Skip to main content

Mining in Hydrothermal Vent Fields: Predicting and Minimizing Impacts on Ecosystems with the Use of a Mathematical Modeling Framework

  • Chapter
  • First Online:
Environmental Issues of Deep-Sea Mining

Abstract

Accelerated demand for exploration of minerals and development of mining technologies over the past decade could lead to commercial mining of the deep seafloor in the near future. The campaign for conservation of biological diversity claims that there will be impacts of seabed mining to the deep-sea community and suggests a precautionary approach. In this chapter, we summarize the basic characteristics of communities in hydrothermal vent fields and describe the potential impact of resource mining as well as some previous observations on the effect of natural disturbances. We then introduce a model-based approach to determine the resilience of vent communities, thereby predicting if the communities will be vulnerable or robust to disturbances. Resilience of ecological systems is assessed by measuring the time required to recover to the original state prior to being disturbed. A mathematical model capable of predicting resilience would represent an important contribution to the management of these unique ecosystems. However, compared to most terrestrial and shallow water ecosystems, information regarding hydrothermal vent ecosystems, which are typically found at depths of over 1000 m, is limited. We thus focused on connectivity of vent communities through larval dispersal as a key factor for resilience. We will show how our framework can be used as a practical tool to characterize, understand, or predict resilience. The framework presented here can help assess ecological impacts and develop mitigation strategies associated with deep-sea resource mining. We also discuss what will need to be developed further to better achieve these objectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arellano, S. M., Van Gaest, A. L., Johnson, S. B., et al. (2014). Larvae from deep-sea methane seeps disperse in surface waters. Proceedings of the Royal Society London B, 281, 20133276.

    Article  Google Scholar 

  • Binns, R. A., & Scott, S. D. (1993). Actively forming polymetallic sulfide deposits associated with felsic volcanic rocks in the eastern Manus back-arc basin, Papua New Guinea. Economic Geology, 88, 2226–2236.

    Article  Google Scholar 

  • Boschen, R. E., Rowden, A. A., Clark, M. R., et al. (2013). Mining of deep-sea seafloor massive sulfides: A review of the deposits, their benthic communities, impacts from mining, regulatory frameworks and management strategies. Ocean and Coastal Management, 84, 54–67.

    Article  Google Scholar 

  • Boschen, R. E., Rowden, A. A., Clark, M. R., et al. (2016). Seafloor massive sulfide deposits support unique megafaunal assemblages: Implications for seabed mining and conservation. Marine Environmental Research, 115, 78–88.

    Article  Google Scholar 

  • Christensen, V., & Walters, C. J. (2004). Ecopath with Ecosim: Methods, capabilities and limitations. Ecological Modelling, 172, 109–139.

    Article  Google Scholar 

  • Christensen, V., & Walters, C. J. (2005). Using ecosystem modeling for fisheries management: Where are we. ICES CM/M: 19.

    Google Scholar 

  • Coffey Natural Systems. (2008a). Environmental impact statement (Solwara 1 project. Nautilus Minerals Niugini Limited, Executive Summary). Brisbane: Coffey Natural Systems.

    Google Scholar 

  • Coffey Natural Systems. (2008b). Environmental impact statement (Solwara 1 project. Nautilus Minerals Niugini Limited, Main Report). Brisbane: Coffey Natural Systems.

    Google Scholar 

  • Collins, P. C., Croot, P., Carlsson, J., et al. (2013). A primer for the environmental impact assessment of mining at seafloor massive sulfide deposits. Marine Policy, 42, 198–209.

    Article  Google Scholar 

  • D’Arcy, R., Amend, J. P., & Osburn, M. R. (2013). Microbial diversity and potential for arsenic and iron biogeochemical cycling at an arsenic rich, shallow-sea hydrothermal vent (Tutum Bay, Papua New Guinea). Chemical Geology, 348, 37–47.

    Article  Google Scholar 

  • Desbruyères, D., Hashimoto, J., & Fabri, M.-C. (2006). Composition and biogeography of hydrothermal vent communities in western Pacific back-arc basins. In D. M. Christie, C. R. Fisher, S.-M. Lee, et al. (Eds.), Back-arc spreading systems: Geological, biological, chemical, and physical interactions (pp. 215–234). Washington, DC: American Geophysical Union.

    Chapter  Google Scholar 

  • England, M. H. (1992). On the formation of Antarctic intermediate and bottom water in ocean general circulation models. Journal of Physical Oceanography, 22, 918–926.

    Article  Google Scholar 

  • Gillespie, D. T. (1977). Exact stochastic simulation of coupled chemical reactions. The Journal of Physical Chemistry, 81, 2340–2361.

    Article  Google Scholar 

  • Gollner, S., Govenar, B., Arbizu, P. M., et al. (2015). Differences in recovery between deep-sea hydrothermal vent and vent-proximate communities after a volcanic eruption. Deep Sea Research, Part I, 106, 167–182.

    Article  Google Scholar 

  • Gollner, S., Kaiser, S., Menzel, L., et al. (2017). Resilience of benthic deep-sea fauna to mining activities. Marine Environmental Research, 129, 76–101.

    Article  Google Scholar 

  • Govenar, B. (2010). Shaping vent and seep communities: Habitat provision and modification by foundation species. In S. Kiel (Ed.), The vent and seep biota (pp. 403–432). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Grassle, J. F. (1986). The ecology of deep-sea hydrothermal vent communities. Advances in Marine Biology, 23, 301e362.

    Google Scholar 

  • Grassle, J. F., & Sanders, H. (1973). Life histories and the role of disturbance. Deep Sea Research, 20, 643e659.

    Google Scholar 

  • Gupta, A. S., & England, M. H. (2007). Evaluation of interior circulation in a high-resolution global ocean model. Part II: Southern hemisphere intermediate, mode, and thermocline waters. Journal of Physical Oceanography, 37, 2612–2636.

    Article  Google Scholar 

  • Halbach, P., Nakamura, K. I., Wahsner, M., et al. (1989). Probable modern analogue of Kuroko-type massive sulphide deposits in the Okinawa Trough back-arc basin. Nature, 338, 496–499.

    Article  Google Scholar 

  • Herzig, P. M. (1999). Economic potential of sea–floor massive sulphide deposits: Ancient and modern. Philosophical Transactions of the Royal Society London A, 357, 861–875.

    Article  Google Scholar 

  • Hoagland, P., Beaulieu, S., & Tivey, M. A. (2010). Deep-sea mining of seafloor massive sulfides. Marine Policy, 34, 728–732.

    Article  Google Scholar 

  • Holling, C. S. (1973). Resilience and stability of ecological systems. Annual Review of Ecology and Systematics, 4, 1–23.

    Article  Google Scholar 

  • Holling, C. S. (1996). Engineering resilience versus ecological resilience. In National Academy of Engineering (Ed.), Engineering within ecological constraints (pp. 31–44). Washington, DC: National Academies Press.

    Google Scholar 

  • Hurtado, L. A., Lutz, R. A., & Vrijenhoek, R. C. (2004). Distinct patterns of genetic differentiation among annelids of eastern Pacific hydrothermal vents. Molecular Ecology, 13, 2603–2615.

    Article  Google Scholar 

  • International Seabed Authority. (2007). Polymetallic sulphides and cobalt-rich ferromanganese crusts deposits: Establishment of environmental baselines and an associated monitoring programme during exploration, https://www.isa.org.jm/files/documents/EN/Workshops/2004/Proceedings-ae.pdf.

  • Ives, A. R., & Carpenter, S. R. (2007). Stability and diversity of ecosystems. Science, 317, 58–62.

    Article  Google Scholar 

  • Jeanthon, C. (2000). Molecular ecology of hydrothermal vent microbial communities. Antonie Leeuwenhoek, 77, 117–133.

    Article  Google Scholar 

  • Johnson, S. B., Warén, A., & Vrijenhoek, R. C. (2008). DNA barcoding of Lepetodrilus limpets reveals cryptic species. Journal of Shellfish Research, 27, 43–51.

    Article  Google Scholar 

  • Johnson, S. B., Warén, A., & Tunnicliffe, V. (2014). Molecular taxonomy and naming of five cryptic species of Alviniconcha snails (Gastropoda: Abyssochrysoidea) from hydrothermal vents. Systematics and Biodiversity, 13, 278–295.

    Article  Google Scholar 

  • Jannasch, H. W., & Wirsen, C. O. (1979). Chemosynthetic primary production at East Pacific sea floor spreading centers. Bioscience, 29, 592–598.

    Article  Google Scholar 

  • Kiel, S. (2016). A biogeographic network reveals evolutionary links between deep-sea hydrothermal vent and methane seep faunas. Proceedings of the Royal Society B, 283, 20162337.

    Article  Google Scholar 

  • Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220, 671–680.

    Article  Google Scholar 

  • Le, J. T., Levin, L. A., & Carson, R. T. (2016). Incorporating ecosystem services into environmental management of deep-seabed mining. Deep Sea Research, Part II, 137, 486–503.

    Article  Google Scholar 

  • Levin, L. A., Baco, A. R., Bowden, D. A., et al. (2016). Hydrothermal vents and methane seeps: Rethinking the sphere of influence. Frontiers in Marine Science, 3, 72.

    Article  Google Scholar 

  • Macdonald, K., Becker, K., Spiess, F. N., et al. (1980). Hydrothermal heat flux of the ‘black smoker’ vents on the East Pacific Rise. Earth and Planetary Science Letters, 48, 1e7.

    Article  Google Scholar 

  • Mahon, B. P., Bhatt, A., Vullo, D., et al. (2015). Exploration of anionic inhibition of the α-carbonic anhydrase from Thiomicrospira crunogena XCL-2 gammaproteobacterium: A potential bio-catalytic agent for industrial CO2 removal. Chemical Engineering Science, 138, 575–580.

    Article  Google Scholar 

  • Marcus, J., Tunnicliffe, V., & Butterfield, D. A. (2009). Post-eruption succession of macrofaunal communities at diffuse flow hydrothermal vents on axial volcano, Juan de Fuca Ridge, Northeast Pacific. Deep Sea Research, Part II, 56, 1586–1598.

    Article  Google Scholar 

  • Marsh, A. G., Mullineaux, L. S., Young, C. M., et al. (2001). Larval dispersal potential of the tubeworm Riftia pachyptila at deep-sea hydrothermal vents. Nature, 411, 77–80.

    Article  Google Scholar 

  • Mitarai, S., Watanabe, H., Nakajima, Y., et al. (2016). Quantifying dispersal from hydrothermal vent fields in the western Pacific Ocean. Proceedings of the National Academy of Sciences, 113, 2976–2981.

    Article  Google Scholar 

  • Nakamura, H., Nishina, A., Liu, Z., et al. (2013). Intermediate and deep water formation in the Okinawa Trough. Journal of Geophysical Research, Oceans, 118, 6881–6893.

    Article  Google Scholar 

  • Nakamura, M., Watanabe, H., Sasaki, T., et al. (2014). Life history traits of Lepetodrilusnux in the Okinawa Trough, based upon gametogenesis, shell size, and genetic variability. Marine Ecology Progress Series, 505, 119–130.

    Article  Google Scholar 

  • O’Connor, M. I., Bruno, J. F., Gaines, S. D., et al. (2007). Temperature control of larval dispersal and the implications for marine ecology, evolution, and conservation. Proceedings of the National Academy of Sciences, 104, 1266–1271.

    Article  Google Scholar 

  • Podowski, E. L., Ma, S., Luther, G. W. I. I. I., et al. (2010). Biotic and abiotic factors affecting distributions of megafauna in diffuse flow on andesite and basalt along the Eastern Lau Spreading Center, Tonga. Marine Ecology Progress Series, 418, 25–45.

    Article  Google Scholar 

  • Portail, M., Olu, K., & Escobar-Briones, E. (2015). Comparative study of vent and seep macrofaunal communities in the Guaymas Basin. Biogeosciences, 12, 5455–5479.

    Article  Google Scholar 

  • Shank, T. M., Fornari, D. J., Von Damm, K. L., et al. (1998). Temporal and spatial patterns of biological community development at nascent deep-sea hydrothermal vents (9 50′ N, East Pacific Rise). Deep Sea Research, Part II, 45, 465–515.

    Article  Google Scholar 

  • Suzuki, K., Yoshida, K., Watanabe, H., et al. (2018). Mapping the resilience of chemosynthetic communities in hydrothermal vent fields. Scientific Reports, 8, 9364.

    Article  Google Scholar 

  • Talley, L. D. (2007). Hydrographic atlas of the world ocean circulation experiment (WOCE): Volume 2: Pacific Ocean. Southampton: WOCE International Project Office. 2007.

    Google Scholar 

  • Terpe, K. (2013). Overview of thermostable DNA polymerases for classical PCR applications: From molecular and biochemical fundamentals to commercial systems. Applied Microbiology and Biotechnology, 97, 10243–10254.

    Article  Google Scholar 

  • Thaler, A. D., Zelnio, K., Saleu, W., et al. (2011). The spatial scale of genetic subdivision in populations of Ifremeria nautilei, a hydrothermal-vent gastropod from the Southwest Pacific. BMC Evolutionary Biology, 11, 372.

    Article  Google Scholar 

  • Thaler, A. D., Plouviez, S., Saleu, W., et al. (2014). Comparative population structure of two deep-sea hydrothermal- vent-associated decapods (Chorocaris sp. 2 and Munidopsis lauensis) from southwestern Pacific back-arc basins. PLoS One, 9, e101345.

    Article  Google Scholar 

  • Tolstoy, M., Cowen, J. P., Baker, E. T., et al. (2006). A sea-floor spreading event captured by seismometers. Science, 314, 1920–1922.

    Article  Google Scholar 

  • Tunnicliffe, V., Embley, R. W., Holden, J. F., et al. (1997). Biological colonization of new hydrothermal vents following an eruption on Juan de Fuca Ridge. Deep Sea Research, Part I, 44, 1627–1644.

    Article  Google Scholar 

  • Turnipseed, M., Knick, K. E., & Lipcius, R. N. (2003). Diversity in mussel beds at deep-sea hydrothermal vents and cold seeps. Ecology Letters, 6, 518–523.

    Article  Google Scholar 

  • Tyler, P. A., & Young, C. M. (2003). Dispersal at hydrothermal vents: A summary of recent progress. Hydrobiologia, 503, 9–19.

    Article  Google Scholar 

  • Urabe, T., Ura, T., Tsujimoto, T. et al. (2015). Next-generation technology for ocean resources exploration (Zipangu-in-the-Ocean) project in Japan. In Proceedings of OCEANS 2015-Genova, IEEE, (pp. 1–5), https://ieeexplore.ieee.org/document/7271762.

  • Van Dover, C. L. (2010). Mining seafloor massive sulphides and biodiversity: What is at risk? ICES Journal of Marine Science, 68, 341–347.

    Article  Google Scholar 

  • Van Dover, C. L. (2014). Impacts of anthropogenic disturbances at deep-sea hydrothermal vent ecosystems: A review. Marine Environmental Research, 102, 59–72.

    Article  Google Scholar 

  • Van Dover, C. L., Aronson, J., Pendleton, L., et al. (2014). Ecological restoration in the deep sea: Desiderata. Marine Policy, 44, 98–106.

    Article  Google Scholar 

  • Villasante, S., Arreguín-Sánchez, F., Heymans, J. J., et al. (2016). Modelling marine ecosystems using the Ecopath with Ecosim food web approach: New insights to address complex dynamics after 30 years of developments. Ecological Modelling, 331, 1–4.

    Article  Google Scholar 

  • Watanabe, H., Tsuchida, S., Fujikura, K., et al. (2005). Population history associated with hydrothermal vent activity inferred from genetic structure of neoverrucid barnacles around Japan. Marine Ecology Progress Series, 288, 233–240.

    Article  Google Scholar 

  • Watanabe, H., Fujikura, K., Kojima, S., et al. (2010). Japan: Vents and seeps in close proximity. In S. Kiel (Ed.), The vent and seep biota (pp. 379–402). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Wathern, P. (Ed.). (2013). Environmental impact assessment: Theory and practice. Oxford: Routledge.

    Google Scholar 

  • Won, Y., Young, C. R., Lutz, R. A., et al. (2003). Dispersal barriers and isolation among deep-sea mussel populations (Mytilidae: Bathymodiolus) from eastern Pacific hydrothermal vents. Molecular Ecology, 12, 169–184.

    Article  Google Scholar 

  • Yahagi, T., Watanabe, H., Ishibashi, J., et al. (2015). Genetic population structure of four hydrothermal vent shrimp species (Alvinocarididae) in the Okinawa Trough, Northwest Pacific. Marine Ecology Progress Series, 529, 159–169.

    Article  Google Scholar 

  • Yahagi, T., Kayama, H., Watanabe, H., et al. (2017). Do larvae from deep-sea hydrothermal vents disperse in surface waters? Ecology, 98, 1524–1534.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Satoshi Mitarai for providing published data sets. We also would like to thank Hiromi Watanabe, Hiroyuki Yamamoto, Masanobu Kawachi, Hiroshi Koshikawa, Hironori Higashi, and Hiroyuki Yokomizo for their support and Robert G. Jenkins for his guidance on vent ecosystems. This work was supported by Council for Science, Technology and Innovation (CSTI), Cross-ministerial Strategic Innovation Promotion Program(SIP), “Next-generation technology for ocean resources exploration.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenta Suzuki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Suzuki, K., Yoshida, K. (2019). Mining in Hydrothermal Vent Fields: Predicting and Minimizing Impacts on Ecosystems with the Use of a Mathematical Modeling Framework. In: Sharma, R. (eds) Environmental Issues of Deep-Sea Mining. Springer, Cham. https://doi.org/10.1007/978-3-030-12696-4_9

Download citation

Publish with us

Policies and ethics