Skip to main content

Ontological Knowledge Base for Integrating Geometry and Tolerance of PMPs

  • Chapter
  • First Online:
An Intelligent Inspection Planning System for Prismatic Parts on CMMs

Abstract

When engineering information is once created and applied, it is often stored and forgotten. Current approaches for information retrieval are not effective enough in understanding the engineering content, because they are not developed to share, reuse and represent information of the engineering domain [1]. This chapter presents the current state of engineering ontology (EO) development and proposes a new method for its development at conceptual level in order to reuse and share knowledge in the domain of coordinate metrology (CM) and inspection planning in that domain. More specifically, the method defines the development of ontology for the construction of knowledge base, as one of the basic components for integration of geometry and tolerance of PMPs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li Z, Raskin V, Ramami K (2008) Developing engineering ontology for information retrieval. J Comput Inf Sci Eng 8:1–13

    Article  Google Scholar 

  2. Swartout RW, Tate A (1999) Guest editors’ introduction: ontologies. IEEE Intell Syst 14(1):18–19

    Article  Google Scholar 

  3. Chandrasekaran B, Josephson RJ, Benjamins RV (1999) What are ontologies, and why do we need them? IEEE Intell Syst 14(1):20–26

    Article  Google Scholar 

  4. Martinez PS, Barreiro J, Cuesta E, Alvarez JB (2011) A new process based ontology for KBE system implementation: application to inspection process planning. Int J Adv Manuf Technol 57:325–339

    Article  Google Scholar 

  5. Uschold M, Gruninger M (2004) Ontologies and semantics for seamless connectivity. SIGMOD Record 33(4):58–64

    Article  Google Scholar 

  6. McMahon AC, Lowe A, Culley JS, Corderoy M, Crossland R, Shah T, Stewart D (2004) Waypoint: an integrated search and retrieval system for engineering documents. ASME J Comput Inf Sci Eng 4(4):329–338

    Article  Google Scholar 

  7. Court WA, Ullman GD, Culley DGSJ (1998) A comparison between the provision of information to engineering designers in the UK and the US. Int J Inf Manag 18(6):409–425

    Article  Google Scholar 

  8. Zhanjun L, Maria C, Karthik R (2009) A methodology for engineering ontology acquisition and validation. Artif Intell Eng Des Anal Manuf 23(1):37–51

    Article  Google Scholar 

  9. Gruber T (1995) Towards principles for the design of ontologies used for knowledge sharing. Int J Hum Comput Stud 43(5–6):907–928

    Article  Google Scholar 

  10. Uschold M, King M (1995) Towards a methodology for building ontologies. In: IJCAI95 workshop on basic ontological issues in knowledge sharing, Montreal

    Google Scholar 

  11. Gruninger M, Fox S (1995) Methodology for the design and evaluation of ontologies. In; Proceedings of international joint conference on ai workshop on basic ontological issues in knowledge sharing, Montreal

    Google Scholar 

  12. Noy NF, McGuinness DL (2001) Ontology development 101: a guide to creating your first ontology, knowledge systems laboratory and stanford medical informatics

    Google Scholar 

  13. Fernandez M, Sierra GAP (1999) Building a chemical ontology using METHONTOLOGY and the ontology design environment. IEEE Intell Syst 14(1):37–46

    Article  Google Scholar 

  14. Nanda J, Simpson TW, Kumara SRT, Shooter SB (2006) A methodology for product family ontology development using formal concept analysis and web ontology language. ASME J Comput Inf Sci Eng 6(2):1–11

    Article  Google Scholar 

  15. Ahmed S, Kim S, Wallace KM (2007) A methodology for creating ontologies for engineering design. ASME J Comput Inf Sci Eng 7(2):132–140

    Article  Google Scholar 

  16. Kalfoglou Y (2001) Exploring ontologies. Handbook of software engineering and knowledge engineering, Singapore, vol 1, pp 863–887

    Chapter  Google Scholar 

  17. Matthew H et al, A practical guide to building OWL ontologies using Protégé 4 and CO-DE tools. The University Of Manchester

    Google Scholar 

  18. Stojadinovic S, Majstorovic V (2014) Developing engineering ontology for domain coordinate metrology. FME Trans 42(3):249–255

    Article  Google Scholar 

  19. Stojadinovic S, Majstorović V (2011) Metrological primitives in production metrology–ontological approach. In: Proceedings of the 34th international conference on production engineering, 29–30, Faculty of Mechanical Engineering Nis, Nis, Serbia, 28–30th Sept

    Google Scholar 

  20. http://www.ksl.stanford.edu/software/ontolingua/ (accessed 01.08.2016.)

  21. http://www.daml.org/ontologies/ (accessed 01.03.2018)

  22. Uschold M, Gruninger M (1996) Ontologies: principles, methods and applications. Knowl Eng Rev 11(2):1–69

    Article  Google Scholar 

  23. http://protege.stanford.edu/ (accessed 01.07.2016)

  24. ElMaraghy HA, Gu PH (1987) Expert system for inspection planning. Ann CIRP 36(1):85–89

    Article  Google Scholar 

  25. Ziemian CW, Medeiros DJ (1997) Automated feature accessibility for inspection on a coordinate measuring machine. Int J Prod Res 35(10):2839–2856

    Article  MATH  Google Scholar 

  26. Limaiem A, ElMaraghy AH (1997) Automatic planning for coordinate measuring machines. In: Proceedings of the 1997 IEEE, international symposium on assembly and task planning, 243–248, Marina del Rey, CA

    Google Scholar 

  27. Takamasu K, Furutani R, Ozono S (1999) Basic concept of feature-based metrology. Measurement 26:151–156

    Article  Google Scholar 

  28. Stefano DP, Bianconi F, Angelo DL (2004) An approach for feature semantics recognition in geometric models. Comput Aided Des 36:993–1009

    Article  Google Scholar 

  29. Moroni G, Polini W, Semeraro Q (1998) Knowledge based method for touch probe configuration in an automated inspection system. J Mater Process Technol 76:153–160

    Article  Google Scholar 

  30. Mohib A, Azab A, ElMaraghy H (2009) Feature-based hybrid inspection planning: A mathematical programming approach. Int. J. Comput Integr Manuf 22(1):13–29

    Article  Google Scholar 

  31. Wong FSY, Chuah KB, Venuvinod PK (2006) Inspection process planning: algorithmic inspection feature recognition, and inspection case representation for CBR. Robot Comput Integr Manuf 22:56–68

    Article  Google Scholar 

  32. Wong YSF, Chuah BK, Venuvinod KP (2005) Automated extraction of dimensional inspection features from part computer-aided design models. Int J Prod Res 43(12):2377–2396

    Article  Google Scholar 

  33. Laguionie R, Rauch M, Hascoet JY, Suh SH (2011) An extended manufacturing Integrated System for feature-based manufacturing with STEP-NC. Int J Comput Integr Manuf 24(9):785–799

    Article  Google Scholar 

  34. Cho W-M, Seo I-T (2002) Inspection planning strategy for the on-machine measurement process based on CAD/CAM/CAI integration. Int J Adv Manuf Technol 19:607–617

    Article  Google Scholar 

  35. Majstorovic DV (2003) Inspection planning on CMM based Expert System. In: Proceedings of the 36th CIRP international seminar on manufacturing system, 1–9, CIRP, Saarbrucken, Germany

    Google Scholar 

  36. Myeong WC, Honghee L, Gil SY, Jinhwa C (2005) A feature-based inspection planning system for coordinate measuring machines. Int J Adv Manuf Technol 26:1078–1087

    Article  Google Scholar 

  37. Kramer RT, Huang H, Messina E, Proctor MF, Scott H (2001) A feature-based inspection and machining system, Comput Aided Des 33(9):653–669

    Article  Google Scholar 

  38. Zhang SG, Ajmal A, Wootton J, Chisholm A (2000) A feature-based inspection process planning system for co-ordinate measuring machine (CMM). J Mater Process Technol 107:111–118

    Article  Google Scholar 

  39. Stojadinovic S, Majstorović V (2012) Towards the development of feature-based ontology for inspection planning system on CMM. J Mach Eng 12(1):89–98

    Google Scholar 

  40. Majstorovic V, Stojadinovic S, Sibalija T (2015) Development of a knowledge base for the planning of prismatic parts inspection on CMM. Acta IMEKO 42(2):10–17

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Slavenko M. Stojadinović .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stojadinović, S.M., Majstorović, V.D. (2019). Ontological Knowledge Base for Integrating Geometry and Tolerance of PMPs. In: An Intelligent Inspection Planning System for Prismatic Parts on CMMs. Springer, Cham. https://doi.org/10.1007/978-3-030-12807-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12807-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12806-7

  • Online ISBN: 978-3-030-12807-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics