Skip to main content

Equivalent Single Layer Model for Thin Laminated Cylindrical Shells

  • Chapter
  • First Online:
Thin-walled Laminated Structures

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 106))

Abstract

In this chapter we consider the equivalent single layer model for thin multi-layered cylindrical shells. It is based on the generalized Timoshenko hypotheses and results in nonlinear governing equations for the whole stacked sequence of an elastic laminated shell. Considering variations of the nonlinear equations, we derive buckling equations of a thin elastic laminated shell loaded with static conservative loads. The derived dynamic equations are adapted for the case when a shell is assembled from elastic and viscoelastic layers with properties represented by a complex shear modulus. Viscoelastic layers or cores are assumed to be made of smart materials, such as magnetorheological elastomers and electrorheological composites. The reader can become acquainted with elastic and rheological properties of some smart viscoelastic materials which may be used as damping elements of smart thin-walled laminated shells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aguib S, Noura A, Zahloul H, Bossis G, Chevalier Y, Lançon P (2014) Dynamic behavior analysis of a magnetorheological elastomer sandwich plate. Int J Mech Sc 87:118–136

    Article  Google Scholar 

  • Alfutov NA (2000) Stability of Elastic Structures. Foundations of Engineering Mechanics, Springer, Berlin, Heidelberg

    Book  MATH  Google Scholar 

  • Bert CW (1947) Material damping: Introductory review of mathematic measures and experimental technique. J Sound Vibr 29(2):129–153

    Article  MathSciNet  MATH  Google Scholar 

  • Bica I, Anitas EM, Bunoiu M, Vatzulik B, Juganaru I (2014) Hybrid magnetorheological elastomer: Influence of magnetic field and compression pressure on its electrical conductivity. J Indust Engng Chem 20(6):3994–3999

    Article  Google Scholar 

  • Bica I, Anitas EM, Averis LME, Bunoiu M (2015) Magnetodielectric effects in composite materials based on paraffin, carbonyl iron and graphene. J Indust Engng Chemist 21:1323–1327

    Article  Google Scholar 

  • Biot MA (1958) Linear thermodynamics and the mechanics of solids. In: Haythornthwaite RM (ed) Proc. of the Third U.S. National Congress on Applied Mechanics, ASME, New York, pp 1–18

    Google Scholar 

  • Boczkowska A, Awietjan SF, Pietrzko S, Kurzydlowski KJ (2012) Mechanical properties of magnetorheological elastomers under shear deformation. Comp: Part B 43:636–640

    Article  Google Scholar 

  • Bolotin VV (1956) Dynamic Stability of Elastic Systems (in Russ.). Gostekhizdat, Moscow

    Google Scholar 

  • Boltzmann L (1878) Zur Theorie der elastische Nachwirkung. Annalen der Physik lind Cbemie Suppl 241(11):430–432

    Article  Google Scholar 

  • Chen L, Gong XL, Jiang WQ, Yao JJ, Deng HX, Li WH (2007) Investigation on magnetorheological elastomers based on natural rubber. J Material Sc 42(14):5483–5489

    Article  Google Scholar 

  • Chen L, Gong XL, Li WH (2008) Effect of carbon black on the mechanical performances of magnetorheological elastomers. J Polymer Testing 27(3):340–345

    Article  Google Scholar 

  • Cosson P, Michon JC (1996) Identification by a non-integer order model of the mechanical behaviour of an elastomer. Chaos, Solutions and Fractals 7(11):1807–1824

    Article  Google Scholar 

  • Demchuk SA, Kuzmin VA (2002) Viscoelastic properties of magnetorheological elastomers in the regime of dynamic deformation. J Engng Phys Thermophys 75(2):396–400

    Google Scholar 

  • DiTaranto RA (1965) Theory of vibratory bending for elastic and viscoelastic layered finite-length beams. Trans ASME J Appl Mech 32(4):881–886

    Article  Google Scholar 

  • Donnell LH (1976) Beams, Plates and Shells. McGraw-Hill Inc, New York

    Google Scholar 

  • Douglas BE, Yang JCS (1978) Transverse compressional damping in the vibratory response of elastic-viscoelastic beams. AIAA J 16(9):925–930

    Google Scholar 

  • Farshad M, Benine A (2004) Magnetoactive elastomer composites. Polymer Testing 23(3):347–353

    Article  Google Scholar 

  • Fung YC, Sechler EE (1974) Thin-Shell Structures: Theory, Experiments, and Design. Prentics-Hall, New Jersey

    Google Scholar 

  • Gabbert U, Altenbach J (1990) COSAR - A reliable system for research and application (in Germ.). Technische Mechanik 11(3):125–137

    Google Scholar 

  • Ginder GM, Schlotter WF, Nichhols ME (2001) Magnetorheological elastomers in tunable vibration absorbers. Proc SPIE 3985:103–110

    Google Scholar 

  • Gol’denveizer AL (1961) Theory of Thin Elastic Shells. International Series of Monograph in Aeronautics and Astronautics, Pergamon Press, New York

    Google Scholar 

  • Gol’denveizer AL, Lidsky VB, Tovstik PE (1979) Free Vibrations of Thin Elastic Shells (in Russ.). Nauka, Moscow

    Google Scholar 

  • Grigolyuk EI, Kabanov VV (1978) Stability of Shells (in Russ.). Nauka, Moscow

    Google Scholar 

  • Grigolyuk EI, Kulikov GM (1988) Multilayered Reinforced Shells. Calculation of Pneumatic Tires (in Russ.). Mashinostroenie, Moscow

    Google Scholar 

  • Gross B (1947) On creep and relaxation. J Appl Phys 18(2):212–221

    Article  MathSciNet  Google Scholar 

  • Hao T, Kawai A, Ikazaki F (1998) Mechanism of the electrorheological effect: evidence from the conductive, dielectric, and surface characteristics of water-fee electrorheological fluids. Langmuir 14(5):1256–1262

    Article  Google Scholar 

  • Hu YC, Huang SC (2000) The frequency response and damping effect of three-layer thin shell with viscoelastic core. Comp Struct 76(5):577–591

    Article  MathSciNet  Google Scholar 

  • Irons BM (1976) The semiloof shell element. In: Ashwell DG, Gallagher R (eds) Finite Elements for Thin Shells and Curved Membranes, Wiley, New York, pp 197–222

    Google Scholar 

  • Jin G, Yang C, Liu Z, Gao S, Zhang C (2015) A unified method for the vibration and damping analysis of constrained layer damping cylindrical shells with arbitrary boundary conditions. Comp Struct 130:124–142

    Article  Google Scholar 

  • Kallio M, Lindroos T, Aalto S, Karna T, Meinander T (2007) Dynamic compression testing of a tunable spring element consisting of a magnetorheological elastomer. Smart Mater Struct 16(2):506–514

    Article  Google Scholar 

  • Kervin Jr EM (1959) Damping of flexural waves by a constrained viscoelastic layer. The J Acoust Soc Am 31(7):952–962

    Google Scholar 

  • Khatri KN (1996) Axisymmetric vibration of multilayered conical shells with core layers of viscoelastic material. Comp & Struct 58(2):389–406

    Google Scholar 

  • Kimball AL, Lovell DE (1927) Internal friction in solids. Phys Rev Ser 2(30):948–959

    Article  Google Scholar 

  • Koeller RC (1984) Application of fractional calculus to the theory of viscoelasticity. Trans ASME J Appl Mech 51(2):299–307

    Article  MathSciNet  MATH  Google Scholar 

  • Koiter WT (1966) On the nonlinear theory of thin elastic shells. Proc Koninkl Acad Westenschap B69:1–54

    Google Scholar 

  • Korobko EV, Zhurauski MA, Novikova ZA, Kuzmin VA (2009) Rheological properties of magnetoelectrorheological fluids with complex disperse phase. J Phys: Conf Ser 149(1):012,065

    Google Scholar 

  • Korobko EV, Mikhasev GI, Novikova ZA, Zurauski MA (2012) On damping vibrations of three-layered beam containing magnetorheological elastomer. Journal of Intelligent Material Systems and Structures 23(9):1019–1023

    Article  Google Scholar 

  • Kumar N, Singh SP (2010) Governing equations for vibrating constrained-layer damping sandwich plates and beams. Comp Struct 92(2):233–243

    Google Scholar 

  • Kumar V, Lee DJ (2017) Iron particle and anisotropic effects on mechanical properties of magneto-sensitive elastomers. Journal of Magnetism and Magnetic Materials 441:105 – 112

    Article  Google Scholar 

  • Lavrent’ev MA, Ishlinsky AJ (1949) Dynamical modes of stability loss of elastic systems. Doklady Physics 64(6):776–782

    Google Scholar 

  • Li WH, Zhou Y, Tian TF (2009) Sensing behavior of magnetorheological elastomers. J Mech Des 113(9):091,004–6

    Google Scholar 

  • Li WH, Zhou Y, Tian TF (2010) Viscoelastic properties of mr elastomers under harmonic loading. Rheol Acta 49(7):733–740

    Article  Google Scholar 

  • Lu YP, Killian JW, Everstine GC (1979) Vibrations of three layered damped sandwich plate composites. J Sound Vibr 64(1):63–71

    Article  Google Scholar 

  • Matter M, Gmür T, Cugnoni J, Schorderet A (2011) Identification of the elastic and damping properties in sandwich structures with a low core-to-skin stiffness ratio. Comp Struct 93(2):331–341

    Article  Google Scholar 

  • Mead DJ, Ae DC (1960) The effect of a damping compound on jet-efflux excited vibrations: an article in two parts presenting theory and results of experimental investigation. Part I. The structural damping due to the compound. Aircraft Engineering and Aerospace Technology 32(3):64–72

    Article  Google Scholar 

  • Mead DJ, Markus S (1969) The forced vibration of a three-layer, damped sandwich beam with arbitrary boundary conditions. J Sound Vibr 10(2):163–175

    Article  MATH  Google Scholar 

  • Mead DJ, Markus S (1970) Loss factors and resonant frequencies of encastrè damped sandwich beams. J Sound Vibr 12(1):99–112

    Article  MATH  Google Scholar 

  • Mikhasev G, Botogova M, Korobko E (2011) Theory of thin adaptive laminated shells based on magnetorheological materials and its application in problems on vibration suppression. In: Altenbach H, Eremeyev V (eds) Shell-like Structures, Springer, Heidelberg, Advanced Structured Materials, vol 15, pp 727–750

    Google Scholar 

  • Mikhasev GI (2016) Edge effect equations in the theory of thin laminated transversally-isotropic cylindrical shells with low shear stiffness (in Russ.). Vestnik BGU, Serie 1: Fiz Mat Inform 8(3):148–153

    Google Scholar 

  • Mikhasev GI, Botogova GI (2017) Effect of edge shears and diaphragms on buckling of thin laminated medium-length cylindrical shells with low effective shear modulus under external pressure. Acta Mechanica 228(6):2119–2140

    Article  MathSciNet  MATH  Google Scholar 

  • Morozov NF, Tovstik PE (2010) On modes of buckling for a plate on an elastic foundation. Mechanics of Solids 45(4):519–528

    Article  Google Scholar 

  • Mushtari K, Galimov K (1961) Nonlinear Theory of Thin Elastic Shells. NSF-NASA, Washington

    Google Scholar 

  • Novozhilov V (1970) Theory of Thin Shells. Wolters-Noordhoff, Groningen

    Google Scholar 

  • Oberst H, Frankenfeld K (1952) Über die Dämpfung der Biegeschwingungen dünner Bleche durch fest haftende Beläge. Acta Acustic united with Acustica 14(2, Suppl. 4):181–194

    Google Scholar 

  • Pan HH (1969) Axisymmetrical vibrations of a circular sandwich shell with a viscoelastic core layer. J Sound Vibr 9(2):338–348

    Article  MathSciNet  MATH  Google Scholar 

  • Parke S (1966) Logarithmic decrements at high damping. Brit J Appl Phys 17(2):271–273

    Article  Google Scholar 

  • Qatu MS, Sullivan RW, Wang W (2010) Recent research advances on the dynamic analysis of composite shells: 2000-2009. Comp Struct 93(1):14–31

    Article  Google Scholar 

  • Raamesh TC, Ganesan N (1994) Orthotropic cylindrical shells with a viscoelastic core: A vibration and damping analysis. J Sound Vibr 175(4):535–555

    Google Scholar 

  • Rao MD, He S (1992) Analysis of natural frequencies and modal loss factors of simply supported beams with double-strap joints. J Acoust Soc Am 92(1):268–276

    Google Scholar 

  • Ross D, Ungar EE, Kerwin EM (1959) Damping of flexural vibrations by means of viscoelastic laminae. In: Ruzicka JE (ed) Structural Damping, ASME, pp 49–87

    Google Scholar 

  • Saravanan C, Ganesan N, Ramamurti V (2000) Vibration and damping analysis of multilayered fluid filled cylindrical shells with constrained viscoelastic damping using modal strain energy method. Comp Struct 75(4):395–417

    Article  Google Scholar 

  • Scanlan RH, Rosenbaum R (1951) Introduction to the Study of Aircraft Vibration and Flutter. Macmillan, New York

    Google Scholar 

  • Schwaar M, Gmür T, Frieden J (2011) Modal numerical-experimental identification method for characterising the elastic and damping properties in sandwich structures with a relatively stiff core. Comp Struct 94(7):2227–2236

    Article  Google Scholar 

  • Soroka WW (1949) Note on the relations between viscous and structural damping coefficients. J Aeronautical Sc 16(7):409–410

    Google Scholar 

  • Srubschik L (1988) Dynamical buckling of elastic shells under action of pulse loading. J Appl Math Mech 51(1)

    Google Scholar 

  • Srubschik LS (1985) Energetic test of dynamical buckling of spherical shells. Soviet Phys Dokl 280(1)

    Google Scholar 

  • Stepanov GV, Abramchuk SS, Grishin DA, Nikitin L, Kramarenko EY, Khokhlov AR (2007) Effect of a homogeneous magnetic field on the viscoelastic behavior of magnetic elastomers. Polymer 48(2):488–495

    Article  Google Scholar 

  • Sun TL, Gong XL, Jiang WQ, Li JF, Xu ZB, Li WH (2008) Study on the damping properties of magnetorheological elastomers based on cis-polybutadiene rubber. Polymer Testing 27(4):520–526

    Article  Google Scholar 

  • Tovstik PE (2005) Local buckling of plates and shallow shells on an elastic foundation. Mechanics of Solids 40(1):120–121

    Google Scholar 

  • Tovstik PE, Smirnov AL (2001) Asymptotic Methods in the Buckling Theory of Elastic Shells. World Scientific, Singapore

    Google Scholar 

  • Ungar EE, Kerwin Jr EM (1962) Loss factors of viscoelastic systems in terms of energy concepts. J Acoust Soc Am 34(7):954–957

    Article  MathSciNet  Google Scholar 

  • Venkateswara RP, Maniprakash S, Srinivasan SM, Srinivasa AR (2010) Functional behavior of isotropic magnetorheological gels. Smart Mater Struct 19(8):085,019

    Google Scholar 

  • Vol’mir AS (1972) Nonlinear Dynamics of Plates and Shells (in Russ.). Nauka, Moscow

    Google Scholar 

  • Vol’mir AS (1976) Shells in a Liquid and Gas Flow. Problems of Aeroelasticity (in Russ.). Nauka, Moscow

    Google Scholar 

  • Volterra E (1950) Vibrations of elastic systems having hereditary characteristics. Trans ASME J Appl Mech 17:363–371

    Google Scholar 

  • Wang HJ, Chen LW (2004) Finite element dynamic analysis of orthotropic cylindrical shells with a constrained damping layer. Finite Elements in Analysis and Design 40(7):737–755

    Article  Google Scholar 

  • Wang YL, Hu Y, Deng HX, Gong XL, Zhang PQ, Jiang WQ, Chen Z (2006) Magnetorheological elastomers based on isobutylene-isoprene rubber. Polymer Engng & Sc 46(3):264–268

    Google Scholar 

  • White J, Choi D (2005) Polyolefin. Processing, Structure, Development, and Properties. Carl Hanser, Munich

    Google Scholar 

  • Wiess KD, Carlson JD, Nixon DA (1994) Viscoelastic properties of magneto- and electro-rheological fluids. J Intell Mater Syst Struct 5(6):772–775

    Google Scholar 

  • Wlassow WS (1958) Allgemeine Schalentheorie und ihre Anwendung in der Technik. Akademie-Verlag, Berlin

    Google Scholar 

  • Yan MJ, Dowell EH (1972) Governing equations for vibrating constrained-layer damping sandwich plates and beams. Trans ASME J Appl Mech 39(4):1041–1046

    Article  Google Scholar 

  • Yang IH, Yoon JH, Jeong JE, Jeong UC, Kim JS, Chung KH, Oh JE (2013) Magnetic-field-dependent shear modulus of a magnetorheological elastomer based on natural rubber. J Korean Phys Soc 62(2):220–228

    Article  Google Scholar 

  • Yu SC, Huang SC (2001) Vibration of a three-layered viscoelastic sandwich circular plate. Int J Mech Sc 43(10):2215–2236

    Article  MATH  Google Scholar 

  • Zajac P, Kaleta J, Lewandowski D, Gasperowicz A (2010) Isotropic magnetorheological elastomers with thermoplastic matrices: structure, damping properties and testing. Smart Mater Struct 19(4):045,014

    Article  Google Scholar 

  • Zhou H, Rao MD (1996) Damping of composite tubes with embedded viscoelastic layers. ASME J Vib Acoust 118(3):384–389

    Article  Google Scholar 

  • Zhou XQ, Yu DY, Shao X, Wang S, Zhang SQ (2015) Simplified-super-element-method for analyzing free flexural vibration characteristics of periodically stiffened-thin-plate filled with viscoelastic damping material. Thin-Walled Structures 94:234–252

    Article  Google Scholar 

  • Zhurauski MA, Dragašius E, Korobko EV, Novikova ZA (2008) Mechanical properties of smart fluids under combined electric and magnetic fields. Mechanika 6(74):21–24

    Google Scholar 

  • Ziegler H (1968) Principles of Structural Statbility. Blaisdell Publ. Comp, Waltham, Massachusetts

    Google Scholar 

  • Zienkiewicz OC (1977) The Finite Element Method. McGraw Hill Book Company Limited, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gennadi I. Mikhasev .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mikhasev, G.I., Altenbach, H. (2019). Equivalent Single Layer Model for Thin Laminated Cylindrical Shells. In: Thin-walled Laminated Structures. Advanced Structured Materials, vol 106. Springer, Cham. https://doi.org/10.1007/978-3-030-12761-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12761-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12759-6

  • Online ISBN: 978-3-030-12761-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics