Skip to main content

Veins: The Open Source Vehicular Network Simulation Framework

  • Chapter
  • First Online:

Part of the book series: EAI/Springer Innovations in Communication and Computing ((EAISICC))

Abstract

We describe Veins, an open-source model library for (and a toolbox around) OMNeT++, which supports researchers conducting simulations involving communicating road vehicles—either as the main focus of a study or as a component. Veins already includes a full stack of simulation models for investigating cars and infrastructure communicating via IEEE 802.11 based technologies in simulations of Vehicular Ad Hoc Networks (VANETs) and Intelligent Transportation Systems (ITS). Thanks to its modularity, though, it can equally well be used as the basis for modeling other mobile nodes (like bikes or pedestrians) and communication technologies (from mobile broadband to visible light). Serving as the basis for hundreds of publications and university courses since its beginnings in the year 2006, today Veins is both one of the most mature and established tools in this domain.

In this chapter, we give a brief overview of recent developments regarding the architecture, simulation models, and supporting code of Veins; we also present two practical use cases, discuss two extensions, and conclude with a brief discussion of using Veins as a virtual appliance. The framework, code examples, and tutorial simulations can be downloaded from http://veins.car2x.org.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://veins.car2x.org/.

  2. 2.

    SUMO website: http://sumo.dlr.de/.

  3. 3.

    http://sourceforge.net/projects/sumo/files/traffic_data/scenarios/Bologna_small.

  4. 4.

    http://www.cs.unibo.it/projects/bolognaringway/.

  5. 5.

    https://github.com/lcodeca/LuSTScenario.

  6. 6.

    https://github.com/lcodeca/MoSTScenario.

  7. 7.

    https://www.omnetpp.org/doc/omnetpp/manual/.

  8. 8.

    https://github.com/catchorg/Catch2.

  9. 9.

    Plexe website: http://plexe.car2x.org.

References

  1. Ali, A., Garcia, G., Martinet, P.: The flatbed platoon towing model for safe and dense platooning on highways. IEEE Intell. Transp. Syst. Mag. 7(1), 58–68 (2015). https://doi.org/10.1109/MITS.2014.2328670

    Article  Google Scholar 

  2. Aramrattana, M., Larsson, T., Jansson, J., Nåbo, A.: A simulation framework for cooperative intelligent transport systems testing and evaluation. Transport. Res. F: Traffic Psychol. Behav. (2017). https://doi.org/10.1016/j.trf.2017.08.004

  3. Bedogni, L., Bononi, L., Di Felice, M., D’Elia, A., Mock, R., Morandi, F., Rondelli, S., Salmon Cinotti, T., Vergari, F.: An integrated simulation framework to model electric vehicles operations and services. IEEE Trans. Veh. Technol. 65(8) (2015). https://doi.org/10.1109/TVT.2015.2453125

  4. Bedogni, L., Gramaglia, M., Vesco, A., Fiore, M., Härri, J., Ferrero, F.: The Bologna ringway dataset: improving road network conversion in SUMO and validating urban mobility via navigation services. IEEE Trans. Veh. Technol. 64(12), 5464–5476 (2015). https://doi.org/10.1109/TVT.2015.2475608

    Article  Google Scholar 

  5. Berndt, H., Wender, S., Dietmayer, K.: Driver braking behavior during intersection approaches and implications for warning strategies for driver assistant systems. In: IEEE Intelligent Vehicles Symposium (IV’07), pp. 245–251. IEEE, Istanbul (2007). https://doi.org/10.1109/IVS.2007.4290122

  6. Bieker, L., Krajzewicz, D., Morra, A.P., Michelacci, C., Cartolano, F.: Traffic simulation for all: a real world traffic scenario from the city of Bologna. In: SUMO User Conference 2014, pp. 19–26. Deutsches Zentrum für Luft - und Raumfahrt e.V., Berlin (2014). https://doi.org/10.1007/978-3-319-15024-6_4

  7. Bonnet, C., Fritz, H.: Fuel consumption reduction in a platoon: experimental results with two electronically coupled trucks at close spacing. In: Future Transportation Technology Conference. SAE, Costa Mesa (2001)

    Google Scholar 

  8. Brummer, A., German, R., Djanatliev, A.: On the necessity of three-dimensional considerations in vehicular network simulation. In: 14th IEEE/IFIP Conference on Wireless on demand Network Systems and Services (WONS 2018), Isola 2000, pp. 75–82. IEEE, Isola (2018). https://doi.org/10.23919/WONS.2018.8311665

  9. Codecá, L., Härri, J.: Towards multimodal mobility simulation of C-ITS: the monaco SUMO traffic scenario. In: 9th IEEE Vehicular Networking Conference (VNC 2017), pp. 97–100. IEEE, Torino (2017). https://doi.org/10.1109/VNC.2017.8275627

  10. Codeca, L., Frank, R., Engel, T.: Luxembourg SUMO traffic (LuST) scenario: 24 hours of mobility for vehicular networking research. In: 7th IEEE Vehicular Networking Conference (VNC 2015). IEEE, Kyoto (2015). https://doi.org/10.1109/VNC.2015.7385539

  11. Dávila, A., Nombela, M.: Sartre - safe road trains for the environment reducing fuel consumption through lower aerodynamic drag coefficient. In: 25th SAE Brasil International Congress and Display. SAE Brasil, São Paulo (2011)

    Google Scholar 

  12. Eckhoff, D., Sommer, C.: A multi-channel IEEE 1609.4 and 802.11p EDCA model for the Veins framework. In: 5th ACM/ICST International Conference on Simulation Tools and Techniques for Communications, Networks and Systems (SIMUTools 2012): 5th ACM/ICST International Workshop on OMNeT++ (OMNeT++ 2012), Poster Session. ACM, Desenzano (2012)

    Google Scholar 

  13. Eckhoff, D., Sommer, C.: Simulative performance evaluation of vehicular networks. In: Chen, W. (ed.) Vehicular Communications and Networks: Architectures, Protocols, Operation and Deployment, pp. 255–274. Woodhead Publishing, Sawston (2015). https://doi.org/10.1016/B978-1-78242-211-2.00012-X

    Chapter  Google Scholar 

  14. Eckhoff, D., Sommer, C.: Readjusting the privacy goals in vehicular ad-hoc networks: a safety-preserving solution using non-overlapping time-slotted pseudonym pools. Elsevier Comput. Commun. 122, 118–128 (2018). https://doi.org/10.1016/j.comcom.2018.03.006

    Article  Google Scholar 

  15. Eckhoff, D., Sommer, C., Dressler, F.: On the necessity of accurate IEEE 802.11p models for IVC protocol simulation. In: 75th IEEE Vehicular Technology Conference (VTC2012-Spring), pp. 1–5. IEEE, Yokohama (2012). https://doi.org/10.1109/VETECS.2012.6240064

  16. Eckhoff, D., Halmos, B., German, R.: Potentials and limitations of green light optimal speed advisory systems. In: 5th IEEE Vehicular Networking Conference (VNC 2013), pp. 103–110. IEEE, Boston (2013). https://doi.org/10.1109/VNC.2013.6737596

  17. Eckhoff, D., Sofra, N., German, R.: A performance study of cooperative awareness in ETSI ITS G5 and IEEE WAVE. In: 10th IEEE/IFIP Conference on Wireless on demand Network Systems and Services (WONS 2013), pp. 196–200. IEEE, Banff (2013). https://doi.org/10.1109/WONS.2013.6578347

  18. Eckhoff, D., Brummer, A., Sommer, C.: On the impact of antenna patterns on VANET simulation. In: 8th IEEE Vehicular Networking Conference (VNC 2016), pp. 17–20. IEEE, Columbus (2016). https://doi.org/10.1109/VNC.2016.7835925

  19. Emara, K.: Poster: PREXT: privacy extension for veins VANET simulator. In: 8th IEEE Vehicular Networking Conference (VNC 2016), Poster Session. IEEE, Columbus (2016). https://doi.org/10.1109/VNC.2016.7835979

  20. Giordano, G., Segata, M., Blanchini, F., Lo Cigno, R.: A joint network/control design for cooperative automatic driving. In: 9th IEEE Vehicular Networking Conference (VNC 2017), pp. 167–174. IEEE, Torino (2017)

    Google Scholar 

  21. Hagenauer, F., Dressler, F., Sommer, C.: A simulator for heterogeneous vehicular networks. In: 6th IEEE Vehicular Networking Conference (VNC 2014), Poster Session, pp. 185–186. IEEE, Paderborn (2014). https://doi.org/10.1109/VNC.2014.7013339

  22. Hassan, M.I., Vu, H.L., Sakurai, T.: Performance analysis of the IEEE 802.11 MAC protocol for DSRC safety applications. IEEE Trans. Veh. Technol. 60(8), 3882–3896 (2011). https://doi.org/10.1109/TVT.2011.2162755

  23. Heinovski, J., Klingler, F., Dressler, F., Sommer, C.: A simulative analysis of the performance of IEEE 802.11p and ARIB STD-T109. Elsevier Comput. Commun. 122, 84–92 (2018). https://doi.org/10.1016/j.comcom.2018.03.016

  24. IEEE: IEEE standard for Wireless Access in Vehicular Environments (WAVE) - multi-channel operation. Std 1609.4-2016. IEEE, Piscataway (2016)

    Google Scholar 

  25. IEEE: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. Std 802.11-2016. IEEE, Piscataway (2016)

    Google Scholar 

  26. Joerer, S.: Improving intersection safety with inter-vehicle communication. Phd thesis (dissertation), University of Innsbruck (2016)

    Google Scholar 

  27. Joerer, S., Dressler, F., Sommer, C.: Comparing apples and oranges? Trends in IVC simulations. In: 9th ACM International Workshop on Vehicular Internetworking (VANET 2012), pp. 27–32. ACM, Low Wood Bay (2012). https://doi.org/10.1145/2307888.2307895

  28. Joerer, S., Segata, M., Bloessl, B., Lo Cigno, R., Sommer, C., Dressler, F.: To crash or not to crash: estimating its likelihood and potentials of Beacon-based IVC systems. In: 4th IEEE Vehicular Networking Conference (VNC 2012), pp. 25–32. IEEE, Seoul (2012). https://doi.org/10.1109/VNC.2012.6407441

  29. Joerer, S., Segata, M., Bloessl, B., Lo Cigno, R., Sommer, C., Dressler, F.: A vehicular networking perspective on estimating vehicle collision probability at intersections. IEEE Trans. Veh. Technol. 63(4), 1802–1812 (2014). https://doi.org/10.1109/TVT.2013.2287343

    Article  Google Scholar 

  30. Jootel, P.S.: SAfe Road TRains for the Environment. Final project report, SARTRE project (2012)

    Google Scholar 

  31. Kornek, D., Schack, M., Slottke, E., Klemp, O., Rolfes, I., Kürner, T.: Effects of antenna characteristics and placements on a vehicle-to-vehicle channel scenario. In: IEEE International Conference on Communications (ICC 2010), Workshops. IEEE, Capetown (2010). https://doi.org/10.1109/ICCW.2010.5503935

  32. Krauß, S., Wagner, P., Gawron, C.: Metastable states in a microscopic model of traffic flow. Phys. Rev. E 55(5), 5597–5602 (1997). https://doi.org/10.1103/PhysRevE.55.5597

    Article  Google Scholar 

  33. Kunze, R., Ramakers, R., Henning, K., Jeschke, S.: Organization and operation of electronically coupled truck platoons on German motorways. In: Automation, Communication and Cybernetics in Science and Engineering 2009/2010, pp. 427–439. Springer, Berlin (2011)

    Google Scholar 

  34. Kwoczek, A., Raida, Z., Láčík, J., Pokorný, M., Puskely, J., Vágner, P.: Influence of car panorama glass roofs on Car2car communication. In: 3rd IEEE Vehicular Networking Conference (VNC 2011), Poster Session, pp. 246–251. IEEE, Amsterdam (2011). https://doi.org/10.1109/VNC.2011.6117107

  35. Larson, J., Liang, K.Y., Johansson, K.H.: A distributed framework for coordinated heavy-duty vehicle platooning. IEEE Trans. Intell. Transp. Syst. 16(1), 419–429 (2015). https://doi.org/10.1109/TITS.2014.2320133

    Article  Google Scholar 

  36. Leonor, N.R., Caldeirinha, R.F.S., Sánchez, M.G., Fernandes, T.R.: A three-dimensional directive antenna pattern interpolation method. IEEE Antennas Wirel. Propag. Lett. 15, 881–884 (2016). https://doi.org/10.1109/LAWP.2015.2478962

    Article  Google Scholar 

  37. Memedi, A., Tsai, H.M., Dressler, F.: Impact of realistic light radiation pattern on vehicular visible light communication. In: IEEE Global Telecommunications Conference (GLOBECOM 2017). IEEE, Singapore (2017). https://doi.org/10.1109/GLOCOM.2017.8253979

  38. Milanés, V., Shladover, S.E., Spring, J., Nowakowski, C., Kawazoe, H., Nakamura, M.: Cooperative adaptive cruise control in real traffic situations. IEEE Trans. Intell. Transp. Syst. 15(1), 296–305 (2014). https://doi.org/10.1109/TITS.2013.2278494

    Article  Google Scholar 

  39. Nardini, G., Virdis, A., Stea, G.: Modeling X2 backhauling for LTE-advanced and assessing its effect on CoMP coordinated scheduling. In: 1st International Workshop on Link- and System Level Simulations (IWSLS 2016). IEEE, Vienna (2016). https://doi.org/10.1109/IWSLS.2016.7801582

  40. Ploeg, J., Scheepers, B., van Nunen, E., van de Wouw, N., Nijmeijer, H.: Design and experimental evaluation of cooperative adaptive cruise control. In: IEEE International Conference on Intelligent Transportation Systems (ITSC 2011), pp. 260–265. IEEE, Washington (2011). https://doi.org/10.1109/ITSC.2011.6082981

  41. Rajamani, R.: Vehicle Dynamics and Control, 2nd edn. Springer, Cham (2012)

    Book  Google Scholar 

  42. Rajamani, R., Tan, H.S., Law, B.K., Zhang, W.B.: Demonstration of integrated longitudinal and lateral control for the operation of automated vehicles in platoons. IEEE Trans. Control Syst. Technol. 8(4), 695–708 (2000). https://doi.org/10.1109/87.852914

    Article  Google Scholar 

  43. Riebl, R., Günther, H.J., Facchi, C., Wolf, L.: Artery - extending veins for VANET applications. In: 4th International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS 2015). IEEE, Budapest (2015). https://doi.org/10.1109/MTITS.2015.7223293

  44. Riebl, R., Monz, M., Varga, S., Maglaras, L., Janicke, H., Al-Bayatti, A.H., Facchi, C.: Improved security performance for VANET simulations. In: 4th IFAC Symposium on Telematics Applications (TA 2016), vol. 49, pp. 233–238. Elsevier, Porto Alwegre (2016). https://doi.org/10.1016/j.ifacol.2016.11.173

  45. Santini, S., Salvi, A., Valente, A.S., Pescapè, A., Segata, M., Lo Cigno, R.: A consensus-based approach for platooning with inter-vehicular communications and its validation in realistic scenarios. IEEE Trans. Veh. Technol. 66(3), 1985–1999 (2017). https://doi.org/10.1109/TVT.2016.2585018

    Article  Google Scholar 

  46. Segata, M.: Safe and efficient communication protocols for platooning control. Ph.D. thesis (dissertation), University of Innsbruck (2016)

    Google Scholar 

  47. Segata, M.: Platooning in SUMO: an open source implementation. In: SUMO User Conference 2017, pp. 51–62. DLR, Berlin (2017)

    Google Scholar 

  48. Segata, M., Joerer, S., Bloessl, B., Sommer, C., Dressler, F., Lo Cigno, R.: PLEXE: a platooning extension for Veins. In: 6th IEEE Vehicular Networking Conference (VNC 2014), pp. 53–60. IEEE, Paderborn (2014). https://doi.org/10.1109/VNC.2014.7013309

  49. Segata, M., Bloessl, B., Joerer, S., Sommer, C., Gerla, M., Lo Cigno, R., Dressler, F.: Towards communication strategies for platooning: simulative and experimental evaluation. IEEE Trans. Veh. Technol. 64(12), 5411–5423 (2015). https://doi.org/10.1109/TVT.2015.2489459

    Article  Google Scholar 

  50. Segata, M., Dressler, F., Lo Cigno, R.: Jerk beaconing: a dynamic approach to platooning. In: 7th IEEE Vehicular Networking Conference (VNC 2015), pp. 135–142. IEEE, Kyoto (2015). https://doi.org/10.1109/VNC.2015.7385560

  51. Shladover, S.: PATH at 20 – history and major milestones. In: IEEE Intelligent Transportation Systems Conference (ITSC 2006), pp. 22–29. Toronto (2006). https://doi.org/10.1109/ITSC.2006.1706710

  52. Sommer, C., Dressler, F.: Using the right two-ray model? A measurement based evaluation of PHY models in VANETs. In: 17th ACM International Conference on Mobile Computing and Networking (MobiCom 2011), Poster Session. ACM, Las Vegas (2011)

    Google Scholar 

  53. Sommer, C., Dressler, F.: Vehicular Networking. Cambridge University Press, Cambridge (2014). https://doi.org/10.1017/CBO9781107110649

  54. Sommer, C., Krul, R., German, R., Dressler, F.: Emissions vs. travel time: simulative evaluation of the environmental impact of ITS. In: 71st IEEE Vehicular Technology Conference (VTC2010-Spring), pp. 1–5. IEEE, Taipei (2010). https://doi.org/10.1109/VETECS.2010.5493943

  55. Sommer, C., Eckhoff, D., German, R., Dressler, F.: A computationally inexpensive empirical model of IEEE 802.11p radio shadowing in urban environments. In: 8th IEEE/IFIP Conference on Wireless on Demand Network Systems and Services (WONS 2011), pp. 84–90. IEEE, Bardonecchia (2011). https://doi.org/10.1109/WONS.2011.5720204

  56. Sommer, C., German, R., Dressler, F.: Bidirectionally coupled network and road traffic simulation for improved IVC analysis. IEEE Trans. Mob. Comput. 10(1), 3–15 (2011). https://doi.org/10.1109/TMC.2010.133

    Article  Google Scholar 

  57. Sommer, C., Eckhoff, D., Dressler, F.: IVC in cities: signal attenuation by buildings and how parked cars can improve the situation. IEEE Trans. Mob. Comput. 13(8), 1733–1745 (2014). https://doi.org/10.1109/TMC.2013.80

    Article  Google Scholar 

  58. Sommer, C., Joerer, S., Segata, M., Tonguz, O.K., Lo Cigno, R., Dressler, F.: How shadowing hurts vehicular communications and how dynamic beaconing can help. IEEE Trans. Mob. Comput. 14(7), 1411–1421 (2015). https://doi.org/10.1109/TMC.2014.2362752

    Article  Google Scholar 

  59. Torrent-Moreno, M., Schmidt-Eisenlohr, F., Füßler, H., Hartenstein, H.: Effects of a realistic channel model on packet forwarding in vehicular ad hoc networks. In: IEEE Wireless Communications and Networking Conference (WCNC 2006), pp. 385–391. IEEE, Las Vegas (2006). https://doi.org/10.1109/WCNC.2006.1683495

  60. Treiber, M., Hennecke, A., Helbing, D.: Congested traffic states in empirical observations and microscopic simulations. Phys. Rev. E 62(2), 1805–1824 (2000)

    Article  Google Scholar 

  61. Virdis, A., Stea, G., Nardini, G.: SimuLTE - a modular system-level simulator for LTE/LTE-A networks based on OMNeT++. In: 4th International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH 2014). Vienna (2014)

    Google Scholar 

  62. Virdis, A., Nardini, G., Stea, G.: Modeling unicast device-to-device communications with SimuLTE. In: 2016 1st International Workshop on Link- and System Level Simulations (IWSLS), pp. 1–8. IEEE, Vienna (2016)

    Google Scholar 

  63. Virdis, A., Stea, G., Nardini, G.: Simulating LTE/LTE-advanced networks with SimuLTE. In: Obaidat, S.M., Ören, T., Kacprzyk, J., Filipe, J. (eds.) Simulation and Modeling Methodologies, No. 402. Advances in Intelligent Systems and Computing, pp. 83–105. Springer, Cham (2016)

    Google Scholar 

  64. Wessel, K., Swigulski, M., Köpke, A., Willkomm, D.: MiXiM – the physical layer: an architecture overview. In: 2nd ACM/ICST International Conference on Simulation Tools and Techniques for Communications, Networks and Systems (SIMUTools 2009): 2nd ACM/ICST International Workshop on OMNeT++ (OMNeT++ 2009). ACM, Rome (2009)

    Google Scholar 

  65. Zardosht, B., Beauchemin, S.S., Bauer, M.A.: A predictive accident-duration based decision-making module for rerouting in environments with V2V communication. Elsevier J. Traffic and Transp. Eng. (2017). https://doi.org/10.1016/j.jtte.2017.07.007

Download references

Acknowledgements

The authors are grateful to the community surrounding Veins, the many people who keep contributing their time and smarts to its continuous improvement. We particularly acknowledge the research labs at Univ. Paderborn, Univ. Erlangen-Nuremberg, Univ. Trento, TUMCREATE Singapore, Univ. Sydney, UCLA, Univ. Innsbruck, Univ. Luxembourg, TH Ingolstadt, Fraunhofer, TU Berlin, Carnegie Mellon University, and the German Aerospace Center.

The author D. Eckhoff was financially supported by the Singapore National Research Foundation under its Campus for Research Excellence And Technological Enterprise (CREATE) programme.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christoph Sommer or David Eckhoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sommer, C. et al. (2019). Veins: The Open Source Vehicular Network Simulation Framework. In: Virdis, A., Kirsche, M. (eds) Recent Advances in Network Simulation. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-030-12842-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12842-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12841-8

  • Online ISBN: 978-3-030-12842-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics