Skip to main content

Design Principles and Action Reflection for Agent-Based Assistive Technology

  • Conference paper
  • First Online:
Book cover Artificial Intelligence in Health (AIH 2018)

Abstract

This paper is aimed at formalizing the interplay among a person to be assisted, an assistive agent-based software, and a caregiver. We propose general principles for designing the interplay between a person to be assisted and an agent based on formal argumentation theory to characterize the agent’s reasoning processes. These principles emerge from a novel perspective to understand assistive technology using the concept of zone of proximal development (ZPD) from social sciences. ZPD can be understood as a measurement of activity development, comparing what a person can perform with or without external help. We characterize a rational agent in four ZPD zones: (I) independent activity execution, agent takes no action; (II) \( ZPD_H \): a person supported by another person, agent takes no action; (III) \(ZPD_S\): a person is supported by an agent; and (IV) \( ZPD_{H+S}\): a person is supported by a caregiver and a software agent at the same time. An algorithm was developed for the agent to reason about the actions to be selected in different situations, based on formal argumentation theory for allowing non-monotonic reasoning. The formal models and algorithm were implemented in a prototype system using augmented reality as interface. Future work includes evaluating the principles and algorithm in actual use situations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this context, client is an individual that receives support from a caregiver and/or an intelligent AT system.

  2. 2.

    In this paper, an agent is an AT machinery based on the concept of software agents that takes decisions about how to support an individual during activity execution see [14].

  3. 3.

    Let SEM() be a function returning a set of extensions, given an argumentation framework such as an AAF.

  4. 4.

    Due to lack of space, the full proofs of these propositions are omitted.

  5. 5.

    Proof sketch: output of grounded and ideal may include \(\{\emptyset \}\). See [10].

  6. 6.

    Proof sketch: output of stable semantics may include \(\emptyset \). See [10].

  7. 7.

    A concept to integrate human information in cyber-physical systems [35].

References

  1. Aljaafreh, A.L., Lantolf, J.P.: Negative feedback as regulation and second language learning in the zone of proximal development. Mod. Lang. J. 78(4), 465–483 (1994)

    Article  Google Scholar 

  2. Amgoud, L.: Postulates for logic-based argumentation systems. Int. J. Approx. Reason. 55(9), 2028–2048 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bench-Capon, T., Dunne, P.E.: Argumentation in artificial intelligence. Artif. Intell. 171(10), 619–641 (2007). http://www.sciencedirect.com/science/article/pii/S0004370207000793

    Article  MathSciNet  MATH  Google Scholar 

  4. Besnard, P., Hunter, A.: A logic-based theory of deductive arguments. Artif. Intell. 128(1–2), 203–235 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bratman, M.: Intention, Plans, and Practical Reason. Harvard University Press, Cambridge (1987)

    Google Scholar 

  6. Bratman, M.E., Israel, D.J., Pollack, M.E.: Plans and resource-bounded practical reasoning. Comput. Intell. 4(3), 349–355 (1988)

    Article  Google Scholar 

  7. Caminada, M., Amgoud, L.: On the evaluation of argumentation formalisms. Artif. Intell. 171, 286–310 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Carrera, Á., Iglesias, C.A.: A systematic review of argumentation techniques for multi-agent systems research. Artif. Intell. Rev. 44(4), 509–535 (2015)

    Article  Google Scholar 

  9. Chaiklin, S.: The zone of proximal development in vygotsky’s analysis of learning and instruction. Vygotsky’s educational theory in cultural context 1, 39–64 (2003)

    Article  Google Scholar 

  10. Dix, J.: A classification theory of semantics of normal logic programs: II. Weak properties. Fundam. Inform. 22(3), 257–288 (1995)

    MathSciNet  MATH  Google Scholar 

  11. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2), 321–357 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dung, P.M., Thang, P.M.: Closure and consistency in logic-associated argumentation. J. Artif. Intell. Res. 49, 79–109 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Engeström, Y.: Learning by Expanding: An Activity-Theoretical Approach to Developmental Research, vol. 53. Orienta-Konsultit Oy, Helsinki (2015). https://doi.org/10.1017/CBO9781107415324.004

    Book  Google Scholar 

  14. Guerrero, E., Lindgren, H.: Practical reasoning about complex activities. In: Demazeau, Y., Davidsson, P., Bajo, J., Vale, Z. (eds.) PAAMS 2017. LNCS (LNAI), vol. 10349, pp. 82–94. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59930-4_7

    Chapter  Google Scholar 

  15. Guerrero, E., Nieves, J.C., Lindgren, H.: ALI: an assisted living system for persons with mild cognitive impairment. In: 2013 IEEE 26th International Symposium on Computer-Based Medical Systems (CBMS), pp. 526–527. IEEE (2013)

    Google Scholar 

  16. Guerrero, E., Nieves, J.C., Lindgren, H.: Semantic-based construction of arguments: an answer set programming approach. Int. J. Approx. Reason. 64, 54–74 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Guerrero, E., Nieves, J.C., Sandlund, M., Lindgren, H.: Activity qualifiers in an argumentation framework as instruments for agents when evaluating human activity. In: Demazeau, Y., Ito, T., Bajo, J., Escalona, M.J. (eds.) PAAMS 2016. LNCS (LNAI), vol. 9662, pp. 133–144. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39324-7_12

    Chapter  Google Scholar 

  18. Guerrero, E., Nieves, J.C., Sandlund, M., Lindgren, H.: Activity qualifiers using an argument-based construction. Knowl. Inf. Syst. 54(3), 633–658 (2018)

    Article  Google Scholar 

  19. Hedegaard, M.: The zone of proximal development as basis for instruction. In: An Introduction to Vygotsky, pp. 183–207. Routledge, Abingdon (2002)

    Google Scholar 

  20. Horvitz, E.J., Cooper, G.F., Heckerman, D.E.: Reflection and action under scarce resources: theoretical principles and empirical study. In: IJCAI, pp. 1121–1127 (1989)

    Google Scholar 

  21. Kaptelinin, V., Nardi, B.A.: Acting with Technology: Activity Theory and Interaction Design. Acting with Technology. MIT Press, Cambridge (2006)

    Google Scholar 

  22. Leontyev, A.N.: Activity and Consciousness. Personality, Moscow (1974)

    Google Scholar 

  23. Lindgren, H.: Activity-theoretical model as a tool for clinical decision-support development. In: 15th International Conference on Knowledge Engineering and Knowledge Management, Poster and Demo Proceedings in EKAW, vol. 215, pp. 23–25 (2006)

    Google Scholar 

  24. Lindgren, H., Baskar, J., Guerrero, E., Nieves, J.C., Nilsson, I., Yan, C.: Computer-supported assessment for tailoring assistive technology. In: Proceedings of the 6th International Conference on Digital Health Conference, pp. 1–10. ACM (2016)

    Google Scholar 

  25. Marcais, J., Spanoudakis, N., Moraitis, P.: Using argumentation for ambient assisted living. In: Iliadis, L., Maglogiannis, I., Papadopoulos, H. (eds.) AIAI/EANN -2011. IAICT, vol. 364, pp. 410–419. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23960-1_48

    Chapter  Google Scholar 

  26. Maslov, S.: Theory of Deductive Systems and Its Applications. MIT Press Series in the Foundations of Computing. MIT Press, Cambridge (1987)

    MATH  Google Scholar 

  27. Muñoz, A., Augusto, J.C., Villa, A., Botía, J.A.: Design and evaluation of an ambient assisted living system based on an argumentative multi-agent system. Pers. Ubiquitous Comput. 15(4), 377–387 (2011)

    Article  Google Scholar 

  28. Muñoz, A., Serrano, E., Villa, A., Valdés, M., Botía, J.A.: An approach for representing sensor data to validate alerts in ambient assisted living. Sensors 12(5), 6282–6306 (2012)

    Article  Google Scholar 

  29. Nieves, J.C., Guerrero, E., Lindgren, H.: Reasoning about human activities: an argumentative approach. In: 12th Scandinavian Conference on Artificial Intelligence (SCAI 2013) (2013)

    Google Scholar 

  30. Oguego, C.L., Augusto, J.C., Muñoz, A., Springett, M.: Using argumentation to manage users’ preferences. Future Gener. Comput. Syst. 81, 235–243 (2018)

    Article  Google Scholar 

  31. Pollack, M.E.: Intelligent technology for an aging population: the use of AI to assist elders with cognitive impairment. AI Mag. 26(2), 9 (2005)

    Google Scholar 

  32. Pollock, J.L.: Defeasible reasoning. Cogn. Sci. 11(4), 481–518 (1987). https://doi.org/10.1207/s15516709cog1104_4, http://doi.wiley.com/10.1207/s15516709cog1104_4

    Article  Google Scholar 

  33. Rao, A.S., Georgeff, M.P., et al.: BDI agents: from theory to practice. In: ICMAS, vol. 95, pp. 312–319 (1995)

    Google Scholar 

  34. Salomon, G., Globerson, T., Guterman, E.: The computer as a zone of proximal development: internalizing reading-related metacognitions from a reading partner. J. Educ. Psychol. 81(4), 620 (1989)

    Article  Google Scholar 

  35. Schirner, G., Erdogmus, D., Chowdhury, K., Padir, T.: The future of human-in-the-loop cyber-physical systems. Computer 46(1), 36–45 (2013)

    Article  Google Scholar 

  36. Schut, M., Wooldridge, M.: Principles of intention reconsideration. In: Proceedings of the Fifth International Conference on Autonomous Agents, pp. 340–347. ACM (2001)

    Google Scholar 

  37. Schut, M., Wooldridge, M., Parsons, S.: The theory and practice of intention reconsideration. J. Exp. Theor. Artif. Intell. 16(4), 261–293 (2004)

    Article  Google Scholar 

  38. Vygotsky, L.S.: Mind in Society: The Development of Higher Psychological Processes. Harvard University Press, Boston (1980)

    Google Scholar 

  39. de Witte, L., Steel, E., Gupta, S., Ramos, V.D., Roentgen, U.: Assistive technology provision: towards an international framework for assuring availability and accessibility of affordable high-quality assistive technology. In: Disability and Rehabilitation: Assistive Technology, pp. 1–6 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esteban Guerrero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guerrero, E., Lu, MH., Yueh, HP., Lindgren, H. (2019). Design Principles and Action Reflection for Agent-Based Assistive Technology. In: Koch, F., et al. Artificial Intelligence in Health. AIH 2018. Lecture Notes in Computer Science(), vol 11326. Springer, Cham. https://doi.org/10.1007/978-3-030-12738-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12738-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12737-4

  • Online ISBN: 978-3-030-12738-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics