Skip to main content

Solving QSAT in Sublinear Depth

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11399))

Abstract

Among -complete problems, QSAT, or quantified SAT, is one of the most used to show that the class of problems solvable in polynomial time by families of a given variant of P systems includes the whole . However, most solutions require a membrane nesting depth that is linear with respect to the number of variables of the QSAT instance under consideration. While a system of a certain depth is needed, since depth 1 systems only allows to solve problems in , it was until now unclear if a linear depth was, in fact, necessary. Here we use P systems with active membranes with charges, and we provide a construction that proves that QSAT can be solved with a sublinear nesting depth of order \(\frac{n}{\log n}\), where n is the number of variables in the quantified formula given as input.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alhazov, A., Martín-Vide, C., Pan, L.: Solving a PSPACE-complete problem by recognizing P systems with restricted active membranes. Fundam. Inform. 58(2), 67–77 (2003)

    MathSciNet  MATH  Google Scholar 

  2. Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., Zandron, C.: Simulating elementary active membranes. In: Gheorghe, M., Rozenberg, G., Salomaa, A., Sosík, P., Zandron, C. (eds.) CMC 2014. LNCS, vol. 8961, pp. 284–299. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-14370-5_18

    Chapter  MATH  Google Scholar 

  3. Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., Zandron, C.: Membrane division, oracles, and the counting hierarchy. Fundam. Inform. 138(1–2), 97–111 (2015)

    MathSciNet  MATH  Google Scholar 

  4. Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., Zandron, C.: Characterising the complexity of tissue P systems with fission rules. J. Comput. Syst. Sci. 90, 115–128 (2017)

    Article  MathSciNet  Google Scholar 

  5. Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., Zandron, C.: The counting power of P systems with antimatter. Theor. Comput. Sci. 701, 161–173 (2017)

    Article  MathSciNet  Google Scholar 

  6. Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., Zandron, C.: A toolbox for simpler active membrane algorithms. Theor. Comput. Sci. 673, 42–57 (2017)

    Article  MathSciNet  Google Scholar 

  7. Murphy, N., Woods, D.: The computational power of membrane systems under tight uniformity conditions. Nat. Comput. 10(1), 613–632 (2011)

    Article  MathSciNet  Google Scholar 

  8. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Boston (1993)

    MATH  Google Scholar 

  9. Păun, G.: P systems with active membranes: attacking NP-complete problems. J. Autom. Lang. Comb. 6(1), 75–90 (2001)

    MathSciNet  MATH  Google Scholar 

  10. Păun, G., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Computing. Oxford University Press, Oxford (2010)

    Book  Google Scholar 

  11. Porreca, A.E., Leporati, A., Mauri, G., Zandron, C.: P systems with active membranes: trading time for space. Nat. Comput. 10(1), 167–182 (2011)

    Article  MathSciNet  Google Scholar 

  12. Sosík, P.: The computational power of cell division in P systems: beating down parallel computers? Nat. Comput. 2(3), 287–298 (2003)

    Article  MathSciNet  Google Scholar 

  13. Zandron, C., Leporati, A., Ferretti, C., Mauri, G., Pérez-Jiménez, M.J.: On the computational efficiency of polarizationless recognizer P systems with strong division and dissolution. Fundam. Inf. 87, 79–91 (2008)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Leporati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., Zandron, C. (2019). Solving QSAT in Sublinear Depth. In: Hinze, T., Rozenberg, G., Salomaa, A., Zandron, C. (eds) Membrane Computing. CMC 2018. Lecture Notes in Computer Science(), vol 11399. Springer, Cham. https://doi.org/10.1007/978-3-030-12797-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12797-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12796-1

  • Online ISBN: 978-3-030-12797-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics