Skip to main content

Time and Space Complexity of P Systems — And Why They Matter

  • Conference paper
  • First Online:
  • 319 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11399))

Abstract

Computational complexity theory allows one to investigate the amount of resources (usually, time and/or space) which are needed to solve a given computational problem. Indeed, since the appearance of P systems several computational complexity techniques have been applied to study their computational power and efficiency. In this paper, starting from some results which have been obtained in the last few years by the group of Membrane Computing at the University of Milan-Bicocca (also known as the “Milano Team”), sometimes in collaboration with colleagues from the Membrane Computing community, I will make some observations on what is the relevance (in my opinion) of time and space complexity theory for P systems. Speaking about the results, I will focus in particular on the ideas lying behind them, without delving into technical details. I will also comment on the importance of these results for applications, such as modelling complex systems and implementing decentralized applications. I will finally conclude with some (somewhat provocative) connections with other Computer Science subjects, related with Cryptography, Computer and Network Security, and Decentralized Applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alhazov, A., Martín-Vide, C., Pan, L.: Solving a PSPACE-complete problem by recognizing P systems with restricted active membranes. Fundam. Informaticae 58(2), 67–77 (2003)

    MathSciNet  MATH  Google Scholar 

  2. Alhazov, A., Leporati, A., Mauri, G., Porreca, A.E., Zandron, C.: Space complexity equivalence of P systems with active membranes and Turing machines. Theor. Comput. Sci. 529, 69–81 (2014)

    Article  MathSciNet  Google Scholar 

  3. Cormen, T.H., Leiserson, C.H., Rivest, R.L.: Introduction to Algorithms. MIT Press, Cambridge (1990)

    MATH  Google Scholar 

  4. Freund, R., Leporati, A., Oswald, M., Zandron, C.: Sequential P systems with unit rules and energy assigned to membranes. In: Margenstern, M. (ed.) MCU 2004. LNCS, vol. 3354, pp. 200–210. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31834-7_16

    Chapter  MATH  Google Scholar 

  5. Furst, M., Saxe, J.B., Sipser, M.: Parity, circuits, and the polynomial-time hierarchy. Math. Syst. Theory 17, 13–27 (1984)

    Article  MathSciNet  Google Scholar 

  6. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher, M. (ed.) Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, pp. 169–178. ACM (2009)

    Google Scholar 

  7. Ionescu, M., Păun, G., Yokomori, T.: Spiking neural P systems. Fundam. Informaticae 71(3), 279–308 (2006)

    Google Scholar 

  8. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: How to run turing machines on encrypted data. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 536–553. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_30

    Chapter  Google Scholar 

  9. Konur, S., Gheorghe, M., Dragomir, C., Mierla, L., Ipate, F., Krasnogor, N.: Qualitative and quantitative analysis of systems and synthetic biology constructs using P systems. ACS Synth. Biol. 4(1), 83–92 (2015)

    Article  Google Scholar 

  10. Korec, I.: Small universal register machines. Theor. Comput. Sci. 168, 267–301 (1996)

    Article  MathSciNet  Google Scholar 

  11. Leporati, A., Ferretti, C., Mauri, G., Pérez-Jiménez, M.J., Zandron, C.: Complexity aspects of polarizationless membrane systems. Nat. Comput. 8, 703–717 (2009)

    Article  MathSciNet  Google Scholar 

  12. Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., Zandron, C.: Constant-space P systems with active membranes. Fundam. Informaticae 134(1–2), 111–128 (2014)

    MathSciNet  MATH  Google Scholar 

  13. Leporati, A., Mauri, G., Porreca, A.E., Zandron, C.: A gap in the space hierarchy of P systems with active membranes. J. Automata Lang. Comb. 19(1–4), 173–184 (2014)

    MathSciNet  MATH  Google Scholar 

  14. Leporati, A., Mauri, G., Zandron, C., Păun, G., Péréz-Jiménez, M.J.: Uniform solutions to SAT and Subset Sum by spiking neural P systems. Nat. Comput. 8, 681–702 (2009)

    Article  MathSciNet  Google Scholar 

  15. Leporati, A., Zandron, C., Ferretti, C., Mauri, G.: Solving numerical NP-complete problems with spiking neural P systems. In: Eleftherakis, G., Kefalas, P., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2007. LNCS, vol. 4860, pp. 336–352. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77312-2_21

    Chapter  Google Scholar 

  16. Leporati, A., Zandron, C., Ferretti, C., Mauri, G.: On the computational power of spiking neural P systems. Int. J. Unconventional Comput. 5, 459–473 (2009)

    Google Scholar 

  17. Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., Zandron, C.: A toolbox for simpler active membrane algorithms. Theor. Comput. Sci. 673, 42–57 (2017)

    Article  MathSciNet  Google Scholar 

  18. Mauri, G., Leporati, A., Porreca, A.E., Zandron, C.: Recent complexity-theoretic results on P systems with active membranes. J. Logic Comput. 25(4), 1047–1071 (2015)

    Article  MathSciNet  Google Scholar 

  19. Mix Barrington, D.A., Immerman, N., Straubing, H.: On uniformity within NC\({}^1\). J. Comput. Syst. Sci. 41(3), 274–306 (1990)

    Article  MathSciNet  Google Scholar 

  20. Păun, G.: Computing with membranes. J. Comput. Syst. Sci. 1(61), 108–143 (2000)

    Article  MathSciNet  Google Scholar 

  21. Păun, G.: P systems with active membranes: attacking NP-complete problems. J. Automata Lang. Comb. 6(1), 75–90 (2001)

    MathSciNet  MATH  Google Scholar 

  22. Păun, G., Pérez-Jiménez, M.J.: Solving Problems in a distributed way in membrane computing: dP systems. Int. J. Comput. Commun. Control 5(2), 238–250 (2010)

    Article  Google Scholar 

  23. Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane Computing. Oxford University Press, Oxford (2010)

    MATH  Google Scholar 

  24. Pérez-Jiménez, M.J., Romero Jiménez, A., Sancho Caparrini, F.: Complexity classes in models of cellular computing with membranes. Nat. Comput. 2(3), 265–285 (2003)

    Article  MathSciNet  Google Scholar 

  25. Porreca, A.E., Leporati, A., Mauri, G., Zandron, C.: P systems with active membranes: trading time for space. Nat. Comput. 10(1), 167–182 (2011)

    Article  MathSciNet  Google Scholar 

  26. Porreca, A.E., Leporati, A., Mauri, G., Zandron, C.: P systems with elementary active membranes: beyond NP and coNP. In: Gheorghe, M., Hinze, T., Păun, G., Rozenberg, G., Salomaa, A. (eds.) CMC 2010. LNCS, vol. 6501, pp. 338–347. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-18123-8_26

    Chapter  MATH  Google Scholar 

  27. Porreca, A.E., Leporati, A., Mauri, G., Zandron, C.: Elementary active membranes have the power of counting. Int. J. Nat. Comput. Res. 2(3), 35–48 (2011)

    Article  Google Scholar 

  28. Porreca, A.E., Leporati, A., Mauri, G., Zandron, C.: P systems with active membranes working in polynomial space. Int. J. Found. Comput. Sci. 2(1), 65–73 (2011)

    Article  MathSciNet  Google Scholar 

  29. Porreca, A.E., Leporati, A., Mauri, G., Zandron, C.: P systems simulating oracle computations. In: Gheorghe, M., Păun, G., Rozenberg, G., Salomaa, A., Verlan, S. (eds.) CMC 2011. LNCS, vol. 7184, pp. 346–358. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28024-5_23

    Chapter  MATH  Google Scholar 

  30. Porreca, A.E., Leporati, A., Mauri, G., Zandron, C.: Sublinear-space P systems with active membranes. In: Csuhaj-Varjú, E., Gheorghe, M., Rozenberg, G., Salomaa, A., Vaszil, G. (eds.) CMC 2012. LNCS, vol. 7762, pp. 342–357. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36751-9_23

    Chapter  MATH  Google Scholar 

  31. Rong, H., Wu, T., Pan, L., Zhang, G.: Spiking neural P systems: theoretical results and applications. In: Bulletin of the International Membrane Computing Society (IMCS), June 2018. http://membranecomputing.net/IMCSBulletin/index.php?page=SNP-review

  32. Sosík, P.: The computational power of cell division in P systems: beating down parallel computers? Nat. Comput. 2(3), 287–298 (2003)

    Article  MathSciNet  Google Scholar 

  33. Sosík, P., Rodríguez-Patón, A.: Membrane computing and complexity theory: a characterization of PSPACE. J. Comput. Syst. Sci. 73(1), 137–152 (2007)

    Article  MathSciNet  Google Scholar 

  34. Stockmeyer, L.J.: The polynomial hierarchy. Theor. Comput. Sci. 3, 1–22 (1976)

    Article  MathSciNet  Google Scholar 

  35. Toda, S.: PP is as hard as the polynomial-time hierarchy. SIAM J. Comput. 20(5), 865–877 (1991)

    Article  MathSciNet  Google Scholar 

  36. Valsecchi, A., Porreca, A.E., Leporati, A., Mauri, G., Zandron, C.: An efficient simulation of polynomial-space turing machines by P systems with active membranes. In: Păun, G., Pérez-Jiménez, M.J., Riscos-Núñez, A., Rozenberg, G., Salomaa, A. (eds.) WMC 2009. LNCS, vol. 5957, pp. 461–478. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11467-0_31

    Chapter  MATH  Google Scholar 

  37. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger. Ethereum Project Yellow Paper (2014). https://github.com/ethereum/yellowpaper

  38. Zandron, C., Ferretti, C., Mauri, G.: Solving NP-complete problems using P systems with active membranes. In: Antoniou, I., Calude, C.S., Dinneen, M.J. (eds.) Unconventional Models of Computation, UMC’2K. Discrete Mathematics and Theoretical Computer Science, pp. 289–301. Springer, London (2001). https://doi.org/10.1007/978-1-4471-0313-4_21

    Chapter  Google Scholar 

  39. Zandron, C., Leporati, A., Ferretti, C., Mauri, G., Pérez-Jiménez, M.J.: On the computational efficiency of polarizationless recognizer P systems with strong division and dissolution. Fundam. Informaticae 87(1), 79–91 (2008)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Leporati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Leporati, A. (2019). Time and Space Complexity of P Systems — And Why They Matter. In: Hinze, T., Rozenberg, G., Salomaa, A., Zandron, C. (eds) Membrane Computing. CMC 2018. Lecture Notes in Computer Science(), vol 11399. Springer, Cham. https://doi.org/10.1007/978-3-030-12797-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12797-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12796-1

  • Online ISBN: 978-3-030-12797-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics