Skip to main content

Technologies for Safe and Sustainable Mining of Deep-Seabed Minerals

  • Chapter
  • First Online:
Environmental Issues of Deep-Sea Mining

Abstract

Safety and sustainability are both critical for the sake of profitability in deep-seabed mining. Environmental impacts and potential harms to ecosystems would be caused basically by benthic intervention and materials transportation. A commercial mining has to be based on minimizing of the environmental impacts. For safe and sustainable mining, the entire mining system should be designed with the objectives of the production efficiency of minerals and the feasibility of treatment of by-products (seawater, sediment) and operated in an integrated and smart fashion. Utilization of techniques of simulation-based design (SBD) and multidisciplinary design optimization (MDO) and also implementation of underwater robot technology are required to ensure operability and sustainability as well as to reduce development risks as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • American Petroleum Institute (API). (2006). Recommended practice for design of risers for Floating Production and Storage Systems (FPSOs) and Tension Leg Platforms (TLPs), API 2RD, June 1998 edition reaffirmed May, 2006.

    Google Scholar 

  • American Petroleum Institute (API). (2008). Recommended practice for development of safety and environmental management program for offshore operations and facilities, API RP 75 (The 3rd edition).

    Google Scholar 

  • Aso, K., Kan, K., Doki, H., & Iwato, K. (1992). Effect of vibration absorbers on the longitudinal vibration of a pipe string in the deep sea—Part 1: In case of mining cobalt crusts. International Journal of Offshore and Polar Engineering, 2(4), 309–317.

    Google Scholar 

  • Aso, K., Kan, K., Doki, H., & Ohkoshi, T. (1994). The effects of vibration absorbers on the longitudinal vibration of a pipe string in the deep sea—Part 2: A case for mining manganese nodules. International Journal of Offshore and Polar Engineering, 4(1), 62–67.

    Google Scholar 

  • Brink, A. W., & Chung, J. S. (1981). Automatic position control of a 300,000-ton ship ocean mining system. OTC, 4091, 205–224.

    Google Scholar 

  • Chung, J. S., & Whitney, A. K. (1981, 1983). Axial stretching oscillation of an 18,000-ft vertical pipe in the ocean. Journal Energy Resources Technology, ASME 105, 195–200, OTC(1981).

    Google Scholar 

  • Engelmann, H. E. (1978). Vertical hydraulic lifting of large-size particles – a contribution to marine mining. In: Proceedings of offshore technology conference, OTC 3137 (pp 731–740).

    Google Scholar 

  • Hong, S. (1995). Three dimensional analysis on behaviour of mining pipe of deep seabed mineral resources. In: Proceedings of 1st ISOPE ocean mining symposium, Tsukuba, Japan (pp 69–74).

    Google Scholar 

  • Hong, S. (1997). 3-D dynamic analyses of lifting pipe systems in deep seabed mining. In: Proceedings of 2nd ISOPE ocean mining symposium, Seoul.

    Google Scholar 

  • Hong, S., & Choi, J. S. (2001). Experimental study on grouser shape effects on traffic ability of extremely soft seabed. In: Proceedings of 4th ISOPE ocean mining symposium, Szczecin (pp. 115–118).

    Google Scholar 

  • Hong, S., & Yang, N. (2018). Sustainability aspects in deep-seabed mining of polymetallic nodule (to be presented). In: Proceedings of annual underwater mining conference, Bergen, Norway, September 10–14.

    Google Scholar 

  • Hong, S., Choi, J. S., Kim, J. H., & Yang, C. K. (1999). Experimental study on hydraulic performance of hybrid pick-up device of manganese nodule collector. In: Proceedings of 3rd ISOPE ocean mining symposium, Goa (pp 69–77).

    Google Scholar 

  • Hong, S., Choi, J. S., Kim, J. H., & Yang, C. K. (2001). A note on design and operation of waterjet nodule lifter of manganese nodule collector. International Journal of Offshore and Polar Engineering, 11(3), 231–233.

    Google Scholar 

  • Hong, S., Choi, J. S., & Yang, C. K. (2002a). Experimental study on solid-water slurry flow in vertical pipe by using PTV method. In: Proceedings of annual conference ISOPE.

    Google Scholar 

  • Hong, S., Kim, H. W., & Choi, J. S. (2002b). Transient dynamic analysis of tracked vehicles on extremely soft cohesive soil. In: Proceedings of 5th ISOPE Pacific/Asia offshore mechanics symposium, Seoul (pp. 100–107).

    Google Scholar 

  • Hong, S., Choi, J. S., & Kim, H. W. (2003a). Effects of internal flow on dynamics of underwater flexible pipes. In: Proceedings of 5th ISOPE ocean mining symposium, Tsukuba (pp. 91–98).

    Google Scholar 

  • Hong, S., Kim, H. W., & Choi, J. S. (2003b). A new method using Euler parameters for 3D nonlinear analysis of marine risers/pipelines. In: Proceedings of 5th ISOPE ocean mining symposium, Tsukuba (pp. 83–90).

    Google Scholar 

  • Hong, S., Kim, H. W., Choi, J. S., & Yeu, T. K. (2006). Launching simulation of deep-seabed integrated mining system. In: Proceedings of annual autumn conference of KSOE (pp. 311–314) (in Korean with English abstract).

    Google Scholar 

  • Hong, S., Choi, J. S., Kim, H. W., Yeu, T. K., Kim, J. H., Kim, Y. S., Kang, S. G., & Rheem, C. K. (2011a). Experimental study on vortex-induced vibration of a long flexible pipe in sheared flows. In: Proceedings of the 9th ISOPE ocean mining symposium, Maui (pp. 70–77).

    Google Scholar 

  • Hong, S., Kim, H. W., Choi, J. S., Yeu, T. K., Chi, S. B., & Lee, K. Y. (2011b). Comparative study on mining robots design for polymetallic nodules and seabed massive sulfides. Poster Presentation at Annual Conference of Underwater Mining Institute, Hawaii, Sept 2011.

    Google Scholar 

  • Hong, S., Kim, H. W., Yeu, T. K., Choi, J. S., Yoon, S. M., Kim, J. H., Lee, C. H., Min, C. H., Lee, M. U., Sung, K. Y., Kim, S. S., & Oh, J. W. (2013). Pilot mining robot for polymetallic nodules and pre-pilot mining tests. In: Proceedings of annual conference of Underwater Mining Institute, Rio de Janeiro.

    Google Scholar 

  • Hong, S., Choi, J. S., Yeu, T. K., Kim, H. W., Yoon, S. M., Min, C. H., Sung, K. Y., Lee, C. H., & Oh, J. W. (2014). Development of buffer station for safe and eco-friendly mining of seabed mineral resources. In: Proceedings of annual conference of Underwater Mining Institute, Lisbon.

    Google Scholar 

  • Hong, S., Yeu, T. K., Kim, H. W., Jung, J. Y., Min, C. H., Cho, S. G., Yoon, S. M., Kim, S. S., Kim, J. H., Lee, C. H., Sung, K. Y., Oh, J. W., & Park, S. H. (2016). Technology achievements by means of 3rd pre-pilot mining test: Pilot lifting system. In: Proceedings of annual conference of Underwater Mining Institute, Singdo.

    Google Scholar 

  • International Electrotechnical Commission (IEC). (2009). Functional safety of electrical/electronic/programmable electronic safety-related systems, IEC 61508.

    Google Scholar 

  • International Maritime Organization (IMO). (1972). Convention on the prevention of marine pollution by dumping of wastes and other matters.

    Google Scholar 

  • International Maritime Organization (IMO). (1974). International convention for the safety of life at sea, IMO SOLAS 74.

    Google Scholar 

  • International Maritime Organization (IMO). (1978). International convention for the prevention of pollution from ships, IMO MARPOL 73/78.

    Google Scholar 

  • International Maritime Organization (IMO). (2014). Guidelines for the reduction of underwater noise from commercial shipping to address adverse impact on marine life. IMO MEPC.1/Circ.833.

    Google Scholar 

  • International Organization for Standardization/International Electrotechnical Commission (ISO/IEC). (2014). Safety aspects – guidelines for their use in standards, ISO/IEC Guide 51:2014.

    Google Scholar 

  • International Organization for Standards (ISO). (2010). Safety of machinery – General principles for design – Risk assessment and risk reduction, ISO 12100:2010(en).

    Google Scholar 

  • Kim, H. W., Hong, S., & Choi, J. S. (2003). Comparative study on tracked vehicle dynamics on soft soil, single-body dynamics vs. multi-body dynamics. In: Proceedings of 5th ISOPE ocean mining symposium, Tsukuba (pp. 141–148).

    Google Scholar 

  • Kim, H. W., Hong, S., Choi, J. S., & Yeu, T. K. (2006). Total dynamic analysis of deep-seabed integrated mining system. In: Proceedings of annual autumn conference of KSOE (pp. 311–314) (in Korean with English abstract).

    Google Scholar 

  • Kim, H. W., Hong, S., Lee, C. H., Choi, J. S., & Yeu, T. K. (2009a). A study on steering performance of four column tracked vehicle on extremely cohesive soft soil. In: Proceedings of 8th ISOPE ocean mining symposium, Chennai. September 20–24.

    Google Scholar 

  • Kim, H. W., Lee, C. H., Hong, S., Yeu, T. K., & Choi, J. S. (2009b). A study on steering characteristics of pilot Mining Robot (MinerRo II) on extremely cohesive soft soil. In: Proceedings of annual conference of Underwater Mining Institute, Rio de Janeiro.

    Google Scholar 

  • KRISO (2013). Annual report on development of integrated mining technology for deep-seabed mineral resources for Korea. (in Korean) March, 2014.

    Google Scholar 

  • KRISO (2015). Annual report on development of integrated mining technology for deep-seabed mineral resources for Korea. (in Korean) March, 2016.

    Google Scholar 

  • Lee, T. H., Jung, J. J., Hong, S., Kim, H. W., & Choi, J. S. (2007). Prediction for motion of tracked vehicle traveling on soft soil using kriging metamodel. International Journal of Offshore and Polar Engineering, 17(2), 132–138.

    Google Scholar 

  • Lee, M. U., Cho, S. G., Choi, J. S., Kim, H. W., Hong, S., & Lee, T. H. (2012). Metamodel-based multidisciplinary design optimization for development of a deep-sea manganese nodules test miner. Journal of Applied Mathematics, Vol. 1, pp. 1–18.

    Google Scholar 

  • Nakata, K., Kubota, M., Aoki, S., & Taguchi, K. (1997). Dispersion of resuspended sediments by ocean mining activity-modeling study. In: Proceedings of the international symposium on environmental studies for deep-sea mining, Metal Mining Agency of Japan, Tokyo (pp. 169–186).

    Google Scholar 

  • Oebius, H. (1993). Entwicklung eines umweltschonenden Manganknollenabbau- und -gewinnungsverfahrens. Report 1228/94, VWS, BMFT Forschungsvorhaben.

    Google Scholar 

  • Oh, J. W., Jung, J. Y., & Hong, S. (2018). On-board measurement methodology for the liquid-solid slurry production of deep-seabed mining. Ocean Engineering, 149, 170–182.

    Article  Google Scholar 

  • Stanton, P., & Yu, A. (2010). Interim use of API codes for the design of dynamic riser systems for the deep sea mining industry. In: Proceedings of the 29th international conference on ocean, offshore and arctic engineering, Paper No OMAE2010–20189.

    Google Scholar 

  • UNOET. (1987). Delineation of mine sites and potential in different sea area. London: UN Ocean Economics and Technology Branch and Graham & Trotman Limited, 79 pp.

    Google Scholar 

  • World Bank Group. (2017). The growing role of minerals and metals for a low carbon future. Report of World Bank Group and Extractives Global Programmatic Support, June 2017.

    Google Scholar 

  • Xia, J. X., & Huang, J. Z. (2000). Additional pressure losses of solid-liquid flow in an oscillating pipeline. Journal of Hydrodynamics, B., 1, 75–80.

    Google Scholar 

  • Xia, J. X., Ni, J. R., & Mendoza, C. (2004). Upward flow of large size particles-water mixtures through swaying pipe. Journal of Transportation Engineering ASCE, 130(4), 535–543.

    Article  Google Scholar 

  • Yamazaki, T., & Sharma, R. (2001) Preliminary experiment on powderization of deep-sea sedimentduring hydraulic transportation. In: Proceedings of the 4th ISOPE ocean mining symposium, Szczecin (pp. 44–49).

    Google Scholar 

  • Yamazaki, T., Tomishima, Y., Handa, K., & Tsurusaki, K. (1989). Experimental study of adhesion appearing between plate and clay. In: Proceedings of the 8th international conference on offshore mechanics and arctic engineering, vol. 1 (pp 573–579).

    Google Scholar 

  • Yamazaki, T., Tsurusaki, K., Handa, K., & Inagaki, T. (1995). Geotechnical properties of deep ocean sediment layer. Journal Mining Material Process Institiute Japan, 111, 309–315. (in Japanese with English abstract).

    Google Scholar 

  • Yamazaki, T., Kuboki, E., Yoshida, H., & Suzuki, T. (2000). A consideration on size distribution of resuspended deep-sea sediments. In: Proceedings of the 10th international offshore and polar engineering conference, vol. 1 (pp 507–514).

    Google Scholar 

  • Yeu, T. K., Yoon, S. M., Hong, S., Kim, J. H., Kim, H. W., Choi, J. S., & Min, C. H. (2013). Operating system of KIOST pilot mining robot in inshore test. In: Proceedings of the 10th ISOPE ocean mining symposium, Szczecin (pp. 265–268).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sup Hong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hong, S., Kim, HW., Yeu, T., Choi, JS., Lee, T.H., Lee, JK. (2019). Technologies for Safe and Sustainable Mining of Deep-Seabed Minerals. In: Sharma, R. (eds) Environmental Issues of Deep-Sea Mining. Springer, Cham. https://doi.org/10.1007/978-3-030-12696-4_5

Download citation

Publish with us

Policies and ethics