consolidation quality of GF/PP commingled yarn based composites. J Thermoplast Compos Mater 13:292–313. https://doi.org/10.1177/089270570001300403

    Article  CAS  Google Scholar 

  274. Youssef Y, Denault J (1998) Thermoformed glass fiber reinforced polypropylene: microstructure, mechanical properties and residual stresses. Polym Compos 19(3):301–309. https://doi.org/10.1002/pc.10103

    Article  CAS  Google Scholar 

  275. Trudel-Boucher D, Fisa B, Denault J et al (2006) Experimental investigation of stamp forming of unconsolidated commingled E-glass/polypropylene fabrics. Compos Sci Technol 66(3):555–570. https://doi.org/10.1016/j.compscitech.2005.05.036

    Article  CAS  Google Scholar 

  276. Karger-Kocsis J, Czigány T (1997) Interfacial effects on the dynamic mechanical behavior of weft-knitted glass fiber fabric-reinforced polypropylene composites produced of commingled yarns. Tensile and flexural responce. Appl Compos Mater 4:209–218. https://doi.org/10.1007/BF02481390

    Article  CAS  Google Scholar 

  277. Zhao N, Rödel H, Herzberg C et al (2009) Stitched glass/PP composite. Part I: tensile and impact properties. Compos Part A: Appl Sci Manuf 40(5):635–643. https://doi.org/10.1016/j.compositesa.2009.02.019

  278. Lu Z, Gu H, Zhen Zhong L (2011) Study on the natural fiber/PP wrap spun yarns reinforced thermoplastic composites. Adv Mater Res 194–196:1470–1475. https://doi.org/10.4028/www.scientific.net/AMR.194-196.1470

  279. Kim JW, Lee JS (2016) Influence of interleaved films on the mechanical properties of carbon fiber fabric/polypropylene thermoplastic composites. Materials 9(5):344. https://doi.org/10.3390/ma9050344

    Article  CAS  Google Scholar 

  280. Russo P, Acierno D, Simeoli G et al (2013) Flexural and impact response of woven glass fiber fabric/polypropylene composites. Compos Part B: Eng 54:415–421. https://doi.org/10.1016/j.compositesb.2013.06.016

    Article  CAS  Google Scholar 

  281. Scarponi C, Schiavoni E, Sanchez-Saez S et al (2012) Polypropylene/hemp fabric reinforced composites manufacturing and mechanical behavior. J Biobased Mater Bioenergy 6(4):361–369. https://doi.org/10.1166/jbmb.2012.1245

  282. Okumura W, Hasebe H, Kimizu M et al (2013) Development of carbon fiber fabric reinforced polypropylens. Part 1: effect of content of maleic acid and removal of sizing agent. Sen’i Gakkaishi 69(9):177–182. https://doi.org/10.2115/fiber.69.177

  283. Bárány T, Izer A, Karger-Kocsis J (2009) Impact resistance of all-polypropylene composites composed of alpha and beta modifications. Polym Test 28(2):176–182. https://doi.org/10.1016/j.polymertesting.2008.11.011

    Article  CAS  Google Scholar 

  284. Izer A, Bárány T, Varga J (2009) Development of woven fabric reinforced all-polypropylene composites with beta nucleated homo- and copolymer matrices. Compos Sci Technol 69(13):2185–2192. https://doi.org/10.1016/j.compscitech.2009.06.002

    Article  CAS  Google Scholar 

  285. TWINTEX® T PP. PP Glass Fabrics. http://www.ocvreinforcements.com/pdf/products/Twintex_TPP_09_2008_Rev0.pdf

  286. Brown KA, Brooks R, Warrior NA (2010) The static and high strain rate behaviour of a commingled E-glass/polypropylene woven fabric composite. Compos Sci Technol 70(2):272–283. https://doi.org/10.1016/j.compscitech.2009.10.018

    Article  CAS  Google Scholar 

  287. Hufenbach W, Langkamp A, Gude M et al (2013) Characterisation of strain rate dependent material properties of textile reinforced thermoplastics for crash and impact analysis. Procedia Mater Sci 2:204–211. https://doi.org/10.1016/j.mspro.2013.02.025

    Article  CAS  Google Scholar 

  288. Han SH, Oh HJ, Kim SS (2014) Evaluation of fiber surface treatment on the interfacial behavior of carbon fiber-reinforced polypropylene composites. Compos Part B: Eng 60:98–105. https://doi.org/10.1016/j.compositesb.2013.12.069

    Article  CAS  Google Scholar 

  289. Malkapuram R, Kumar V, Negi YS (2009) Recent development in natural fiber reinforced polypropylene composites. J Reinf Plast Compos 28(10):1169–1189. https://doi.org/10.1177/0731684407087759

    Article  CAS  Google Scholar 

  290. Etcheverry M, Barbosa SE (2012) Glass fiber reinforced polypropylene mechanical properties enhancement by adhesion improvement. Materials 5:1084–1113. https://doi.org/10.3390/ma5061084

    Article  CAS  Google Scholar 

  291. Simeoli G, Acierno D, Meola C et al (2014) The role of interface strength on the low velocity impact behaviour of PP/glass fibre laminates. Compos Part B: Eng 62:88–96. https://doi.org/10.1016/j.compositesb.2014.02.018

    Article  CAS  Google Scholar 

  292. Alcock B, Cabrera NO, Barkoula NM et al (2006) Low velocity impact performance of recyclable all-polypropylene composites. Compos Sci Technol 66(11–12):1724–1737

    Article  CAS  Google Scholar 

  293. Boisse P (2015) Textile composite forming simulation. In: Aliabadi MH (ed) Computational and experimental methods in structures, vol 6. Imperial College Press, London, p 241

    Google Scholar 

  294. Cherouat A, Borouchaki H, Giraud-Moreau L (2010) Mechanical and geometrical approaches applied to composite fabric forming. Int J Mater Form 3(2):1189–1204. https://doi.org/10.1007/s12289-010-0692-5

    Article  Google Scholar 

  295. Boisse P, Zouari B, Daniel J-L (2006) Importance of in-plane shear rigidity in finite element analyses of woven fabric composite preforming. Compos Part A: Appl Sci Manuf 37(12):2201–2212. https://doi.org/10.1016/j.compositesa.2005.09.018

    Article  CAS  Google Scholar 

  296. Cabrera NO, Reynolds CT, Alcock B et al (2008) Non-isothermal stamp forming of continuous tape reinforced all-polypropylene composite sheet. Compos Part A: Appl Sci Manuf 39(9):1455–1466. https://doi.org/10.1016/j.compositesa.2008.05.014

    Article  CAS  Google Scholar 

  297. McGuinness GB, Brádaigh CMÓ (1998) Characterisation of thermoplastic composite melts in rhombus-shear: the picture-frame experiment. Compos Part A: Appl Sci Manuf 29(1):115–132. https://doi.org/10.1016/S1359-835X(97)00061-4

    Article  Google Scholar 

  298. Lebrun G, Bureau MN, Denault J (2003) Evaluation of bias-extension and picture-frame test methods for the measurement of intraply shear properties of PP/glass commingled fabrics. Compos Struct 61(4):341–352. https://doi.org/10.1016/S0263-8223(03)00057-6

    Article  Google Scholar 

  299. Harrison P, Clifford MJ, Long AC (2004) Shear characterisation of viscous woven textile composites: a comparison between picture frame and bias extension experiments. Compos Sci Technol 64:1453–1465. https://doi.org/10.1016/j.compscitech.2003.10.015

    Article  CAS  Google Scholar 

  300. Johnson AF, Pickett AK (1996) Numerical simulation of the forming process in long fibre reinforced thermoplastics. In: CADCOMP ’96, Udine, Italy, pp 233–242, 1–3 July 1996

    Google Scholar 

  301. Nishi M, Hirashima T (2013) Approach for dry textile composite forming simulation. In: The 19th International Conference on Composite Materials-ICCM19, Montreal, Canada, p 8, 28 July–2 Aug 2013

    Google Scholar 

  302. Johnson AF (1995) Rheological model for the forming of fabric-reinforced thermoplastic sheets. Compos Manuf 6(3):153–160. https://doi.org/10.1016/0956-7143(95)95006-K

    Article  CAS  Google Scholar 

  303. Boisse P, Hamila N, Helenon B et al (2008) Different approaches for woven composite reinforcement forming simulation. Int J Mater Form 1(21–29). https://doi.org/10.1007/s12289-008-0002-7

  304. Pickett AK, Queckborner T, de Luka P et al (1994) Industrial press forming of continuous fibre reinforced thermoplastic sheets and the development of numerical simulation tools. In: Flow processes in composite materials 94, Galway, Republic of Ireland, University College Galway, pp 356–368

    Google Scholar 

  305. Rogers TG (1989) Rheological characterization of anisotropic materials. Composites 20(1):21–27. https://doi.org/10.1016/0010-4361(89)90677-0

    Article  CAS  Google Scholar 

  306. Spencer AJM (1972) Deformation of fibre-reinforced materials. Oxford University Press, Oxford

    Google Scholar 

  307. Spencer AJM (1984) Constitutive theory for strongly anisotropic solids. In: Spencer AJM (ed) Continuum theory of the mechanics of fibre-reinforced composites, vol 282. Springer Vienna, Vienna, pp 1–32. https://doi.org/10.1007/978-3-7091-4336-0_1

  308. de Luca P, Lefébure P, Pickett AK (1998) Numerical and experimental investigation of some press forming parameters of two fibre reinforced thermoplastics: APC2-AS4 and PEI-CETEX. Compos Part A: Appl Sci Manuf 29(1):101–110. https://doi.org/10.1016/S1359-835X(97)00060-2

    Article  Google Scholar 

  309. Nishi M, Kaburagi T, Kurose M et al (2014) Forming simulation of thermoplastic pre-impregnated textile composite. Int J Mater Text Eng 8:779–787

    Google Scholar 

  310. Ivanov I, Tabiei A (2004) Loosely woven fabric model with viscoelastic crimped fibres for ballistic impact simulations. Int J Numer Methods Eng 61:1565–1583. https://doi.org/10.1002/nme.1113

    Article  Google Scholar 

  311. Gong Y, Xu P, Peng X et al (2018) A lamination model for forming simulation of woven fabric reinforced thermoplastic prepregs. Compos Struct 196:89–95. https://doi.org/10.1016/j.compstruct.2018.05.004

    Article  Google Scholar 

  312. Harrison P, Clifford MJ, Long AC et al (2004) A constituent-based predictive approach to modelling the rheology of viscous textile composites. Compos Part A: Appl Sci Manuf 35(7):915–931. https://doi.org/10.1016/j.compositesa.2004.01.005

    Article  CAS  Google Scholar 

  313. Harrison P, Long AC, Yu WR et al (2006) Investigating the performance of two different constitutive models for viscous textile composites In: 8th international conference on textile composites (TEXCOMP), Nottingham, UK, 16–18 October 2006

    Google Scholar 

  314. Harrison P, Yu W-R, Long AC (2011) Rate dependent modelling of the forming behaviour of viscous textile composites. Compos Part A: Appl Sci Manuf 42(11):1719–1726. https://doi.org/10.1016/j.compositesa.2011.07.026

    Article  CAS  Google Scholar 

  315. Harrison P, Gomes R, Curado-Correia N (2013) Press forming a 0/90 cross-ply advanced thermoplastic composite using the double-dome benchmark geometry. Compos Part A: Appl Sci Manuf 54:56–69. https://doi.org/10.1016/j.compositesa.2013.06.014

    Article  CAS  Google Scholar 

  316. Hufenbach WA, Kostka P, Maron B et al (2013) Development and investigation of a textile-reinforced thermoplastic leaf spring with integrated sensor networks. Procedia Mater Sci 2:173–180. https://doi.org/10.1016/j.mspro.2013.02.021

    Article  CAS  Google Scholar 

  317. Hufenbach W, Gude M, Böhm R et al (2011) The effect of temperature on mechanical properties and failure behaviour of hybrid yarn textile-reinforced thermoplastics. Mater Des 32(8):4278–4288. https://doi.org/10.1016/j.matdes.2011.04.017

    Article  CAS  Google Scholar 

  318. Hufenbach W, Böhm R, Thieme M et al (2011) Polypropylene/glass fibre 3D-textile reinforced composites for automotive applications. Mater Des 32(3):1468–1476. https://doi.org/10.1016/j.matdes.2010.08.049

    Article  CAS  Google Scholar 

  319. Gibson AG, Torres MEO, Browne TNA et al (2010) High temperature and fire behaviour of continuous glass fibre/polypropylene laminates. Compos Part A: Appl Sci Manuf 41(9):1219–1231. https://doi.org/10.1016/j.compositesa.2010.05.004

    Article  CAS  Google Scholar 

  320. Bureau MN, Denault J (2004) Fatigue resistance of continuous glass fiber/polypropylene composites: temperature dependence. Polym Compos 25(6):622–629. https://doi.org/10.1002/pc.20057

    Article  CAS  Google Scholar 

  321. Bocz K, Bárány T, Toldy A et al (2013) Self-extinguishing polypropylene with a mass fraction of 9% intumescent additive—a new physical way for enhancing the fire retardant efficiency. Polym Degrad Stab 98(1):79–86. https://doi.org/10.1016/j.polymdegradstab.2012.10.029

    Article  CAS  Google Scholar 

  322. Bocz K, Igricz T, Domonkos M et al (2013) Self-extinguishing polypropylene with a mass fraction of 9% intumescent additive II—influence of highly oriented fibres. Polym Degrad Stab 98:2445–2451. https://doi.org/10.1016/j.polymdegradstab.2013.06.011

    Article  CAS  Google Scholar 

  323. Ferreira JAM, Costa JDM, Reis PNB et al (1999) Analysis of fatigue and damage in glass-fibre-reinforced polypropylene composite materials. Compos Sci Technol 59(10):1461–1467. https://doi.org/10.1016/S0266-3538(98)00185-7

    Article  CAS  Google Scholar 

  324. Reis PNB, Ferreira JAM, Richardson MOW (2011) Fatigue damage characterization by NDT in polypropylene/glass fibre composites. Appl Compos Mater 18(5):409–419. https://doi.org/10.1007/s10443-010-9172-9

    Article  CAS  Google Scholar 

  325. Mathieu R, René R, Brahim B (2010) Environmental effects on glass fiber reinforced polypropylene thermoplastic composite laminate for structural applications. Polym Compos 31(4):604–611. https://doi.org/10.1002/pc.20834

    Article  CAS  Google Scholar 

  326. Hufenbach W, Langkamp A, Adam F et al (2011) An integral design and manufacturing concept for crash resistant textile and long-fibre reinforced polypropylene structural components. Proc Eng 10:2086–2091. https://doi.org/10.1016/j.proeng.2011.04.345

    Article  CAS  Google Scholar 

  327. Vaidya UK, Samalot F, Pillay S et al (2004) Design and manufacture of woven reinforced glass/polypropylene composites for mass transit floor structure. J Compos Mater 38(21):1949–1971. https://doi.org/10.1177/0021998304048418

    Article  Google Scholar 

  328. Knox MP (2001) Continuous fiber reinforced thermoplastic composites in the automotive industry. In: Automotive composites conference, Troy, Michigan, p 6, 19–20 Sept 2001

    Google Scholar 

  329. Ye L, Friedrich K (1995) Processing of thermoplastic composites from powder/sheath-fibre bundles. J Mater Process Technol 48(1):317–324. https://doi.org/10.1016/0924-0136(94)01664-M

    Article  Google Scholar 

  330. Friedrich K, Gogeva T, Fakirov S (1988) Thermoplastic impregnated fiber bundles: manufacturing of laminates and fracture mechanics characterization. Compos Sci Technol 33(2):97–120. https://doi.org/10.1016/0266-3538(88)90013-9

    Article  CAS  Google Scholar 

  331. Maywood W (2003) Thermoplastic pultrusion process unveiled. Reinf Plast 47(9):18. https://doi.org/10.1016/S0034-3617(03)00926-3

    Article  Google Scholar 

  332. Novo PJ, Silva JF, Nunes JP et al (2016) Pultrusion of fibre reinforced thermoplastic pre-impregnated materials. Compos Part B: Eng 89:328–339. https://doi.org/10.1016/j.compositesb.2015.12.026

    Article  CAS  Google Scholar 

  333. COMPTAPE. http://compositetape.com/. Accessed 10 June 2018

  334. Nunes JP, Silva JF, Santos MS et al (2013) Processing conditions and properties of continuous fiber reinforced GF/PP thermoplastic matrix composites manufactures from different pre-impregnated materials. In: The 19th international conference on composite materials, Montreal, Canada, pp 3428–3438, 28 July–2 August 2013

    Google Scholar 

  335. Poon WKY, Jin YZ, Li RKY (2001) Pultrusion of glass fibre reinforced/maleated-PP modified/PP matrix composites. In: 13th international conference on composite materials, Beijing, p 10

    Google Scholar 

  336. Novo PJ, Nunes JP, Silva JF et al (2013) Production of thermoplastics matrix preimpregnated materials to manufacture composite pultruded profiles. Ciência & Tecnologia dos Materiais 25(2):85–91. https://doi.org/10.1016/j.ctmat.2014.03.004

    Article  CAS  Google Scholar 

  337. Novo P, Silva JF, Nunes JP et al (2012) Development of a new pultrusion equipment to manufacture thermoplastic matrix composite profiles. In: 15th European conference on composite materials, Venice, Italy, 24–28 June 2012. European Society for Composite Materials, pp 1–8

    Google Scholar 

  338. Price RV (1973) Production of impregnated rovings. US3742106 Patent 3742106

    Google Scholar 

  339. Goud V, Alagirusamy R, Das A et al (2018) Dry electrostatic spray coated towpregs for thermoplastic composites. Fibers Polym 19(2):264–374. https://doi.org/10.1007/s12221-018-7470-7

    Article  CAS  Google Scholar 

  340. Silva RF, Silva JF, Nunes JP et al (2008) New powder coating equipment to produce continuous fibre thermoplastic matrix towpregs. Mater Sci Forum 587–588:246–250. https://doi.org/10.4028/www.scientific.net/MSF.587-588.246

    Article  Google Scholar 

  341. Velosa JC, Nunes JP, Silva JF et al (2010) Production of thermoplastic towpregs. Mat Sci Forum 636–637:220–225. https://doi.org/10.4028/www.scientific.net/MSF.636-637.220

  342. Silva JF, Nunes JP, Velosa JC et al (2010) Thermoplastic matrix towpreg production. Adv Polym Technol 29(2):80–85. https://doi.org/10.1002/adv.20174

    Article  CAS  Google Scholar 

  343. Padaki S, Drzal LT (1999) A simulation study on the effects of particle size on the consolidation of polymer powder impregnated tapes. Compos Part A: Appl Sci Manuf 30(3):325–337. https://doi.org/10.1016/S1359-835X(98)00115-8

    Article  Google Scholar 

  344. Nunes JP, van Hattum FWJ, Bernardo CA et al (2005) Production of thermoplastic Towpregs and Towpreg-based composites. In: Friedrich K, Fakirov S, Zhang Z (eds) Polymer composites: from nano- to macro-scale. Springer US, Boston, MA, pp 189–213. https://doi.org/10.1007/0-387-26213-x_11

  345. Nunes JP, Silva JF, Marques AT et al (2003) Production of powder-coated towpregs and composites. J Thermoplast Compos Mater 16:231–248. https://doi.org/10.1177/089270503025872

    Article  CAS  Google Scholar 

  346. O’Connor JE (1987) Reinforced plastic US4680224 Patent 4,680,224

    Google Scholar 

  347. Ho KKC, Shamsuddin S-R, Riaz S et al (2011) Wet impregnation as a route to unidirectional carbon fibre reinforced thermoplastic composites manufacturing. Plast, Rubber Compos 40(2):100–107. https://doi.org/10.1179/17432891X12988

    Article  CAS  Google Scholar 

  348. Vodermayer AM, Kaerger JC, Hinrichsen G (1993) Manufacture of high performance fibre-reinforced thermoplastics by aqueous powder impregnation. Compos Manuf 4(3):123–132. https://doi.org/10.1016/0956-7143(93)90096-Q

    Article  CAS  Google Scholar 

  349. Carlsson A, Astrom BT (1998) Experimental investigation of pultrusion of glass fibre reinforced polypropylene composites. Compos Part A: Appl Sci Manuf, 585–593. https://doi.org/10.1016/s1359-835x(97)00115-2

  350. Tomas ÅB, Byron PR (1993) A modeling approach to thermoplastic pultrusion. I: Formulation of models. Polym Compos 14(3):173–183. https://doi.org/10.1002/pc.750140302

  351. Angelov I, Wiedmer S, Evstatiev M et al (2007) Pultrusion of a flax/polypropylene yarn. Compos Part A: Appl Sci Manuf 38(5):1431–1438. https://doi.org/10.1016/j.compositesa.2006.01.024

    Article  CAS  Google Scholar 

  352. Devlin BJ, Williams MD, Quinn JA et al (1991) Pultrusion of unidirectional composites with thermoplastic matrices. Compos Manuf 2(3):203–207. https://doi.org/10.1016/0956-7143(91)90141-3

    Article  Google Scholar 

  353. Dai S-C, Ye L (2002) GF/PP tape winding with on-line consolidation. J Reinf Plast Compos 21(1):71–90. https://doi.org/10.1106/073168402024283

    Article  CAS  Google Scholar 

  354. Schledjewski R, Latrille M (2003) Processing of unidirectional fiber reinforced tapes—fundamentals on the way to a process simulation tool (ProSimFRT). Compos Sci Technol 63(14):2111–2118. https://doi.org/10.1016/S0266-3538(03)00108-8

    Article  CAS  Google Scholar 

  355. Lionetto F, Dell’Anna R, Montagna F et al (2016) Modeling of continuous ultrasonic impregnation and consolidation of thermoplastic matrix composites. Compos Part A: Appl Sci Manuf 82:119–129. https://doi.org/10.1016/j.compositesa.2015.12.004

    Article  CAS  Google Scholar 

  356. Funck R, Neitzel M (1994) Thermoplastic tape winding with high speed and at quasi-axial pattern. In: 3rd International conference on flow processes in composite materials (FPCM-3), Galway, Ireland, pp 237–247, 7–9 July 1994

    Google Scholar 

  357. Funck R, Neitzel M (1995) Improved thermoplastic tape winding using laser or direct-flame heating. Compos Manuf 6(3):189–192. https://doi.org/10.1016/0956-7143(95)95010-V

    Article  CAS  Google Scholar 

  358. Dobrzanski LA, Domagala J, Silva JF (2007) Application of Taguchi method in the optimisation of filament winding of thermoplastic composites. Arch Mater Sci Eng 28(3):133–140

    Google Scholar 

  359. Åstrom BT, Pipes RB (1990) Thermoplastic filament winding with on-line impregnation. J Thermoplast Compos Mater 3(4):314–324. https://doi.org/10.1177/089270579000300403

    Article  Google Scholar 

  360. Henninger F, Friedrich K (2002) Thermoplastic filament winding with online-impregnation. Part A: Process technology and operating efficiency. Compos Part A: Appl Sci Manuf 33(11):1479–1486. https://doi.org/10.1016/s1359-835x(02)00135-5

  361. Henninger F, Hoffmann J, Friedrich K (2002) Thermoplastic filament winding with online-impregnation. Part B. Experimental study of processing parameters. Compos Part A: Appl Sci Manuf 33(12):1684–1695. https://doi.org/10.1016/s1359-835x(02)00136-7

  362. Kim HJ, Kim SK, Lee WI (1996) A study on heat transfer during thermoplastic composite tape lay-up process. Exp Therm Fluid Sci 13(4):408–418. https://doi.org/10.1016/S0894-1777(96)00095-7

    Article  CAS  Google Scholar 

  363. Maurer D, Mitschang P (2015) Laser-powered tape placement process—simulation and optimization. Adv Manuf Polym Compos Sci 1(3):129–137. https://doi.org/10.1179/2055035915Y.0000000005

    Article  Google Scholar 

  364. Brecher C, Stimpfl J, Dubratz M et al (2011) Innovative manufacturing of 3D-lightweight components. Micro Mater Process 8(5):36–40. https://doi.org/10.1002/latj.201190057

    Article  Google Scholar 

  365. Brecher C, Emonts M, Stimpfl J et al (2014) Production of customized hybrid fiber-reinforced thermoplastic composite components using laser-assisted tape placement. In: Denkena B (ed) New production technologies in aerospace industry. Lecture Notes in Production Engineering. Springer, Cham, Switzerland, pp 123–129. https://doi.org/10.1008/978-3-319-01964-2_17

  366. Parandoush P, Tucker L, Zhou C et al (2017) Laser assisted additive manufacturing of continuous fiber reinforced thermoplastic composites. Mater Des 131:186–195. https://doi.org/10.1016/j.matdes.2017.06.013

    Article  CAS  Google Scholar 

  367. Brecher C, Werner D, Emonts M (2015) Multi-material-head. One tool for 3 technologies: laser-assisted thermoplast-tape placement, thermoset-prepreg-placement and dry-fiber-placement. In: 20th international conference on composite materials, Copenhagen, 19–24 July 2015

    Google Scholar 

  368. Kukla C, Peters T, Janssen H et al (2017) Joining of thermoplastic tapes with metal alloys utilizing novel laser sources and enhanced process control in a tape placement process. Proc CIRP 66:85–90. https://doi.org/10.1016/j.procir.2017.03.307

    Article  Google Scholar 

  369. Janssen H, Peters T, Brecher C (2017) Efficient production of tailored structural thermoplastic composite parts by combining tape placement and 3D printing. Proc CIRP 66:91–95. https://doi.org/10.1016/j.procir.2017.02.022

    Article  Google Scholar 

  370. Rijsdijk HA, Contant M, Peijs AAJM (1993) Continuous-glass-fibre-reinforced polypropylene composites: I. Influence of maleic-anhydride-modified polypropylene on mechanical properties. Compos Sci Technol 48(1):161–172. https://doi.org/10.1016/0266-3538(93)90132-z

  371. Hamada H, Fujihara K, Harada A (2000) The influence of sizing conditions on bending properties of continuous glass fiber reinforced polypropylene composites. Compos Part A: Appl Sci Manuf 31(9):979–990. https://doi.org/10.1016/S1359-835X(00)00010-5

    Article  Google Scholar 

  372. Rausch J, Zhuang RC, Mader E (2010) Systematically varied interfaces of continuously reinforced glass fibre/polypropylene composites: comparative evaluations of relevant interfacial aspects. Express Polym Lett 4(8):576–588. https://doi.org/10.3144/expresspolymlett.2010.72

    Article  CAS  Google Scholar 

  373. Yashas Gowda TG, Sanjay MR, Subrahmanya Bhat K et al (2018) Polymer matrix-natural fiber composites: an overview. Cogent Eng 5:13. https://doi.org/10.1080/23311916.2018.1446667

    Article  Google Scholar 

  374. Lariviere D, Krawczak P, Tiberi C et al (2004) Interfacial properties in commingled yarn thermoplastic composites. Part I: characterization of the fiber/matrix adhesion. Polym Compos 25(6):577–588. https://doi.org/10.1002/pc.20052

  375. Liu CR (1998) A step-by-step method of rule-of-mixture of fiber- and particle-reinforced composite materials. Compos Struct 40:313–322. https://doi.org/10.1016/S0263-8223(98)00033-6

    Article  Google Scholar 

  376. Van de Velde K, Kiekens P (2001) Thermoplastic pultrusion of natural fibre reinforced composites. Compos Struct 54(2):355–360. https://doi.org/10.1016/S0263-8223(01)00110-6

    Article  Google Scholar 

  377. Van de Velde K, Kiekens P (2003) Effect of material and process parameters on the mechanical properties of unidirectional and multidirectional flax/polypropylene composites. Compos Struct 62(3):443–448. https://doi.org/10.1016/j.compstruct.2003.09.018

    Article  Google Scholar 

  378. Lee S, Shi SQ, Groom LH et al (2010) Properties of unidirectional kenaf fiber–polyolefin laminates. Polym Compos 31(6):1067–1074. https://doi.org/10.1002/pc.20893

    Article  CAS  Google Scholar 

  379. Tholibon D, Tharazi I, Bakar A et al (2016) Tensile properties of unidirectional kenaf fiber polypropylene composite. Jurnal Teknologi (Sci Eng) 78:101–106. https://doi.org/10.11113/jt.v78.9153

    Article  Google Scholar 

  380. Okereke MI (2016) Flexural response of polypropylene/E-glass fibre reinforced unidirectional composites. Compos Part B: Eng 89:388–396. https://doi.org/10.1016/j.compositesb.2016.01.007

    Article  CAS  Google Scholar 

  381. Zushi H, Ohsawa I, Kanai M et al (2005) Fatigue behaviour of unidirectional carbon fiber reinforced polypropylene. In: The 9th Japan international SAMPE symposium, Tokyo, 29 Nov–2 Dec 2005, pp 26–31

    Google Scholar 

  382. Ashton JE, Whitney JM (1970) Theory of laminated plates. In: Progress in Material Science, vol 4. Technomic, Stamford, Conn

    Google Scholar 

  383. Herakovich CT (1998) Mechanics of fibrous composites. Wiley, New York

    Google Scholar 

  384. Orifici AC, Herszberg I, Thomson RS (2008) Review of methodologies for composite material modelling incorporating failure. Compos Struct 86(1):194–210. https://doi.org/10.1016/j.compstruct.2008.03.007

    Article  Google Scholar 

  385. Boudenne A, Tlili R, Certes YC (2012) Thermophysical and thermal expansion properties. In: Nicolais L, Borzacchiello A (eds) Wiley Encyclopedia of Composites. Wiley, New York

    Google Scholar 

  386. Progelhof RC, Throne JL, Ruetsch RR (1976) Methods for predicting the thermal conductivity of composite systems: a review. Polym Eng Sci 16(9):615–625. https://doi.org/10.1002/pen.760160905

    Article  CAS  Google Scholar 

  387. Cho YJ, Youn JR, Kang TJ et al (2005) Prediction of thermal conductivities of fibre reinforced composites using a thermal-electrical analogy. Polym Polym Compos 13(6):637–644

    CAS  Google Scholar 

  388. Talreja R (1981) Fatigue of composite materials: damage mechanisms and fatigue-life diagrams. Proc R Soc Lond Ser A Math Phys Sci 378(1775):461–475. https://doi.org/10.1098/rspa.1981.0163

    Article  Google Scholar 

  389. van den Oever M, Peijs T (1998) Continuous-glass-fibre-reinforced polypropylene composites II. Influence of maleic-anhydride modified polypropylene on fatigue behaviour. Compos Part A: Appl Sci Manuf 29(3):227–239. https://doi.org/10.1016/s1359-835x(97)00089-4

  390. Gamstedt EK, Berglund LA, Peijs T (1999) Fatigue mechanisms in unidirectional glass-fibre-reinforced polypropylene. Compos Sci Technol 59(5):759–768. https://doi.org/10.1016/S0266-3538(98)00119-5

    Article  CAS  Google Scholar 

  391. Joo S-J, Yu M-H, Kim WS et al (2018) Damage detection and self-healing of carbon fiber polypropylene (CFPP)/carbon nanotube (CNT) nano-composite via addressable conducting network. Compos Sci Technol 167:62–70. https://doi.org/10.1016/j.compscitech.2018.07.035

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamás Bárány .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ageyeva, T., Bárány, T., Karger-Kocsis, J. (2019). Composites. In: Karger-Kocsis, J., Bárány, T. (eds) Polypropylene Handbook. Springer, Cham. https://doi.org/10.1007/978-3-030-12903-3_9

Download citation

Publish with us

Policies and ethics