Skip to main content

Pulse Processing and Utilization of Pulse Ingredients in Foods

  • Chapter
  • First Online:
Health Benefits of Pulses

Abstract

Pulses are a good source of protein and dietary fiber and are rich in vitamins and minerals. Inclusion of pulses in the diet has been shown to be an effective dietary strategy for reducing risk factors for cardiovascular disease and diabetes. Although cooked pulses are consumed in many regions of the world, factors including their long cooking times, the presence of anti-nutritional compounds, and the flatulence associated with their consumption have limited their use but these factors can be minimized through processing. A number of different processing techniques can be applied to pulses including dehulling, splitting, canning, fermentation, germination, roasting, puffing, extrusion, micronization, flour milling, and fractionation. The diverse composition and functionality of processed pulses, pulse flours and pulse fractions provide valuable ingredients for food manufacturers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguilera JM, Lucas EW, Uebersax MA et al (1982) Development of food ingredients from navy beans (Phaseolus vulgaris) by roasting, pin milling, and air classification. J Food Sci 47:1151–1154

    Article  CAS  Google Scholar 

  • Alani SR, Zabik ME, Uebersax MA (1989) Dry roasted pinto bean (Phaseolus vulgaris) flour in quick breads. Cereal Chem 66:348–349

    Google Scholar 

  • Anderson ET, Berry BW (2000) Sensory, shear, and cooking properties of lower-fat beef patties made with inner pea fiber. J Food Sci 65:805–810

    Article  CAS  Google Scholar 

  • Anderson ET, Berry BW (2001a) Identification of nonmeat ingredients for increasing fat holding capacity during heating of ground beef. J Food Qual 24:291–299

    Article  CAS  Google Scholar 

  • Anderson ET, Berry BW (2001b) Effects of inner pea fiber on fat retention and cooking yield in high fat ground beef. Food Res Int 34:689–694

    Article  Google Scholar 

  • Anton AA, Luciano FB, Maskus H (2008a) Development of Globix: a new bean-based pretzel-like snack. Cereal Foods World 53:70–74

    Google Scholar 

  • Anton AA, Ross KA, Lukow OM et al (2008b) Influence of added bean flour (Phaseolus vulgaris L.) on some physical and nutritional properties of wheat flour tortillas. Food Chem 109:33–41

    Article  CAS  PubMed  Google Scholar 

  • Anton AA, Fulcher RG, Arntfield AD (2009) Physical and nutritional impact of fortification of corn starch-based extruded snacks with common bean (Phaseolus vulgaris L.) flour: effects of bean addition and extrusion cooking. Food Chem 113:989–996

    Article  CAS  Google Scholar 

  • Arntfield SD, Scanlon MG, Malcolmson LJ et al (1997) Effect of tempering and end moisture content on the quality of micronized lentils. Food Res Int 30:371–380

    Article  Google Scholar 

  • Arntfield SD, Scanlon MG, Malcolmson LJ et al (2001) Reduction in lentil cooking time using micronization: comparison of two micronization temperatures. J Food Sci 66:500–505

    Article  CAS  Google Scholar 

  • Azarphazhooh E, Boye JI (2013) Composition of processed dry beans and pulses. In: Siddiq M, Uebersax MA (eds) Dry beans and pulses: production, processing and nutrition. Wiley-Blackwell, Ames, pp 103–128

    Google Scholar 

  • Bahnassey Y, Khan K, Harrold R (1986) Fortification of spaghetti with edible legumes. I. Physicochemical, antinutritional, amino acid, and mineral composition. Cereal Chem 63:210–215

    CAS  Google Scholar 

  • Balandran-Quintana RR, Barbosa-Canovas GV, Zazueta-Morales JJ et al (1998) Functional and nutritional properties of extruded whole pinto bean meal (Phaseolus vulgaris L). J Food Sci 63:113–116

    Article  CAS  Google Scholar 

  • Bellaio S, Kappeler S, Rosenfeld EZ et al (2013) Partially germinated ingredients for naturally healthy and tasty products. Cereal Foods World 58:55–59

    Article  CAS  Google Scholar 

  • Bellido G, Arntfield SD, Cenkowski S et al (2006) Effects of micronization pretreatments on the physicochemical properties of navy and black beans (Phaseolus vulgaris L.). LWT-Food Sci Technol 39:779–787

    Article  CAS  Google Scholar 

  • Borejszo Z, Khan K (1992) Reduction of flatulence-causing sugars by high temperature extrusion of pinto bean high starch fractions. J Food Sci 57:771–777

    Article  CAS  Google Scholar 

  • Borsuk Y, Arntfield S, Lukow OM et al (2012) Incorporation of pulse flours of different particle size in relation to pita bread quality. J Sci Food Agric 92:2055–2061

    Article  CAS  PubMed  Google Scholar 

  • Boye JI, Aksay S, Roufik S et al (2010a) Comparison of the functional properties of pea, chickpea and lentil protein concentrates processed using ultrafiltration and isoelectric precipitation techniques. Food Res Int 43:537–546

    Article  CAS  Google Scholar 

  • Boye J, Zare F, Pletch A (2010b) Pulse proteins: processing, characterization, functional properties and applications in food and feed. Food Res Int 43:414–431

    Article  CAS  Google Scholar 

  • Bressani R, Elias LG (1977) In: National standards and methods of evaluation for food legume breeders, IDRC, Ottawa p 51

    Google Scholar 

  • Cady ND, Carter AE, Kayne BE et al (1987) Navy bean flour substitution in a master mix used for muffins and cookies. Cereal Chem 64:193–195

    Google Scholar 

  • Campos-Vega R, Loarca-Pina G, Oomah BD (2010) Minor components of pulses and their potential impact on human health. Food Res Int 43:461–482

    Article  CAS  Google Scholar 

  • Cardoso C, Mendes R, Nunes ML (2008) Development of a healthy low-fat fish sausage containing dietary fibre. Int J Food Sci Technol 43:276–283

    Article  CAS  Google Scholar 

  • Chew PG, Andrew C, Stuart J (2003) Protein quality and physico-functionality of Australian sweet lupin (Lupinus angustifolius cv. Gungurru) protein concentrates prepared by isoelectric precipitation or ultrafiltration. Food Chem 83:575–583

    Article  CAS  Google Scholar 

  • Collar C, Santos E, Rosell CM (2006) Significance of dietary fiber on the viscometric pattern of pasted and gelled flour fiber blends. Cereal Chem 83:370–376

    Article  CAS  Google Scholar 

  • Collar C, Santos E, Rosell CM (2007) Assessment of the rheological profile of fibre-enriched bread doughs by response surface methodology. J Food Eng 78:820–826

    Article  Google Scholar 

  • Dalgetty DD, Baik B-K (2003) Isolation and characterization of cotyledon fibers from peas, lentils and chickpeas. Cereal Chem 80(3):310–315

    Article  CAS  Google Scholar 

  • Dalgetty DD, Baik B-K (2006) Fortification of bread with hulls and cotyledon fibers isolated from peas, lentils and chickpeas. Cereal Chem 83:269–274

    Article  CAS  Google Scholar 

  • Daubenmire SW, Zabik ME, Setser CS (1993) Development of low fat, cholesterol-free, high-fiber muffins. 1. Fiber source and particle size effects on quality characteristics. FAO. Sch Food Serv Res Rev 17:15–20

    Google Scholar 

  • De Almeida Costa GE, Da Silva Q-MK, Pissini Machado Reis SM et al (2006) Chemical composition, dietary fiber and resistant starch contents of raw and cooked pea, common bean, chickpea and lentil legumes. Food Chem 94:327–330

    Article  CAS  Google Scholar 

  • Deepa C, Hebbar HU (2016) Effect of high-temperature short-time ‘micronization’ of gains on product quality and cooking characteristics. Food Eng Rev 8:201–203

    Article  CAS  Google Scholar 

  • DeFouw C, Zabik ME, Uebersax MA et al (1982a) Effect of heat treatment and level of navy bean hulls in sugar-snap cookies. Cereal Chem 59:245–248

    Google Scholar 

  • DeFouw C, Zabik ME, Uebersax MA et al (1982b) Use of unheated and heat treated navy bean hulls as a source of dietary fiber in spice flavored layer cakes. Cereal Chem 59:229–230

    Google Scholar 

  • Devi CB, Kushwaha A, Kumar A (2015) Sprouting characteristics and associated changes in nutritional composition of cowpea (Vigna unguiculata). J Food Sci Technol 52:6821–6827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dryer SB, Phillips SG, Powell TS et al (1982) Dry roasted navy bean flour incorporation in a quick bread. Cereal Chem 59:319–320

    Google Scholar 

  • Duc G (1997) Faba bean (Vicia faba L.). Field Crop Res 53(1–3):99–109

    Article  Google Scholar 

  • Ebine H (1972) Fermented soybean foods in Japan. Trop Agric Res Ser 6:217–223

    Google Scholar 

  • Edwards NM, Biliaderis CG, Dexter JE (1995) Textural characteristics of whole wheat pasta and pasta containing non-starch polysaccharides. J Food Sci 60:1321–1324

    Article  CAS  Google Scholar 

  • Erbas M, Certel M, Uslu MK (2005) Some chemical properties of white lupin seeds (Lupinus albus L.). Food Chem 89:341–345

    Article  CAS  Google Scholar 

  • Farooq Z, Boye JI (2011) Novel food and industrial application of pulse flours and fractions. In: Tiwari BK, Gowen A, McKenna B (eds) Pulse foods: processing, quality and nutraceutical applications. Academic, London, pp 103–128

    Google Scholar 

  • Fasina OO, Tyler RT, Pickard MD et al (2001) Effect of infrared heating on properties of legume seeds. Int J Food Sci Technol 36:79–90

    Article  CAS  Google Scholar 

  • Frohlich P, Boux G, Malcolmson L (2014) Pulse ingredients as healthier options in extruded products. Cereal Foods World 59:120–125

    Article  Google Scholar 

  • Gomes JC, Koch U, Brunner JR (1979) Isolation of a trypsin inhibitor from navy beans by affinity chromatography. Cereal Chem 56:525–529

    CAS  Google Scholar 

  • Gómez M, Ronda F, Blanco CA et al (2003) Effect of dietary fibre on dough rheology and bread quality. Eur Food Res Technol 216:51–56

    Article  CAS  Google Scholar 

  • Gómez M, Oliete B, Rosell CM et al (2008) Studies on cake quality made of wheat–chickpea flour blends. LWT-Food Sci Technol 41:1701–1709

    Article  CAS  Google Scholar 

  • Guillon F, Champ MM (2002) Carbohydrate fractions of legumes: uses in human nutrition and potential for health. Br J Nutr 88(Suppl 3):S293–S306

    Article  CAS  PubMed  Google Scholar 

  • Gujska E, Khan K (1990) Effect of temperature on properties of extrudates from high starch fractions of navy, pinto and garbanzo beans. J Food Sci 55:466–469

    Article  CAS  Google Scholar 

  • Gujska E, Khan K (1991) Functional properties of extrudates from high starch fractions of navy and pinto beans and corn meal blended with legume high protein fractions. J Food Sci 56:431–435

    Article  CAS  Google Scholar 

  • Gujska E, Khan K (2002) Effect of extrusion variables on amino acids, available lysine and in vitro protein digestibility of the extrudates from pinto bean (Phaseolus vulgaris L). Pol J Food Nutr Sci 52:39–43

    Google Scholar 

  • Gupta R, Dhillon S (1993) Characterization of seed storage proteins of lentil (Lens culinaris M.). Ann Biol 9:71–78

    Google Scholar 

  • Gupta K, Wagle DS (1980) Changes in antinutritional factors during germination in Phaseolus mungoreous, a cross between Phaseolus mungo (M1–1) and Phaseolus aureus (T1). J Food Sci 45:394–397

    Article  CAS  Google Scholar 

  • Hacıseferoǧulları H, Gezer I, Bahtiyarca YCHO et al (2003) Determination of some chemical and physical properties of Sakız faba bean (Vicia faba L. Var. major). J Food Eng 60:475–479

    Article  Google Scholar 

  • Hajos G, Osagie AU (2004) Technical and biotechnical modifications of antinutritional factors in legumes and oilseeds. Proceedings of 4th International Workshop on Antinutritional Factors in Legume Seeds and Oilseeds, pp 293–305

    Google Scholar 

  • Hall C, Hillen C, Garden Robinson J (2017) Composition, nutritional value, and health benefits of pulses. Cereal Chem 94:11–31

    Article  CAS  Google Scholar 

  • Han Z, Hamaker BR (2002) Partial leaching of granule-associated proteins from rice starch during alkaline extraction and subsequent gelatinization. Starch-Starke 54:454–460

    Article  CAS  Google Scholar 

  • Han JY, Khan K (1990) Physicochemical studies of pin-milled and air-classified dry edible bean fractions. Cereal Chem 67:384–390

    CAS  Google Scholar 

  • Han JY, Tyler RT (2010) Unpublished data. University of Saskatchewan

    Google Scholar 

  • Han JY, Janz JAM, Gerlat M (2010) Development of gluten-free cracker snacks using pulse flours and fractions. Food Res Int 43:627–633

    Article  CAS  Google Scholar 

  • Hefnawy TH (2011) Effect of processing methods on nutritional composition and anti-nutritional factors in lentils (Lens culinaris). Ann Agric Sci 56:57–61

    Article  Google Scholar 

  • Hemalatha S, Platel K, Srinivasan K (2007) Influence of germination and fermentation on bioaccessibility of zinc and iron from food grains. Eur J Clin Nutr 61:342–348

    Article  CAS  PubMed  Google Scholar 

  • Hood-Niefer SD, Tyler RT (2010) Effect of protein, moisture content and barrel temperature on the physicochemical characteristics of pea flour extrudates. Food Res Int 43:659–663

    Article  CAS  Google Scholar 

  • Hoover R, Ratnayake WS (2002) Starch characteristics of black bean, chick pea, lentil, navy bean and pinto bean cultivars grown in Canada. Food Chem 78:489–498

    Article  CAS  Google Scholar 

  • Hoover R, Li YX, Hynes G et al (1997) Physico- chemical characterization of mung bean starch. Food Hydrocoll 11:401–408

    Article  CAS  Google Scholar 

  • Hoover R, Hughes T, Chung HJ et al (2010) Composition, molecular structure, properties, and modification of pulse starches: a review. Food Res Int 43:399–413

    Article  CAS  Google Scholar 

  • Hughes T, Hoover R, Liu Q et al (2009) Composition, morphology, molecular structure, and physicochemical properties of starches from newly released chickpea (Cicer arietinum L.) cultivars grown in Canada. Food Res Int 42:627–635

    Article  CAS  Google Scholar 

  • Jain AK, Kumar S, Panwar JDS (2009) Antinutritional factors and their detoxification in pulses-a review. Agric Rev 30:64–70

    Google Scholar 

  • Jeltema MA, Zabik ME, Thiel LJ (1983) Prediction of cookie quality from dietary fiber components. Cereal Chem 60:227–230

    Google Scholar 

  • Jood S, Kapoor AC (1997) Improvement in bioavailability of minerals of chickpea and blackgram cultivars through processing and cooking methods. Int J Food Sci Nutr 48:307–312

    Article  CAS  Google Scholar 

  • Kaack K, Pedersen L (2005) Low energy chocolate cake with potato pulp and yellow pea hulls. Eur Food Res Technol 221:367–375

    Article  CAS  Google Scholar 

  • Kelkar S, Siddiq M, Harte JB et al (2012) Use of low-temperature extrusion for reducing phytohemagglutinin activity (PHA) and oligosaccharides in beans (Phaseolus vulgaris L) cv. Navy and Pinto. Food Chem 133:1636–1639

    Article  CAS  Google Scholar 

  • Kon S, Sanshuck DW, Jackson R et al (1977) Air classification of bean flour. J Food Process Preserv 1:69–77

    Article  Google Scholar 

  • Kutoš T, Golob T, Kač M et al (2003) Dietary fibre content of dry and processed beans. Food Chem 80:231–235

    Article  Google Scholar 

  • Lazou A, Krokida M, Tzia C (2010) Sensory properties and acceptability of corn and lentil extruded puffs. J Sens Stud 25:838–860

    Article  Google Scholar 

  • Liener IE (1962) Toxic protein from the soybean. II. Physical characterization. Am J Clin Nutr 11:281–286

    Article  CAS  Google Scholar 

  • Ma Z, Boye JI, Simpson BK et al (2011) Thermal processing effects on the functional properties and microstructure of lentil, chickpea, and pea flours. Food Res Int 44:2534–2544

    Article  CAS  Google Scholar 

  • Ma Z, Boye JI, Swallow K et al (2016a) Techno-functional characterization of salad dressing emulsions supplemented with pea, lentil and chickpea flours. J Sci Food Agric 96:837–847

    Article  CAS  PubMed  Google Scholar 

  • Ma Z, Boye JI, Simpson BK (2016b) Preparation of salad dressing emulsions using lentil, chickpea and pea protein isolates: a response surface methodology study. J Food Qual 39:274–291

    Article  CAS  Google Scholar 

  • Malcolmson L, Boux G, Bellido A-S et al (2013) Use of pulse ingredients to develop healthier baked products. Cereal Foods World 58:27–32

    Article  Google Scholar 

  • Manitoba Food Development Centre (2015) https://www.manitobapulse.ca/wp-content/uploads/2015/10/Pea-Fibre-Utilization-in-Ground-Poultry-Beef-and-Pork.pdf. Accessed 4 Oct 2018

  • Maskus H, Bourré L, Fraser S et al (2016) Effects of grinding method on the compositional, physical, and functional properties of whole and split yellow pea flours. Cereal Foods World 61:59–64

    Article  CAS  Google Scholar 

  • Miller CF, Guadagni DG, Kon S (1973) Vitamin retention in bean products: cooked, canned and instant bean powders. J Food Sci 38:493–495

    Article  CAS  Google Scholar 

  • Miñarro B, Albanell E, Aguilar N et al (2012) Effect of legume flours on baking characteristics of gluten-free bread. J Cereal Sci 56:476–481

    Article  CAS  Google Scholar 

  • Naguleswaran S, Vasanthan T (2010) Dry milling of field pea (Pisum sativum L.) groats prior to wet fractionation influences the starch yield and purity. Food Chem 118:627–633

    Article  CAS  Google Scholar 

  • Northern Pulse Growers (n.d.) https://northernpulse.com/uploads/resources/658/pea-protein-brochure.pdf. Accessed 4 Oct 2018

  • Osen R, Toelstede S, Wild F et al (2014) High moisture extrusion cooking of pea protein isolates: raw material characteristics, extruder responses, and texture properties. J Food Eng 127:67–74

    Article  CAS  Google Scholar 

  • Papalamprou EM, Doxastakis GI, Biliaderis CG et al (2009) Influence on preparation methods on physicochemical and gelation properties of chickpea protein isolates. Food Hydrocoll 23:337–343

    Article  CAS  Google Scholar 

  • Patterson CA, Curran J, Der T (2017) Effect of processing on antinutrient compounds in pulses. Cereal Chem 94:2–10

    Article  CAS  Google Scholar 

  • Pietrasik Z, Janz JAM (2010) Utilization of pea flour, starch-rich and fiber-rich fractions in low fat bologna. Food Res Int 43:602–608

    Article  CAS  Google Scholar 

  • Piteira MF, Maia JM, Raymundo A et al (2006) Extensional flow behaviour of natural fiber-filled dough and its relationship with structure and properties. J Non-Newtonian Fluid Mech 137:72–80

    Article  CAS  Google Scholar 

  • Pulse Canada (n.d.) http://www.pulsecanada.com/wp-content/uploads/2017/09/Pulses-in-Batter-and-Breading-Applications.pdf. Accessed 3 Oct 2018

  • Ratnayake WS, Hoover R, Shahidi F et al (2001) Composition, molecular structure, and physicochemical properties of starches from four field pea (Pisum sativum L.) cultivars. Food Chem 74:189–202

    Article  CAS  Google Scholar 

  • Ratnayake WS, Hoover R, Warkentin T (2002) Pea starch: Composition, structure and properties - a review. Starch-Stärke 54(6):217–234

    Google Scholar 

  • Reddy NR, Balakrishnan CV, Salunkhe DK (1978) Phytate phosphorus and mineral changes during germination and cooking of black gram (Phaseolus mungo L.) seeds. J Food Sci 43:540–542

    Article  CAS  Google Scholar 

  • Robinson RJ, Kao C (1974) Fermented foods from chickpeas, horse beans, and soybeans. Cereal Sci Today 19:397 (Abstract)

    Google Scholar 

  • Rosell CM, Santos E, Collar C (2006) Mixing properties of fibre enriched wheat bread doughs: a response surface methodology study. Eur Food Res Technol 223:333–340

    Article  CAS  Google Scholar 

  • Roy F, Boye JI, Simpson BK (2010) Bioactive proteins and peptides in pulse crops: Pea, chickpea and lentil. Food Res Int 43(2):432–442

    Google Scholar 

  • Rui X, Boye JL, Ribereau S et al (2011) Comparative study of the composition and thermal properties of protein isolates prepared from nine Phaseouls vulgaris legume varieties. Food Res Int 44:2497–2504

    Article  CAS  Google Scholar 

  • Rumiyati R, James AP, Jayasena V (2012) Effect of germination on the nutritional and protein profile of Australian sweet lupin (Lupinus angustifolius L.). Food Nutr Sci 3:621–626

    CAS  Google Scholar 

  • Saharan K, Khetarpaul N (1994) Protein quality traits of vegetable and field peas: varietal differences. Plant Foods Hum Nutr 45:11–22

    Article  CAS  PubMed  Google Scholar 

  • Salunkhe DK (ed) (1985) Postharvest biotechnology of food legumes. CRC Press, Boca Raton

    Google Scholar 

  • San Ireneo MM, Ibanez Sandin MD, Fernandez-Caldas F et al (2000) Specific IgE levels to Cicer arietinum (chickpea) in tolerant and non-tolerant children: evaluation of boiled and raw extracts. Int Arch Allergy Immunol 121:137–143

    Article  Google Scholar 

  • Sangdhu KS, Lim ST (2008) Digestibility of legume starches as influenced by its physical and structural properties. Carbohydr Polym 71:245–252

    Article  CAS  Google Scholar 

  • Sanjeewa WGT, Wanasundara JPD, Pietrasik Z et al (2010) Characterization of chickpea (Cicer arietinum L.) flours and application in low-fat pork bologna as a model system. Food Res Int 43:617–626

    Article  CAS  Google Scholar 

  • Satterlee LD, Bembers M, Kendrick JG (1975) Functional properties of the great northern bean (Phaseolus vulgaris) protein isolates. J Food Sci 40:81–84

    Article  CAS  Google Scholar 

  • Siegel A, Fawcett B (1976) Food legume processing and utilization. International Development Research Centre (IDRC), Ottawa

    Google Scholar 

  • Silva-Cristobal L, Osorio-Diaz P, Tovar J et al (2010) Chemical composition, carbohydrate digestibility, and antioxidant capacity of cooked black bean, chickpea, and lentil Mexican varieties. CyTA J Food 8:7–14

    Article  CAS  Google Scholar 

  • Simons CW, Hall C III (2018) Consumer acceptability of gluten-free cookies containing raw cooked and germinated pinto bean flours. Food Sci Nutr 6:77–84

    Article  CAS  PubMed  Google Scholar 

  • Simons CW, Hall C III, Tulbek M et al (2015) Acceptability and characterization of extruded pinto, navy and black beans. J Sci Food Agric 95:2287–2291

    Article  CAS  PubMed  Google Scholar 

  • Singhal A, Karaca AC, Tyler R et al (2016) Pulse proteins: from processing to structure-function relationships. In: Grain legumes. InTech. https://doi.org/10.5772/64020

  • Snauwaert F, Markakis P (1976) Effect of germination and gamma irradiation on the oligosaccharides of navy beans (Phaseolus vulgaris L.). Lebensm Wiss U-Technol 9:93–95

    CAS  Google Scholar 

  • Sosulski FW, Wu KK (1988) High-fiber breads containing field pea hulls, wheat, corn, and wild oat brans. Cereal Chem 65:186–191

    Google Scholar 

  • Sosulski FW, Youngs C (1979) Yield and functional properties of air-classified protein and starch fractions from eight legume flours. J Am Oil Chem Soc 56:292–295

    Article  CAS  PubMed  Google Scholar 

  • Spink PS, Zabik ME, Uebersax MA (1984) Dry-roasted air-classified edible bean protein flour use in cake doughnuts. Cereal Chem 61:251–254

    Google Scholar 

  • Sun XD, Arntfield SD (2010) Gelation properties of salt-extracted pea protein induced by heat treatment. Food Res Int 43:509–515

    Article  CAS  Google Scholar 

  • Tiwari BK, Singh N (2012) Pulse Chemistry and Technology. RSC Publishing, Cambridge UK pp 107–133

    Google Scholar 

  • Tudorica CM, Kuri V, Brennan CS (2002) Nutritional and physicochemical characteristics of dietary fiber enriched pasta. J Agric Food Chem 50:347–356

    Article  CAS  PubMed  Google Scholar 

  • Tyler RT (1984) Impact milling quality of grain legumes. J Food Sci 49:925–930

    Article  Google Scholar 

  • Tyler RT, Youngs CG, Sosulski FW (1981) Air classification of legumes. I. Separation efficiency, yield, and composition of the starch and protein fractions. Cereal Chem 58:144–148

    Google Scholar 

  • U.S. Department of Agriculture (2012) Agricultural Research Service. USDA National Nutrient Database for Standard Reference, release 25. http://www.ars.usda.gov/ba/bhnrc/ndl. Accessed 30 Nov 2017

  • Utrilla-Coello RG, Osorio-Díaz P, Bello-Pérez LA (2007) Alternative use of chickpea flour in breadmaking: chemical composition and starch digestibility of bread. Food Sci Technol Int 13:323–327

    Article  CAS  Google Scholar 

  • Verma MM, Ledward DA, Lawrie RA (1984) Utilization of chickpea flour in sausages. Meat Sci 11:109–121

    Article  CAS  PubMed  Google Scholar 

  • Vidal-Valverde C, Frias J, Estrella I et al (1994) Effect of processing on some antinutritional factors of lentils. J Agric Food Chem 42:2291–2295

    Article  CAS  Google Scholar 

  • Vose JR, Basterrechea MJ, Gorin PAJ et al (1976) Air classification of field peas and horsebean flours: chemical studies of starch and protein fractions. Cereal Chem 53:928–936

    CAS  Google Scholar 

  • Wang N, Daun J (2004) Effect of variety and crude protein content on nutrients and certain anti-nutrients in field peas (Pisum sativium). J Sci Food Agric 84:1021–1029

    Article  CAS  Google Scholar 

  • Wang N, Daun J (2006) Effect of variety and crude protein content on nutrients and certain anti-nutrients in lentils (Lens culinaris). Food Chem 95:493–502

    Article  CAS  Google Scholar 

  • Wang J, Rosella CM, de Barber CB (2002) Effect of the addition of different fibres on wheat dough performance and bread quality. Food Chem 79:221–226

    Article  CAS  Google Scholar 

  • Wang N, Daun JK, Malcolmson LJ (2003) Relationship between physicochemical and cooking properties, and effects of cooking on antinutrients, of yellow field peas (Pisum sativum). J Sci Food Agric 83:1228–1237

    Article  CAS  Google Scholar 

  • Wang N, Hatcher DW, Toews R et al (2009) Influence of cooking and dehulling on nutritional composition of several varieties of lentils (Lens culinaris). LWT Food Sci Tech 42:842–848

    Article  CAS  Google Scholar 

  • Wang N, Hatcher DW, Tyler RT et al (2010) Effect of cooking on the composition of beans (Phaseolus vulgaris L.) and chickpeas (Cicer arietinum). Food Res Int 43:589–594

    Article  CAS  Google Scholar 

  • Youngs CG (1975) Primary processing of pulse. In: Harapiak JT (ed) Oilseeds and pulse crops in western Canada – a symposium. Western Co-operative Fertilizers Ltd., Calgary

    Google Scholar 

  • Zare F, Boye JI, Orsat V et al (2011) Microbial, physical and sensory properties of yogurt supplemented with lentil flour. Food Res Int 44:2482–2488

    Article  CAS  Google Scholar 

  • Zare F, Orsat V, Boye JI (2015) Functional, physical and sensory properties of pulse ingredients incorporated into orange and apple juice beverages. J Food Res 4:143–156

    Article  CAS  Google Scholar 

  • Zhao YH, Manthey FA, Chang SKC et al (2005) Quality characteristics of spaghetti as affected by green and yellow pea, lentil, and chickpea flours. J Food Sci 70:s371–s376

    Article  CAS  Google Scholar 

  • Zucco F, Borsuk Y, Arntfield SD (2011) Physical and nutritional evaluation of wheat cookies supplemented with pulse flours of different particle sizes. LWT Food Sci Tech 44:2070–2076

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Malcolmson, L., Han, J.(. (2019). Pulse Processing and Utilization of Pulse Ingredients in Foods. In: Dahl, W. (eds) Health Benefits of Pulses. Springer, Cham. https://doi.org/10.1007/978-3-030-12763-3_9

Download citation

Publish with us

Policies and ethics