Skip to main content

Young Children’s Patterning Competencies and Mathematical Development: A Review

  • Chapter
  • First Online:
Mathematical Learning and Cognition in Early Childhood

Abstract

Activities with patterns (e.g., making a necklace with alternating blue and red pearls) are common in many preschool and kindergarten settings. These activities are assumed to play an important role in children’s mathematical development. Nevertheless, most research on early mathematical development focuses on numerical and arithmetical abilities, with considerably fewer empirical studies on the role of patterning in children’s mathematical development. There is now, however, an increasing number of research studies in developmental cognitive psychology and (psychology of) mathematics education that focus on the analysis and stimulation of patterning abilities in young children. In this contribution, we discuss the recent literature on patterning abilities in children in the transition from preschool to primary school. We compare different definitions and operationalizations of patterning and elaborate on the association between mathematical patterning abilities and other domain-specific as well as domain-general cognitive abilities. Finally, interventions aimed at stimulating patterning abilities in young children are explored. Theoretical, methodological, and educational implications of the available studies as well as perspectives for further research are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • acara. (2015). Mathematics: Sequence of content F-6. Retrieved November 22, 2017, from https://www.australiancurriculum.edu.au/media/3480/mathematics-sequence-of-achievement.pdf.

  • Banerji, M., & Ferron, J. (1998). Construct validity of scores on a developmental assessment with mathematical patterns tasks. Educational and Psychological Measurement, 58(4), 634–660. https://doi.org/10.1177/0013164498058004007.

    Article  Google Scholar 

  • Baroody, A. J., Li, X., & Lai, M. (2008). Toddlers’ spontaneous attention to number. Mathematical Thinking and Learning, 10(3), 240–270. https://doi.org/10.1080/10986060802216151.

    Article  Google Scholar 

  • Björklund, C., & Barendregt, W. (2016). Teachers’ pedagogical mathematical awareness in Swedish early childhood education. Scandinavian Journal of Educational Research, 60(3), 359–377. https://doi.org/10.1080/00313831.2015.1066426.

    Article  Google Scholar 

  • Björklund, C., & Pramling, N. (2014). Pattern discernment and pseudo-conceptual development in early childhood mathematics education. International Journal of Early Years Education, 22(1), 89–104. https://doi.org/10.1080/09669760.2013.809657.

    Article  Google Scholar 

  • Bock, A., Cartwright, K., Gonzalez, C., O’Brien, S., Robinson, M., Schmerold, K., … Pasnak, R. (2015). The role of cognitive flexibility in pattern understanding. Journal of Education and Human Development, 4(1), 19–25. https://doi.org/10.15640/jehd.v4n1a3.

  • Brownell, J. O., Chen, J. -Q., Ginet, L., & The Early Math Collaborative Erikson. (2014). Big ideas of early mathematics: What teachers of young children need to know (J. W. Johnston, J. Peters, & A. Hall, Eds.). New Jersey: Pearson Education.

    Google Scholar 

  • Carraher, D., & Schliemann, A. (2007). Early algebra and algebraic reasoning. In F. Lester (Ed.), Second handbook on mathematics teaching and learning (pp. 669–699). Charlotte, NC: Information Age Publishing.

    Google Scholar 

  • Claessens, A., & Engel, M. (2013). How important is where you start? Early mathematics knowledge and later school success. Teachers College Record, 115(6), 1–29.

    Google Scholar 

  • Clements, D., & Sarama, J. (2007). Early childhood mathematics learning. In F. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 461–555). Charlotte, NC: Information Age Publishing.

    Google Scholar 

  • Clements, D., & Sarama, J. (2014). Other content domains. In D. Clements & J. Sarama (Eds.), Learning and teaching early math: The learning trajectories approach (2nd ed., pp. 214–229). New York: Routledge.

    Chapter  Google Scholar 

  • Clements, D., Sarama, J., Spitler, M. E., Lange, A., & Wolfe, C. (2011). Mathematics learned by young children in an intervention based on learning trajectories: A large-scale cluster randomized trial. Journal for Research in Mathematics Education, 42(2), 127–166.

    Article  Google Scholar 

  • Close, J. S., & Glennon, V. J. (1977). The development of linear patterning in disadvantaged children of three ethnic groups. The Irish Journal of Education, 11(1), 21–32.

    Google Scholar 

  • Collins, M. A., & Laski, E. V. (2015). Preschoolers’ strategies for solving visual pattern tasks. Early Childhood Research Quarterly, 32(1), 204–214. https://doi.org/10.1016/j.ecresq.2015.04.004.

    Article  Google Scholar 

  • Cross, C., Woods, T., & Schweingruber, H. (Eds.). (2009). Mathematics learning in early childhood. Washington, D.C.: National Academies Press. https://doi.org/10.17226/12519.

  • De Smedt, B., Noël, M. -P., Gilmore, C., & Ansari, D. (2013). How do symbolic and non-symbolic numerical magnitude processing skills relate to individual differences in children’s mathematical skills? A review of evidence from brain and behavior. Trends in Neuroscience and Education, 2(2), 48–55. https://doi.org/10.1016/j.tine.2013.06.001.

    Article  Google Scholar 

  • Economopoulos, K. (1998). What comes next? The mathematics of pattern in kindergarten. Teaching Children Mathematics, 5(4), 230–233. Retrieved from http://www.jstor.org/stable/41197171.

  • English, L., & Mulligan, J. (Eds.). (2013). Reconceptualizing early mathematics learning. Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-007-6440-8.

    Google Scholar 

  • English, L., & Warren, E. (1998). Introducing the variable through pattern exploration. The Mathematics Teacher, 91(2), 166–170.

    Google Scholar 

  • Fox, J. (2005). Child-initiated mathematical patterning in the pre-compulsory years. In H. L. Chick & J. L. Vincent (Eds.), Proceedings of the 29th Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 313–320). Melbourne: PME.

    Google Scholar 

  • Frye, D., Baroody, A. J., Burchinal, M., Carver, S. M., Jordan, N. C., & McDowell, J. (2014). Teaching math to young children. Retrieved from http://whatworks.ed.gov.

  • Fyfe, E. R., McNeil, N. M., & Rittle-Johnson, B. (2015). Easy as ABCABC: Abstract language facilitates performance on a concrete patterning task. Child Development, 86(3), 927–935. https://doi.org/10.1111/cdev.12331.

    Article  PubMed  Google Scholar 

  • Gadzichowski, M. (2012a). Examining patterning abilities in first grade children: A comparison of dimension, orientation, number of items skipped and position of the missing item. Psychology, 3(12), 1177–1182. https://doi.org/10.4236/psych.2012.312A174.

    Article  Google Scholar 

  • Gadzichowski, M. (2012b). Patterning abilities of first grade children: Effects of dimension and type. Creative Education, 3(5), 632–635. https://doi.org/10.4236/ce.2012.35092.

    Article  Google Scholar 

  • Garrick, R., Threlfall, J., & Orton, A. (2005). Pattern in the nursery. In A. Orton (Ed.), Pattern in the teaching and learning of mathematics (pp. 1–17). London: Continuum.

    Google Scholar 

  • Geary, D. C., Bow-Thomas, C. C., & Yao, Y. (1992). Counting knowledge and skill in cognitive addition: A comparison of normal and mathematically disabled children. Journal of Experimental Child Psychology, 54(3), 372–391. https://doi.org/10.1016/0022-0965(92)90026-3.

    Article  PubMed  Google Scholar 

  • Ginsburg, H., Lee, J. S., & Boyd, J. S. (2008). Mathematics education for young children: What it is and how to promote it (pp. 3–22). XXII(I): Social Policy Report.

    Google Scholar 

  • Göbel, S. M., Watson, S. E., Lervåg, A., & Hulme, C. (2014). Children’s arithmetic development: It is number knowledge, not the approximate number sense, that counts. Psychological Science, 25(3), 789–798. https://doi.org/10.1177/0956797613516471.

    Article  PubMed  Google Scholar 

  • Greenes, C., Ginsburg, H., & Balfanz, R. (2004). Big math for little kids. Early Childhood Research Quarterly, 19(1), 159–166. https://doi.org/10.1016/j.ecresq.2004.01.010.

    Article  Google Scholar 

  • Hannula, M. M., & Lehtinen, E. (2005). Spontaneous focusing on numerosity and mathematical skills of young children. Learning and Instruction, 15(3), 237–256. https://doi.org/10.1016/j.learninstruc.2005.04.005.

    Article  Google Scholar 

  • Hannula-Sormunen, M. M., Lehtinen, E., & Räsänen, P. (2015). Preschool children’s spontaneous focusing on numerosity, subitizing, and counting skills as predictors of their mathematical performance seven years later at school. Mathematical Thinking and Learning, 17(2–3), 155–177. https://doi.org/10.1080/10986065.2015.1016814.

    Article  Google Scholar 

  • Hargreaves, M., Shorrocks-Taylor, D., & Threlfall, J. (1998). Children’s strategies with number patterns. Educational Studies, 24(3), 315–331. https://doi.org/10.1080/0305569980240305.

    Article  Google Scholar 

  • Hargreaves, M., Threlfall, J., Frobischer, L., & Shorrocks-Taylor, D. (1999). Children’s strategies with linear and quadratic sequences. In A. Orton (Ed.), Pattern in the teaching and learning of mathematics (pp. 67–83). London: Continuum.

    Google Scholar 

  • Hendershot, S. M., Berghout Austin, A. M., Blevins-Knabe, B., & Ota, C. (2016). Young children’s mathematics references during free play in family childcare settings. Early Child Development and Care, 186(7), 1126–1141. https://doi.org/10.1080/03004430.2015.1077819.

    Article  Google Scholar 

  • Hendricks, C., Pasnak, R., Willson-Quayle, A., Trueblood, L., Malabonga, V., & Ciancio, D. (1999). Effects of instruction in sequencing and class inclusion for first graders. Genetic, Social, and General Psychology Monographs, 125(3), 297–312.

    PubMed  Google Scholar 

  • Hendricks, C., Trueblood, L., & Pasnak, R. (2006). Effects of teaching patterning to 1st-graders. Journal of Research in Childhood Education, 21(1), 79–89. https://doi.org/10.1080/02568540609594580.

    Article  Google Scholar 

  • Herman, M. L. (1973). Patterning before mathematics in kindergarten: The effect of a patterning treatment on the children’s ability to learn number concepts later in the year (Doctoral dissertation, Columbia University, 1972). In Dissertation abstract international: Section A humanities and social sciences (p. 4060).

    Google Scholar 

  • Houssart, J. (2000). Perceptions of mathematical pattern amongst primary teachers. Educational Studies, 26(4), 489–502. https://doi.org/10.1080/03055690020003665.

    Article  Google Scholar 

  • Kampmann, R., & Lüken, M. M. (2016). The influence of fostering children’s pattern and structure abilities on their arithmetic skills in grade 1. In 13th International Congress on Mathematical Education (pp. 1–4). Hamburg.

    Google Scholar 

  • Kidd, J., Carlson, A., Gadzichowski, M., Boyer, C. E., Gallington, D., & Pasnak, R. (2013). Effects of patterning instruction on the academic achievement of 1st-grade children. Journal of Research in Childhood Education, 27(2), 224–238. https://doi.org/10.1080/02568543.2013.766664.

    Article  Google Scholar 

  • Kidd, J., Pasnak, R., Gadzichowski, M., Gallington, D., McKnight, P., Boyer, C. E., et al. (2014). Instructing first-grade children on patterning improves reading and mathematics. Early Education and Development, 25(1), 134–151. https://doi.org/10.1080/10409289.2013.794448.

    Article  Google Scholar 

  • Kyriakides, L., & Gagatsis, A. (2003). Assessing student problem-solving skills. Structural Equation Modeling: A Multidisciplinary Journal, 10(4), 609–621. https://doi.org/10.1207/S15328007SEM1004_7.

    Article  Google Scholar 

  • Lehtinen, E., Hannula-Sormunen, M. M., McMullen, J., & Gruber, H. (2017). Cultivating mathematical skills: From drill-and-practice to deliberate practice. ZDM Mathematics Education, 49(4), 625–636. https://doi.org/10.1007/s11858-017-0856-6.

    Article  Google Scholar 

  • Lüken, M. M. (2010). The relation between early structure sense and mathematical development in primary school. In M. Pinto & T. Kawasaki (Eds.), Proceedings of the 34th Conference of the International Group for the Psychology of Mathematics Education (pp. 241–248). Belo Horizonte, Brazil: PME.

    Google Scholar 

  • Lüken, M. M. (2012). Young children’s structure sense. Journal Für Mathematik-Didaktik, 33(2), 263–285. https://doi.org/10.1007/s13138-012-0036-8.

    Article  Google Scholar 

  • Lüken, M. M. (2016). Repeating patterning competencies in 3- and 4-year old kindergartners. In 13th International Congress on Mathematical Education (pp. 1–4). Hamburg.

    Google Scholar 

  • Lüken, M. M., Peter-Koop, A., & Kollhoff, S. (2014). Influence of early repeating patterning ability on school mathematics learning. In D. Allan, P. Liljedahl, C. Nicol, & S. Oesterle (Eds.), Proceedings of the 38th Conference of the International Group for the Psychology of Mathematics Education and the 36th Conference of the North American Chapter of the Psychology of Mathematics education (pp. 137–144). Vancouver, Canada: PME.

    Google Scholar 

  • Macgregor, M., & Stacey, K. (1992). A comparison of pattern-based and equation-solving approaches to algebra. In B. Southwell, B. Perry, & K. Owens (Eds.), Proceedings of the 15th Annual Conference, Mathematics Education Research Group of Australasia (pp. 362–371). Sydney: MERGA.

    Google Scholar 

  • McKillip, W. D. (1970a). Developing and evaluating “Patterns.” Athens.

    Google Scholar 

  • McKillip, W. D. (1970b). “Patterns”—A mathematics unit for three- and four-year-olds. The Arithmetic Teacher, 17(1), 15–18.

    Google Scholar 

  • Miller, M. R., Rittle-Johnson, B., Loehr, A. M., & Fyfe, E. R. (2016). The influence of relational knowledge and executive function on preschoolers’ repeating pattern knowledge. Journal of Cognition and Development, 17(1), 85–104. https://doi.org/10.1080/15248372.2015.1023307.

    Article  Google Scholar 

  • Mulligan, J., & Mitchelmore, M. (2009). Awareness of pattern and structure in early mathematical development. Mathematics Education Research Journal, 21(2), 33–49.

    Article  Google Scholar 

  • Mulligan, J., English, L., & Mitchelmore, M. (2013). An evaluation of the Australian “Reconceptualising early mathematics learning” project: Key findings and implications. In A. M. Lindmeier & A. Heinze (Eds.), Proceedings of the 37th Conference of the International Group for the Psychology of Mathematics Education (Vol. 3, pp. 337–344). Kiel, Germany: PME.

    Google Scholar 

  • Mulligan, J., Mitchelmore, M., & Stephanou, A. (2015). PASA Teacher guide. ACER Press.

    Google Scholar 

  • Mulligan, J., English, L., Mitchelmore, M., & Robertson, G. (2010). Implementing a pattern and structure mathematics awareness program (PASMAP) in kindergarten. In Proceedings of the 33rd Annual Conference of the Mathematics Education Research Group of Australasia (pp. 706–803). Fremantle, Western Australia.

    Google Scholar 

  • Mulligan, J., Mitchelmore, M., Marston, J., Highfield, K., & Kemp, C. (2008). Promoting mathematical pattern and structure in the first year of schooling: An intervention study. In O. Figueras, J. L. Cortina, S. Alatorre, T. Rojano, & A. Sepúlveda (Eds.), Proceedings of the Joint Meeting of PME 32 and PME-NA XXX (Vol. 4, pp. 1–8). Morelia, Mexico: PME. Retrieved from http://www2.earlyalgebra.terc.edu/our_papers/2006/Martinez_BrizuelaPME30.pdf.

  • Mulligan, J., Prescott, A., Papic, M., & Mitchelmore, M. (2006). Improving early numeracy through a pattern and structure mathematics awareness program (PASMAP). In P. Grootenboer, R. Zevenbergen, & M. Chinnappan (Eds.), Identities, cultures, and learning spaces (Proceedings of the 29th Annual Conference of the Mathematics Education Research Group of Australasia, Canberra) (pp. 376–383). Adelaide: MERGA. Retrieved from http://www.merga.net.au/documents/RP422006.pdf.

  • Mulligan, J., Verschaffel, L., Baccaglini-Frank, A., Coles, A., Gould, P., He, S., … Yang, D. -C. (2018). Whole number thinking, learning and development: Neuro-cognitive, cognitive and developmental approaches. In M. Bussi & X. Sun (Eds.), Primary mathematics study on whole numbers (ICMI Study 23) (pp. 137–167). New York: Springer. https://doi.org/10.1007/978-3-319-63555-2_7.

    Google Scholar 

  • National Research Council. (2001). Adding it up (J. Kilpatrick, J. Swafford, & B. Findell, Eds.). Washington, D.C.: National Academies Press. https://doi.org/10.17226/9822.

  • NCTM. (1989). Curriculum and evaluation standards for school mathematics (F. J. Crosswhite, J. A. Dossey, & S. M. Frye, Eds.). Curriculum and Evaluation Standards Report. Reston: National Council of Teachers of Mathematics.

    Google Scholar 

  • NCTM. (2000). Principles and standards for school mathematics (J. Carpenter & S. Gorg, Eds.). Portland: Graphics Arts Center.

    Google Scholar 

  • New, R. S., & Cochran, M. (2007). Early childhood education: An international encyclopedia (Vols. 1–4).

    Google Scholar 

  • Nguyen, T., Watts, T. W., Duncan, G. J., Clements, D. H., Sarama, J. S., Wolfe, C., et al. (2016). Which preschool mathematics competencies are most predictive of fifth grade achievement? Early Childhood Research Quarterly, 36, 550–560. https://doi.org/10.1016/j.ecresq.2016.02.003.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ontario Ministry of Education and Training (OMET). (2005). The Ontario curriculum, grades 1–8: Mathematics, revised. Retrieved November 24, 2017, from http://www.edu.gov.on.ca.

  • Orton, A. (Ed.). (1999). Pattern in the teaching and learning of mathematics. London: Continuum.

    Google Scholar 

  • Papic, M., & Mulligan, J. (2007). The growth of early mathematical patterning: An intervention study. In J. Watson & K. Beswick (Eds.), Mathematics: Essential research, essential practice (Proceedings of the 30th Annual Conference of the Mathematics Education Research Group of Australasia, Hobart) (Vol. 2, pp. 591–600). Adelaide: MERGA.

    Google Scholar 

  • Papic, M., Mulligan, J., Highfield, K., McKay-Tempest, J., & Garrett, D. (2015). The impact of a patterns and early algebra program on children in transition to school in Australian Indigenous communities. In B. Perry, A. MacDonald, & A. Gervasoni (Eds.), Mathematics and transition to school (pp. 217–236). Singapore: Springer Singapore. https://doi.org/10.1007/978-981-287-215-9_14.

    Google Scholar 

  • Papic, M., Mulligan, J., & Mitchelmore, M. (2011). Assessing the development of preschoolers’ mathematical patterning. Journal for Research in Mathematics Education, 42(3), 237. https://doi.org/10.5951/jresematheduc.42.3.0237.

    Article  Google Scholar 

  • Pasnak, R., Kidd, J., Gadzichowski, M., Gallington, D., Schmerold, K., & West, H. (2015). Abstracting sequences: Reasoning that is a key to academic achievement. The Journal of Genetic Psychology, 176(3), 171–193. https://doi.org/10.1080/00221325.2015.1024198.

    Article  PubMed  Google Scholar 

  • Pasnak, R., Schmerold, K., Robinson, M., Gadzichowski, M., Bock, A., O’Brien, S. E., … Gallington, D. (2016). Understanding number sequences leads to understanding mathematics concepts. The Journal of Educational Research, 109(6), 640–646. https://doi.org/10.1080/00220671.2015.1020911.

    Article  Google Scholar 

  • Piccolo, D. L., & Test, J. (2010). Preschoolers’ thinking during block play. Teaching Children Mathematics, 17(5), 310–316. Retrieved from http://www.jstor.org/stable/41199662.

  • Radford, L. (2010). Layers of generality and types of generalization in pattern activities. PNA, 4(2), 37–62. Retrieved from http://digibug.ugr.es/handle/10481/3505.

  • Rathé, S., Torbeyns, J., De Smedt, B., & Verschaffel, L. (2017). Young children’s spontaneous focusing on Arabic number symbols. In J. Torbeyns (Chair), Spontaneous mathematical focusing tendencies. Symposium at the Biennial Meeting of the European Association for Research on Learning and Instruction (EARLI). Tampere.

    Google Scholar 

  • Rittle-Johnson, B., Fyfe, E. R., Hofer, K. G., & Farran, D. C. (2017). Early math trajectories: Low-income children’s mathematics knowledge from age 4 to 11. Child Development, 88(5), 1727–1742. https://doi.org/10.1111/cdev.12662.

    Article  PubMed  Google Scholar 

  • Rittle-Johnson, B., Fyfe, E. R., Loehr, A. M., & Miller, M. R. (2015). Beyond numeracy in preschool: Adding patterns to the equation. Early Childhood Research Quarterly, 31, 101–112. https://doi.org/10.1016/j.ecresq.2015.01.005.

    Article  Google Scholar 

  • Rittle-Johnson, B., Fyfe, E. R., McLean, L. E., & McEldoon, K. L. (2013). Emerging understanding of patterning in 4-year-olds. Journal of Cognition and Development, 14(3), 376–396. https://doi.org/10.1080/15248372.2012.689897.

    Article  Google Scholar 

  • Sarama, J., & Clements, D. (2004). Building blocks for early childhood mathematics. Early Childhood Research Quarterly, 19(1), 181–189. https://doi.org/10.1016/j.ecresq.2004.01.014.

    Article  Google Scholar 

  • Sarama, J., & Clements, D. (2009). Other content domains. In Early childhood mathematics education research (pp. 319–334). New York: Routledge. https://doi.org/10.4324/9780203883785.

    Book  Google Scholar 

  • Sarama, J., Clements, D., Starkey, P., Klein, A., & Wakeley, A. (2008). Scaling up the implementation of a pre-kindergarten mathematics curriculum: Teaching for understanding with trajectories and technologies. Journal of Research on Educational Effectiveness, 1(2), 89–119. https://doi.org/10.1080/19345740801941332.

    Article  Google Scholar 

  • Schleifer, P., & Landerl, K. (2011). Subitizing and counting in typical and atypical development. Developmental Science, 14(2), 280–291. https://doi.org/10.1111/j.1467-7687.2010.00976.x.

    Article  PubMed  Google Scholar 

  • Schmerold, K., Bock, A., Peterson, M., Leaf, B., Vennergrund, K., & Pasnak, R. (2017). The relations between patterning, executive function, and mathematics. The Journal of Psychology, 151(2), 207–228. https://doi.org/10.1080/00223980.2016.1252708.

    Article  PubMed  Google Scholar 

  • Seo, K. -H., & Ginsburg, H. (2004). What is developmentally appropriate in early childhood mathematics education? Lessons from new research. In D. Clements, J. Sarama, & A. -M. DiBiase (Eds.), Engaging young children in mathematics (pp. 91–104). Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Siegler, R. S., & Booth, J. L. (2004). Development of numerical estimation in young children. Child Development, 75(2), 428–444. https://doi.org/10.1111/j.1467-8624.2004.00684.x.

    Article  PubMed  Google Scholar 

  • Simon, H. A. (1972). Complexity and the representation of patterned sequences of symbols. Psychological Review, 79(5), 369–382. https://doi.org/10.1037/h0033118.

    Article  Google Scholar 

  • Skoumpourdi, C. (2013). Kindergartners’ performance levels on patterning. Hellenic Mathematical Society International Journal for Mathematics in Education, 5, 108–131.

    Google Scholar 

  • Smutny, J. F. (Ed). (1998). The nature and role of algebra in the K-14 curriculum. In Proceedings of a National Symposium. Washington, D.C.: National Academies Press. https://doi.org/10.17226/6286.

  • Starkey, P., Klein, A., & Wakeley, A. (2004). Enhancing young children’s mathematical knowledge through a pre-kindergarten mathematics intervention. Early Childhood Research Quarterly, 19(1), 99–120. https://doi.org/10.1016/j.ecresq.2004.01.002.

    Article  Google Scholar 

  • Steen, L. A. (1988). The science of patterns. Science, 240(4852), 611–616.

    Article  Google Scholar 

  • Sternberg, L., & Larson, P. (1976). The development of pattern recognition ability in children. Contemporary Educational Psychology, 1(2), 146–156. https://doi.org/10.1016/0361-476X(76)90019-9.

    Article  Google Scholar 

  • Tall, D. (1992). The transition from arithmetic to algebra: Number patterns, or proceptual programming? In New Directions in Algebra Education, Proceedings of the Research Workshop on Mathematics Teaching and Learning “From Numeracy to Algebra” (pp. 213–231). Brisbane, Australia: Queensland University of Technology. Retrieved from https://homepages.warwick.ac.uk/staff/David.Tall/pdfs/dot1993f-arith-alg-brisbane.pdf.

  • Taylor-Cox, J. (2003). Algebra in the early years? Yes! Young Children, 58(1), 14–21.

    Google Scholar 

  • Threlfall, J. (2005). Repeating patterns in the early primary years. In A. Orton (Ed.), Pattern in the teaching and learning of mathematics (pp. 18–30). London: Continuum.

    Google Scholar 

  • Tirosh, D., Tsamir, P., Barkai, R., & Levenson, E. (2017). Preschool teachers’ variations when implementing a patterning task. Paper presented at the 10th Congress of European Research in Mathematics Education (CERME), Dublin, Ireland. Retrieved from https://keynote.conference-services.net/resources/444/5118/pdf/CERME10_0010.pdf.

  • Tirosh, D., Tsamir, P., Levenson, E., Barkai, R., & Tabach, M. (2017). Defining, drawing, and continuing repeating patterns: Preschool teachers’ self-efficacy and knowledge. In C. Andrà, D. Brunetto, E. Levenson, & P. Liljedahl (Eds.), Teaching and learning in maths classrooms. Research in mathematics education (pp. 17–26). Cham: Springer. https://doi.org/10.1007/978-3-319-49232-2_3.

    Chapter  Google Scholar 

  • Tsamir, P., Tirosh, D., Levenson, E., Barkai, R., & Tabach, M. (2016). Preschool teachers’ responses to repeating patterns tasks. In 13th International Congress on Mathematical Education. Hamburg.

    Google Scholar 

  • VanDerHeyden, A. M., Broussard, C., Snyder, P., George, J., Lafleur, S. M., & Williams, C. (2011). Measurement of kindergartners understanding of early mathematical concepts. School Psychology Review, 40(2), 296–306. Retrieved from https://eric.ed.gov/?id=EJ936458.

  • Verschaffel, L., Torbeyns, J., & De Smedt, B. (2017). Young children’s early mathematical competencies: Analysis and stimulation. Plenure lecture presented at the Congress of European Research in Mathematics Education (CERME), Dublin, Ireland.

    Google Scholar 

  • Warren, E., & Cooper, T. (2007). Repeating patterns and multiplicative thinking: Analysis of classroom interactions with 9-year-old students that support the transition from the known to the novel. The Journal of Classroom Interaction Research Library, 4142(7), 7–17. Retrieved from https://files.eric.ed.gov/fulltext/EJ780288.pdf.

  • Warren, E., & Miller, J. (2013). Young Australian indigenous students’ effective engagement in mathematics: The role of language, patterns, and structure. Mathematics Education Research Journal, 25(1), 151–171. https://doi.org/10.1007/s13394-013-0068-5.

    Article  Google Scholar 

  • Waters, J. (2004). A study of mathematical patterning in early childhood settings. In I. Putt, R. Faragher, & M. MacLean (Eds.), Proceedings Mathematics Education for the Third Millennium: Towards 2010. The 27th Annual Conference of the Mathematics Education Research Group of Australasia (Vol. 2, pp. 321–328). Townsville, Queensland, Australia: MERGA. Retrieved from http://www.merga.net.au/documents/RP682004.pdf.

  • Wittmann, E. C., & Müller, G. N. (2007). Muster und strukturen als fachliches grundkonzept. In G. Walther, M. van den Heuvel-Panhuizen, D. Granzer, & O. Köller (Eds.), Bildungsstandards für die Grundschule: Mathematik konkret (pp. 42–65). Berlin: Cornelsen. https://doi.org/10.18452/3121.

Download references

Acknowledgements

This research was partially supported by Grant KU Leuven project C16/16/001 “Development and stimulation of core mathematical competencies” and Grant DBOF/12/009 “Early mediators of number sense” from the Research Fund KU Leuven, Belgium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nore Wijns .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wijns, N., Torbeyns, J., De Smedt, B., Verschaffel, L. (2019). Young Children’s Patterning Competencies and Mathematical Development: A Review. In: Robinson, K., Osana, H., Kotsopoulos, D. (eds) Mathematical Learning and Cognition in Early Childhood. Springer, Cham. https://doi.org/10.1007/978-3-030-12895-1_9

Download citation

Publish with us

Policies and ethics