Skip to main content

Interacting Conceptual Spaces I: Grammatical Composition of Concepts

  • Chapter
  • First Online:
Conceptual Spaces: Elaborations and Applications

Part of the book series: Synthese Library ((SYLI,volume 405))

Abstract

The categorical compositional approach to meaning has been successfully applied in natural language processing, outperforming other models in mainstream empirical language processing tasks. We show how this approach can be generalized to conceptual space models of cognition. In order to do this, first we introduce the category of convex relations as a new setting for categorical compositional semantics, emphasizing the convex structure important to conceptual space applications. We then show how to construct conceptual spaces for various types such as nouns, adjectives and verbs. Finally we show by means of examples how concepts can be systematically combined to establish the meanings of composite phrases from the meanings of their constituent parts. This provides the mathematical underpinnings of a new compositional approach to cognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This paper is a significantly extended version of the workshop paper Bolt et al. (2016).

  2. 2.

    Authors in alphabetical order.

  3. 3.

    It could be argued that these are not transitive verbs, but intransitive verbs plus preposition. However, we can parse the combination as a transitive verb, since a preposition has type s r sn l and therefore the combination reduces to type of a transitive verb:

    $$\displaystyle \begin{aligned} (n^r s)(s^r s n^l) \leq n^r s n^l \end{aligned}$$

References

  • Adams, B., & Raubal, M. (2009). A metric conceptual space algebra. In Spatial Information Theory (pp. 51–68). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  • Aerts, D. (2009). Quantum structure in cognition. Journal of Mathematical Psychology, 53(5), 314–348.

    Article  Google Scholar 

  • Bankova, D., Coecke, B., Lewis, M., & Marsden, D. (2017). Graded entailment for compositional distributional semantics. Journal of Language Modelling, under review.

    Google Scholar 

  • Bechberger, L., & Kühnberger, K. (2017). A thorough formalization of conceptual spaces. CoRR, abs/1706.06366.

    Google Scholar 

  • Bolt, J., Coecke, B., Genovese, F., Lewis, M., Marsden, D., & Piedeleu, R. (2016). Interacting conceptual spaces. In D. Kartsaklis, M. Lewis, & L. Rimell (Eds.), Proceedings of the 2016 Workshop on Semantic Spaces at the Intersection of NLP, Physics and Cognitive Science, SLPCS@QPL 2016, Glasgow, Scotland, 11 June 2016 (EPTCS, Vol. 221, pp. 11–19).

    Google Scholar 

  • Bullinaria, J., & Levy, J. (2007). Extracting semantic representations from word co-occurrence statistics: A computational study. Behavior Research Methods, 39(3), 510–526.

    Article  Google Scholar 

  • Carboni, A., & Walters, R. (1987). Cartesian bicategories I. Journal of Pure and Applied Algebra, 49(1), 11–32.

    Article  Google Scholar 

  • Coecke, B. (2013). An alternative gospel of structure: Order, composition, processes. In C. Heunen, M. Sadrzadeh, & E. Grefenstette (Eds.), Quantum physics and linguistics. A compositional, diagrammatic discourse (pp. 1–22). Oxford: Oxford University Press.

    Google Scholar 

  • Coecke, B., & Kissinger, A. (2017). Picturing quantum processes. A first course in quantum theory and diagrammatic reasoning. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Coecke, B., & Paquette, E. (2011). Categories for the practising physicist. In B. Coecke (Ed.), New structures for physics (pp. 173–286). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  • Coecke, B., Sadrzadeh, M., & Clark, S. (2010). Mathematical foundations for a compositional distributional model of meaning. Linguistic Analysis, 36, 45–384.

    Google Scholar 

  • Coecke, B., Grefenstette, E., & Sadrzadeh, M. (2013a). Lambek vs. Lambek: Functorial vector space semantics and string diagrams for Lambek calculus. Annals of Pure and Applied Logic, 164(11), 1079–1100.

    Article  Google Scholar 

  • Coecke, B., Pavlović, D., & Vicary, J. (2013b). A new description of orthogonal bases. Mathematical Structures in Computer Science, 23, 555–567. arXiv:quant-ph/0810.1037.

    Google Scholar 

  • Coecke, B., Genovese, F., Lewis, M., Marsden, D., & Toumi, A. (2017). Generalized relations for linguistics and cognition. Theoretical Computer Science, under review.

    Google Scholar 

  • Derrac, J., & Schockaert, S. (2015). Inducing semantic relations from conceptual spaces: A data-driven approach to plausible reasoning. Artificial Intelligence, 228, 66–94.

    Article  Google Scholar 

  • Eliasmith, C. (2013). How to build a brain: A neural architecture for biological cognition. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Forth, J., Agres, K., Purver, M., & Wiggins, G. (2016). Entraining IDyOT: Timing in the information dynamics of thinking. Frontiers in Psychology, 7, 1575.

    Article  Google Scholar 

  • Gärdenfors, P. (2004). Conceptual spaces: The geometry of thought. Cambridge/London: The MIT Press.

    Google Scholar 

  • Gärdenfors, P. (2014). The geometry of meaning: Semantics based on conceptual spaces. Cambridge/MA: MIT Press.

    Book  Google Scholar 

  • Grefenstette, E., & Sadrzadeh, M. (2011). Experimental support for a categorical compositional distributional model of meaning. In The 2014 Conference on Empirical Methods on Natural Language Processing (pp. 1394–1404). arXiv:1106.4058.

    Google Scholar 

  • Hampton, J. (1987). Inheritance of attributes in natural concept conjunctions. Memory & Cognition, 15(1), 55–71.

    Article  Google Scholar 

  • Hampton, J. (1988a). Disjunction of natural concepts. Memory & Cognition, 16(6), 579–591.

    Article  Google Scholar 

  • Hampton, J. (1988b). Overextension of conjunctive concepts: Evidence for a unitary model of concept typicality and class inclusion. Journal of Experimental Psychology: Learning, Memory, and Cognition, 14(1), 12.

    Google Scholar 

  • Jacobs, B. (2011). Coalgebraic walks, in quantum and Turing computation. In Foundations of Software Science and Computational Structures (pp. 12–26). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  • Kamp, H., & Partee, B. (1995). Prototype theory and compositionality. Cognition, 57(2), 129–191.

    Article  Google Scholar 

  • Kartsaklis, D., & Sadrzadeh, M. (2013). Prior disambiguation of word tensors for constructing sentence vectors. In The 2013 Conference on Empirical Methods on Natural Language Processing (pp. 1590–1601). ACL.

    Google Scholar 

  • Kartsaklis, D., Sadrzadeh, M., Pulman, S., & Coecke, B. (2013). Reasoning about meaning in natural language with compact closed categories and Frobenius algebras. In J. Chubb, A. Eskandarian, & V. Harizanov (Eds.), Logic and algebraic structures in quantum computing (pp. 199–222). Cambridge: Cambridge University Press (CUP).

    Google Scholar 

  • Lambek, J. (1958). The mathematics of sentence structure. American Mathematics Monthly, 65, 154–170.

    Article  Google Scholar 

  • Lambek, J. (1999). Type grammar revisited. In Logical aspects of computational linguistics (pp. 1–27). Berlin/New York: Springer.

    Google Scholar 

  • Lawry, J., & Tang, Y. (2009). Uncertainty modelling for vague concepts: A prototype theory approach. Artificial Intelligence, 173(18), 1539–1558.

    Article  Google Scholar 

  • Lewis, M., & Lawry, J. (2016). Hierarchical conceptual spaces for concept combination. Artificial Intelligence, 237, 204–227.

    Article  Google Scholar 

  • Lieto, A., Lebiere, C., & Oltramari, A. (2017). The knowledge level in cognitive architectures: Current limitations and possible developments. Cognitive Systems Research, 48, 39–55.

    Article  Google Scholar 

  • Lund, K., & Burgess, C. (1996). Producing high-dimensional semantic spaces from lexical co-occurrence. Behavior Research Methods, Instruments, & Computers, 28(2), 203–208.

    Article  Google Scholar 

  • Mac Lane, S. (1971). Categories for the working mathematician. New York: Springer.

    Book  Google Scholar 

  • Marsden, D., & Genovese, F. (2017). Custom hypergraph categories via generalized relations. In F. Bonchi & B. König (Eds.), 7th Conference on Algebra and Coalgebra in Computer Science, CALCO 2017, Ljubljana, Slovenia, 12–16 June 2017 (LIPIcs, Vol. 72, pp. 17:1–17:16). Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik.

    Google Scholar 

  • McGregor, S., Purver, M., & Wiggins, G. (2016). Words, concepts, and the geometry of analogy. arXiv preprint arXiv:1608.01403.

    Google Scholar 

  • Piedeleu, R., Kartsaklis, D., Coecke, B., & Sadrzadeh, M. (2015). Open system categorical quantum semantics in natural language processing. In L. S. Moss & P. Sobocinski (Eds.), 6th Conference on Algebra and Coalgebra in Computer Science, CALCO 2015 (LIPIcs, Vol. 35. pp. 270–289). Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik.

    Google Scholar 

  • Rickard, J., Aisbett, J., & Gibbon, G. (2007). Reformulation of the theory of conceptual spaces. Information Sciences, 177(21), 4539–4565.

    Article  Google Scholar 

  • Rosch, E., & Mervis, C. (1975). Family resemblances: Studies in the internal structure of categories. Cognitive Psychology, 7(4), 573–605.

    Article  Google Scholar 

  • Sadrzadeh, M. (2007). High level quantum structures in linguistics and multi agent systems. In AAI Spring Symposium: Quantum Interaction (pp. 9–16).

    Google Scholar 

  • Sadrzadeh, M., Clark, S., & Coecke, B. (2013). The Frobenius anatomy of word meanings I: Subject and object relative pronouns. Journal of Logic and Computation, 23, 1293–1317. arXiv:1404.5278.

    Google Scholar 

  • Sadrzadeh, M., Clark, S., & Coecke, B. (2016). The Frobenius anatomy of word meanings II: Possessive relative pronouns. Journal of Logic and Computation, 26(2), 785–815.

    Article  Google Scholar 

  • Smolensky, P., & Legendre, G. (2006). The harmonic mind: From neural computation to optimality-theoretic grammar (Cognitive architecture, Vol. 1). Cambridge: MIT Press.

    Google Scholar 

  • Tversky, A. (1977). Features of similarity. Psychological Review, 84(4), 327–352.

    Article  Google Scholar 

  • Van der Velde, F., & De Kamps, M. (2006). Neural blackboard architectures of combinatorial structures in cognition. Behavioral and Brain Sciences, 29(1), 37–70.

    Article  Google Scholar 

  • Warglien, M., Gardenfors, P., & Westera, M. (2012). Event structure, conceptual spaces and the semantics of verbs. Theoretical Linguistics, 38(3–4), 159–193.

    Google Scholar 

Download references

Acknowledgements

This work was partially funded by AFSOR grant “Algorithmic and Logical Aspects when Composing Meanings”, the FQXi grant “Categorical Compositional Physics”, and EPSRC PhD scholarships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martha Lewis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bolt, J., Coecke, B., Genovese, F., Lewis, M., Marsden, D., Piedeleu, R. (2019). Interacting Conceptual Spaces I: Grammatical Composition of Concepts. In: Kaipainen, M., Zenker, F., Hautamäki, A., Gärdenfors, P. (eds) Conceptual Spaces: Elaborations and Applications. Synthese Library, vol 405. Springer, Cham. https://doi.org/10.1007/978-3-030-12800-5_9

Download citation

Publish with us

Policies and ethics