Skip to main content

Pulses and Mineral Bioavailability in Low Income Countries

  • Chapter
  • First Online:
Health Benefits of Pulses

Abstract

Pulse crops are important sources of nutrients in low income countries (LIC). Not only do they provide good sources of proteins when mixed with cereals, but they also contain good to very good sources of key minerals such as iron, zinc and calcium. These minerals are important for growth and development of children as well as women’s health. Pulses, however, contain phytate and polyphenols, and these can bind to divalent minerals and prevent absorption, thus limiting bioavailability. Home processing methods of soaking, germination and fermentation can reduce the effects of phytate and polyphenols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali M, Shuja MN, Zahoor M et al (2010) Phytic acid: how far have we come? Afr J Biotechnol 9:1551–1554

    Article  CAS  Google Scholar 

  • Bohn L, Meyer AS, Rasmussen SK (2008) Phytate: impact on environment and human nutrition. A challenge for molecular breeding. J Zhejiang Univ Sci B 9:165–191

    Article  CAS  Google Scholar 

  • Costa D, Almeida DA, Pissini SQ et al (2006) Chemical composition, dietary fibre and resistant starch contents of raw and cooked pea, common bean, chickpea and lentil legumes. Food Chem 94:327–330

    Article  CAS  Google Scholar 

  • Egli I, Davidsson L, Juillerat MA et al (2002) The influence of soaking and germination on the phytase activity and phytic acid content of grains and seeds potentially useful for complementary feeding. J Food Sci 67:3484–3488

    Article  CAS  Google Scholar 

  • Etcheverry P, Grusak MA, Fleige LE (2002) Application of in vitro bioaccessibility and bioavailability methods for calcium, carotenoids, folate, iron, magnesium, polyphenols, zinc, and vitamins B(6), B(12), D, and E. Front Physiol 3:317. https://doi.org/10.3389/fphys.2012.00317.

    Article  Google Scholar 

  • Fairweather-Tait S, Phillips I, Wortley G et al (2007) The use of solubility, dialyzability, and Caco-2 cell methods to predict iron bioavailability. Int J Vit Nutr Res 77:158–165

    Article  CAS  Google Scholar 

  • Fraga CG, Galleano M, Verstraeten SV et al (2010) Basic biochemical mechanisms behind the health benefits of polyphenols. Mol Asp Med 31:435–445

    Article  CAS  Google Scholar 

  • Fulgoni VL, Keast DR, Bailey RL et al (2011) Foods, fortificants, and supplements: where do Americans get their nutrients? J Nutr 141:1847–1854

    Article  CAS  Google Scholar 

  • GarcĂ­a-Nebot MJ, Barberá R, AlegrĂ­a A (2013) Iron and zinc bioavailability in Caco-2 cells: influence of caseinophosphopeptides. Food Chem 138:1298–1303

    Article  Google Scholar 

  • Gibson R (2011) Strategies for preventing multi-micronutrient deficiencies: a review of experiences with food-based approaches in developing countries, in combating micronutrient deficiencies. In: FAO and CABI, food-based approaches. p 7–27

    Google Scholar 

  • Gibson R, Perlas L, Hotz C (2006) Improving the bioavailability of nutrients in plant foods at the household level. Proc Nutr Soc 65:160–168

    Article  CAS  Google Scholar 

  • Gibson RS, Bailey KB, Gibbs M et al (2010) A review of phytate, iron, zinc, and calcium concentrations in plant-based complementary foods used in low-income countries and implications for bioavailability. Food Nutr Bull 31(2 Suppl):S134–S146

    Article  Google Scholar 

  • Gibson RS, Raboy V, King JC (2018) Implications of phytate in plant-based foods for iron and zinc bioavailability, setting dietary requirements, and formulating programs and policies. Nutr Rev 76:793–804

    Article  Google Scholar 

  • Glahn R, Wortley GM, South PK et al (2002) Inhibition of iron uptake by phytic acid, tannic acid, and zncl2: studies using an in vitro digestion/Caco-2 cell model. J Agric Food Chem 50:390–395

    Article  CAS  Google Scholar 

  • Gupta R, Gangoliya S, Singh N (2015) Reduction of phytic acid and enhancement of bioavailable micronutrients in food grains. J Food Sci Technol 52:676–684

    Article  CAS  Google Scholar 

  • Haas JD, Luna SV, Lung’aho MG et al (2016) Consuming iron biofortified beans increases iron status in Rwandan women after 128 days in a randomized controlled feeding trial. J Nutr 146:1586–1592

    Article  CAS  Google Scholar 

  • Haileslassie H, Henry C, Tyler R (2016) Impact of household food processing strategies on antinutrient (phytate, tannin and polyphenol) contents of chickpeas (Cicerarietinum L.) and beans (Phaseolus vulgaris L.): a review. Int J Food Sci Technol 51:1947–1957

    Article  CAS  Google Scholar 

  • Henry C, Elabor- Idemudia P, Tsegaye G et al (2016) A gender framework for ensuring sensitivity to women’s role in pulse production in southern Ethiopia. J Agric Sci 8:80–90

    Google Scholar 

  • Hotz C (2005) Evidence for the usefulness of in vitro dialyzability, Caco-2 cell models, animal models, and algorithms to predict zinc bioavailability in humans. Int J Vit Nutr Res 75:423–435

    Article  CAS  Google Scholar 

  • Hotz C, Gibson R (2007) Traditional food processing and preparation practices to enhance the bioavailability of micronutrients in plant-based diets. J Nutr 137:1097–1100

    Article  CAS  Google Scholar 

  • Hurrell R (2002) Bioavailability – a time for reflection. Int J Vit Nutr Res 72:5–6

    Article  CAS  Google Scholar 

  • Hurrell R, Egli I (2010) Iron bioavailability and dietary reference values. Am J Clin Nutr 91:1461S–1467S

    Article  CAS  Google Scholar 

  • Kumar V, Sinha AK, Makkar HPS et al (2010) Dietary roles of phytate and phytase in human nutrition: a review. Food Chem 120:945–959

    Article  CAS  Google Scholar 

  • Lönnerdal B (2000) Dietary factors influencing zinc absorption. J Nutr 130:1378S–1383S

    Article  Google Scholar 

  • Lopez H, Leenhardt F, Coudray C et al (2002) Minerals and phytic acid interactions: is it real problem for human nutrition? Int J Food Sci Technol 37:727–739

    Article  CAS  Google Scholar 

  • Manach C, Scalbert A, Morand C et al (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79:727–747

    Article  CAS  Google Scholar 

  • Naczk M, Shahidi F (2004) Extraction and analysis of phenolics in food. J Chromatog A 1054:95–111

    Article  CAS  Google Scholar 

  • Nergiz C, Gökgöz E (2007) Effects of traditional cooking methods on some antinutrients and in vitro protein digestibility of dry bean varieties (Phaseolus vulgaris L.) grown in Turkey. Int J Food Sci Technol 42:868–873

    Article  CAS  Google Scholar 

  • Oatway L, Vasanthan T, Helm JH (2001) Phytic acid. Food Rev Int 17:419–431

    Article  CAS  Google Scholar 

  • Petry N, Egli I, Zeder C et al (2010) Polyphenols and phytic acid contribute to the low iron bioavailability from common beans in young women. J Nutr 140:1977–1982

    Article  CAS  Google Scholar 

  • Platel K, Srinivasan K (2016) Bioavailability of micronutrients from plant foods: an update. Crit Rev Food Sci Nutr 56:1608–1619

    Article  CAS  Google Scholar 

  • Pynaert I, Armah C, Fairweather-Tait S et al (2006) Iron solubility compared with in vitro digestion–Caco-2 cell culture method for the assessment of iron bioavailability in a processed and unprocessed complementary food for Tanzanian infants (6–12 months). Br J Nutr 95:721–726

    Article  CAS  Google Scholar 

  • Ray H, Bett K, Tar’an B et al (2014) Mineral micronutrient content of cultivars of field pea, chickpea, common bean, and lentil grown in Saskatchewan, Canada. Crop Sci 54:1698–1708

    Article  Google Scholar 

  • Ruel M, Alderman H (2013) Nutrition-sensitive interventions and programmes: how can they help to accelerate progress in improving maternal and child nutrition? Lancet 382:536–551

    Article  Google Scholar 

  • Sandberg A (2002) Bioavailability of minerals in legumes. Br J Nutr 88(S3):S281–S285

    Article  CAS  Google Scholar 

  • Siddiq M, Uebersax MA (2012) Dry beans and pulses production and consumption—an overview. In: Siddiq M, Uebersax MA (eds) Dry beans and pulses production, processing and nutrition. Blackwell Publishing Ltd, Oxford. https://doi.org/10.1002/9781118448298.ch1

    Chapter  Google Scholar 

  • Tako E, Vandenberg A, Thavarajah D et al (2011) Iron bioavailability in lentil based diets: studies in poultry and in vitro digestion/Caco-2 model. J Fed Am Soc Exp 25:607.8

    Google Scholar 

  • Umeta M, West C, Fufa H (2005) Content of zinc, iron, calcium and their absorption inhibitors in foods commonly consumed in Ethiopia. J Food Comp Anal 18:803–817

    Article  CAS  Google Scholar 

  • Welch R, Graham R (2004) Breeding for micronutrients in staple food crops from a human nutrition perspective. J Exp Bot 55:353–364

    Article  CAS  Google Scholar 

  • Yun S, Habicht J, Miller DD et al (2004) An in vitro digestion/Caco-2 cell culture system accurately predicts the effects of ascorbic acid and polyphenolic compounds on iron bioavailability in humans. J Nutr 134:2717–2721

    Article  CAS  Google Scholar 

  • Zimmermann MB, Chaouki N, Hurrell RF (2005) Iron deficiency due to consumption of a habitual diet low in bioavailable iron: a longitudinal cohort study in Moroccan children. Am J Clin Nutr 81:115–121

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan J. Whiting .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Whiting, S.J., Berhanu, G., Haileslassie, H.A., Henry, C.J. (2019). Pulses and Mineral Bioavailability in Low Income Countries. In: Dahl, W. (eds) Health Benefits of Pulses. Springer, Cham. https://doi.org/10.1007/978-3-030-12763-3_4

Download citation

Publish with us

Policies and ethics