Skip to main content

Abstract

This chapter, based on the rigorous theory of fluid flow through porous media (continuum theory), different approaches (analytical) for description of air and resin flow in fibrous media will be presented. In the macroscopic mathematical modeling, both fibrous media and fluids (resin and air) are considered to be incompressible and the effect of resin sorption by fibers has been considered. Herein, by using a relevant and advanced mathematical treatment, different effects of the process parameters (injection pressure, fluid viscosity, porous media permeability, and porosity) and mold geometry in the fluid infiltration process has been analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee LJ (1997) Liquid composite molding. In: Gutowski TG (ed) Advanced composites manufacturing. Wiley, New York, USA, pp 393–456

    Google Scholar 

  2. Luz FF (2011) Comparative analysis of the fluid flow in RTM experiments using commercial applications. Master’s Thesis, Mines, Metallurgical and Materials Engineering, Federal University of Rio Grande do Sul, Porto Alegre, Brazil. (In Portuguese)

    Google Scholar 

  3. Hardt DE (1997) Process control of thermosetting composites: Context and review. In: Gutowski TG (ed) Advanced composites manufacturing. Wiley, New York, USA, pp 457–486

    Google Scholar 

  4. Gutowski TG (1997) A brief introduction to composite materials and manufacturing processes. In: Gutowski TG (ed) Advanced composites manufacturing. Wiley, New York, USA, pp 5–41

    Google Scholar 

  5. Mazumdar SK (2002) Composites manufacturing: materials, product and process engineering. CRC Press, Boca Raton, USA

    Google Scholar 

  6. Callister WD Jr, Rethwisch DG (2008) Fundamentals of materials science and engineering: an integrated approach, 3rd edn. Wiley, Hoboken, USA

    Google Scholar 

  7. Advani SG, Sozer EM (2011) Process modeling in composites manufacturing. CRC Press, New York, USA

    Google Scholar 

  8. Kardos JL (1997) The processing science of reactive polymer composites. In: Gutowski TG (ed) Advanced composites manufacturing. Wiley, New York, USA, pp 43–80

    Google Scholar 

  9. Bunssel AR, Renard J (2005) Fundamentals of fibre reinforced composite materials. Institute of Physics Publishing, Bristol, UK

    Book  Google Scholar 

  10. Khilar KC, Fogler HS (1998) Migration of fines in porous media. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Book  Google Scholar 

  11. Gonçalves NDF (2007) Finite volume method in unstructured meshes, Master Thesis, Faculty of Sciences, University of Porto, Porto, Portugal

    Google Scholar 

  12. Shojaei A, Ghaffarian SR, Karimian MH (2003) Modeling and simulation approaches in the resin transfer molding process: a review. Polymer Compos 24(4):525–554

    Article  Google Scholar 

  13. Long AC (2006) Design and manufacture of textile composites, 1st edn. CRC Press, Boca Raton

    Google Scholar 

  14. Rudd CD, Long AC, Kendall KN, Mangin GCE (1997) Liquid moulding technologies: resin transfer moulding, structural reaction injection moulding and related processing techniques. Woodhead Publishing Limited, Cambridge, England

    Book  Google Scholar 

  15. Gutowski TG (1997) Advanced composites manufacturing. Wiley, New York, USA

    Google Scholar 

  16. Lee LJ (1997) Advanced composites manufacturing, In: Gutowski TG (ed) Liquid composite molding. Wiley, New York, USA

    Google Scholar 

  17. Advani SG, Hsião K (2005) Transport phenomena in liquid composites molding processes and their roles in process control and optimization. In: Vafai K (ed) Handbook of porous media. CRC Press, Boca Raton, USA

    Google Scholar 

  18. Luz FF, Amico SC, Souza JA, Barbosa ES, Lima AGB (2012) Resin Transfer Molding Process: Fundamentals, numerical computation and experiments In: Delgado JMPQ, Lima AGB, Silva MV (eds) Numerical analysis of heat and mass transfer in porous media. Springer-Verlag, Heidelberg, Germany

    Google Scholar 

  19. Chui W, Glimm J, Tangerman F, Jardine A, Madsen J, Donnellan T, Leek R (1995) Porosity migration in RTM. In: Proceedings of the ninth international conference on numerical methods in thermal problems, Atlanta, USA, pp 1323–1334

    Google Scholar 

  20. Tan H, Roy T, Pillai KM (2007) Variations in unsaturated flow with flow direction in resin transfer molding: an experimental investigation. Compos Part A Appl Sci Manufac 38(8):1872–1892

    Article  Google Scholar 

  21. Oliveira IR, Amico SC, Luz FF, Souza JA, Barcella R, Lima AGB (2013) Resin transfer molding process: a numerical investigation. Def Diff Forum 334:193–198

    Google Scholar 

  22. Matsuzaki R, Seto D, Todoroki A, Mizutani Y (2013) In-Situ void content measurements during resin transfer molding. Adv Compos Mater 22(4):239–254

    Article  Google Scholar 

  23. Oliveira CP, Souza JA, Isoldi LA, Amico SC (2013) Algebraic rectilinear model for multilayer resin transfer molding injection. J Reinf Plastics Compos 32(1):3–15

    Article  Google Scholar 

  24. Robinson MJ, Kosmatka JB (2014) Analysis of the post-filling phase of the vacuum-assisted resin transfer molding process. J Compos Mater 48(13):1547–1559

    Article  Google Scholar 

  25. Yang B, Jin T, Li J, Bi F (2014) Simulating the resin flow and stress distributions on mold tools during compression resin transfer molding. J Reinf Plastics Compos. 33(14):1316–1331

    Article  Google Scholar 

  26. Harris SD, Ingham DB (2005) Parameter identification within a porous medium using genetic algorithims. In: Vafai K (ed) Handbook of porous media, 2. Edn, Taylor & Francis, Boca Raton, USA, 687–742

    Google Scholar 

  27. Nield D, Bejan A (2006) Convection in porous media, 3rd edn. Springer, New York, USA

    MATH  Google Scholar 

  28. McKibbin R (1998) Mathematical models for heat and mass transport in geothermal systems. In: Ingham DB, Pop I (eds) Transport phenomena in porous media. Oxford, UK, pp 131–154

    Google Scholar 

  29. Wang CY (1998) Modeling multiphase flow and transport in porous media. In: Ingham DB, Pop I (eds) Transport phenomena in porous media. Oxford, UK, pp 383–410

    Google Scholar 

  30. Bories S, Prat M (2002) Isothermal nucleation and bubble growth in porous media at low supersaturations. In: Ingham DB, Pop I (eds) Transport phenomena in porous media II, Pergamon. The Netherlands, Amsterdam, pp 276–315

    MATH  Google Scholar 

  31. Baytaş AC, Baytaş AF 92005) Entropy generation in porous media. In: Ingham DB, Pop I (eds) Transport phenomena in porous media III. Elsevier Ltda., Oxford, UK, pp 201–226

    Chapter  Google Scholar 

  32. Ma L, Ingham DB, Pourkashanian MC (2005) Application of fluid flows through porous media in fuel cells. In: Ingham DB, Pop I (eds) Transport phenomena in porous media III. Elsevier Ltda, Oxford, UK, pp 418–440

    Chapter  Google Scholar 

  33. Santos MJN, Delgado JMPQ, Lima AGB, Oliveira IR (2018) Liquid injection molding process in the manufacturing of fibrous composite materials: theory, advanced modeling and engineering applications. In: Delgado JMPQ, Lima AGB (eds) Transport phenomena in multiphase systems, 1st edn. Springer-Verlag, Cham, Switzerland, pp 251–272

    Chapter  Google Scholar 

  34. Lee WI, Loss AC, Springer GS (1982) Heat of reaction, degree of cure and viscosity of Hercules 3501-6 resin. J Compos Mater 16(2):510–520

    Article  Google Scholar 

  35. Santos MJN, Lima AGB (2017) Manufacturing fiber-reinforced polymer composite using rtm process: an analytical approach. Def Diff Forum 380:60–65

    Article  Google Scholar 

  36. Santos MJN, Delgado JMPQ, Lima AGB, Oliveira IR (2018) Resin flow in porous-fibrous media: an application to polymer composite manufacturing. Diffusion Foundations 20:1–15

    Article  Google Scholar 

  37. Oliveira IR (2014) Infiltration of loaded fluids in porous media via RTM process: theoretical and experimental analyses. Doctoral Thesis, Process in Engineering, Federal University of Campina Grande, Campina Grande, Brazil. (In Portuguese)

    Google Scholar 

  38. Oliveira IR, Amico SC, Lima AGB, Lima WMPB (2015) Application of calcium carbonate in resin transfer molding process: An experimental investigation. Materialwiss Werkstofftech 46:24–32

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João M. P. Q. Delgado .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Delgado, J.M.P.Q., Barbosa de Lima, A.G., do Nascimento Santos, M.J. (2019). RTM Process Modeling. In: Transport Phenomena in Liquid Composite Molding Processes. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-12716-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12716-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12715-2

  • Online ISBN: 978-3-030-12716-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics