Skip to main content

Techno-economic Perspective on Processing of Polymetallic Ocean Nodules

  • Chapter
  • First Online:

Abstract

This chapter looks at the techno-economic feasibility of processing of polymetallic nodules obtained from Pacific as well as Indian Ocean with an emphasis on cobalt market. Numerous processing routes have been developed for recovery of three (Cu + Ni + Co) as well as four (Cu + Ni + Co + Mn) metals. Some of the processes tested on scales varying from tens to a few hundreds of kilograms per batch indicate that there are no major gaps in the processing technologies. With the passage of time, recovery of molybdenum and rare earth elements (Mo and REE) from this resource has also gained importance. Various feasibility studies for extraction of metals from polymetallic nodules are presented in this chapter with respect to operating and capital investments for a 1.5/3.0 million tonne plant. It appears that enhanced requirement of cobalt and nickel mainly for the battery industry may drive the deep-sea mining in the future. The study concludes that it would be advisable to target 4+ metal recoveries (including Mo, REE, etc.) and design a flexible flow sheet for optimal product mix to get maximum value addition.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agarwal, J. C., & Wilder, T. C. (1974). Recovery of metal values from manganese nodules. US Patent 3,788,841, Jan 29, 1974.

    Google Scholar 

  • Agarwal, J. C., & Wilder, T. C. (1975). Recovery of metal values from manganese nodules. Canadian Patent 980,130, Dec 23, 1975.

    Google Scholar 

  • Agarwal, J. C., Beecher, N., Davies, D. S., Hubred, G. L., Kakaria, V. K., & Kust, R. N. (1976). Processing of ocean nodules: A technical and economic review. JOM, 28(4), 24–31.

    Article  Google Scholar 

  • Agarwal, J. C., Barner, H. E., Beecher, N. et al. (1978). Kennecott process for recovery of copper, nickel, cobalt and molybdenum from ocean nodules. Paper presented at AIME annual meeting. Denver, CO, Feb, SME preprint 788–789.

    Google Scholar 

  • Agarwal, J. C., Barner, H. E., Beecher, N., et al. (1979). Kennecott process for recovery of copper, nickel, cobalt and molybdenum from ocean nodules. Mining and Engineering, 31(12), 1704–1709.

    Google Scholar 

  • Agarwal, B., Hu, P., Placidi, M., Santo, H., & Zhou, J. J. (2012). Feasibility study on manganese nodules, recovery in the Clarion-Clipperton Zone. In R. A. Shenoi, P. A. Wilson, & S. S. Bennett (Eds.), Seabed exploitation (The LRET (The Lloyd’s Register Educational Trust) Collegium 2012 Series) (Vol. 2). Highfield, Southampton: The Print Centre, University of Southampton. isbn:978-0-854-32950-2.

    Google Scholar 

  • American Manganese Inc. (2013). Manganese extraction process. US patent No, 8460681, June 2013.

    Google Scholar 

  • Andrews, B. V., Flipse, J. E., Brown, F. C. (1983). The economic viability of a four metal pioneer deep sea venture, Texas A and M University, Sea Grant College program, TAMU-SG-84-201, pp. 201.

    Google Scholar 

  • Apavasileiou Konstantinos. (2014). Near future REE resources for Europe – the new frontier of marine exploration, mining and processing ERES2014: 1st European rare earth resources conference, Milos, 04–07/09/2014.

    Google Scholar 

  • Caron, M. H. (1924). Process of recovering values from nickel and cobalt-nickel ores. US Patent 1,487,145, Mar 18, 1924.

    Google Scholar 

  • Charles River Associates, Inc. (1980). Energy requirements for metals production: Comparison between ocean nodules and land-based resources-; Prepared for National Oceanic and Atmospheric Administration, Washington, DC, Sept 1980

    Google Scholar 

  • Charles, C., Herouin, G., Mouviel, F., & Bernard, J. (1990). Views on future nodule technology based on INFREMER GEMONOD studies. Materials and Society, 14(3–4), 299–326.

    Google Scholar 

  • Chilton, C. H. (1950). Six-tenths factor applies to complete plant costs. Chemical Engineering, 57, 112–114.

    Google Scholar 

  • Clark, A. L., Lum, J. A., Li, C., Icay, W., Morgan, C. Yoshiaki, I. (1995). Economic and development potential of manganese nodules within the Cook Island Economic Zone (EEZ), Pacific Islands Development Program, and Program on Resources, Energy and Minerals (https://www.google.co.in/search?q=Economic+and+development+potential+of+ manganese+nodules+within+the+CooK+Island+economic+zone+(EEZ)&oq=Economic+and+development+potential+of+manganese+nodules+within+the+CooK+Island+economic+zone+(EEZ)&aqs=chrome..69i57.1641j0j7&sourceid=chrome&ie=UTF-8).

  • Cornwell, N. W. (1974). Manganese nodule mining and economic rent. Natural Resources Journal, 14(4), 519–531.

    Google Scholar 

  • Cronan, D. S. (1980). Underwater minerals (p. 362). London: Academic.

    Google Scholar 

  • Das, R. P. (2001). India’s demonstration metallurgical plant to treat ocean nodule. Proceedings of 4th ocean mining symposium, ISOPE, Szczecin, Poland, Sept 23–27, 163–167.

    Google Scholar 

  • Das, R. P., & Anand, S. (2017). Metallurgical processing of polymetallic nodules – chapter 12. In R. Sharma (Ed.), Deep sea mining (pp. 365–394). Cham: Springer.

    Chapter  Google Scholar 

  • Flentje, W., Lee, S. E., Virnovskaia, A., Wang, S., & Zabeen, S. (2012). In R. A. Shenoi, P. A. Wilson, & S. S. Bennett (Eds.), Polymetallic nodule mining: Innovative concepts for commercialization (The LRET (The Lloyd’s Register Educational Trust) Collegium 2012 Series) (Vol. 5). Highfield, Southampton: The Print Centre University of Southampton. isbn:978-0-854-32953-3.

    Google Scholar 

  • Fuerstenau, D. W., & Han, K. N. (1983). Metallurgy and processing of marine manganese nodules. Mineral Processing Technology Revolutionary, 1, 1–83.

    Google Scholar 

  • Glasby, G. P. (Ed.). (1977). Marine manganese deposits (p. 523). Amsterdam: Elsevier.

    Google Scholar 

  • Han, K. N. (1997). Strategies for processing of ocean floor manganese nodules. Transactions of the Indian Institute of Metals, 51(1), 41–54.

    Google Scholar 

  • Han, K. N., & Fuerstenau, D. W. (1986). Extraction behaviour of metallic elements from deep sea manganese nodules in reducing medium. Marine Mining, 2, 155–169.

    Google Scholar 

  • Hanieg, G., & Meixner, M. J. (1974). Pressure leaching of manganese nodule with sulphuric acid. Erzmetall, 27(7–8), 335.

    Google Scholar 

  • Haynes, B. W., Law, S. L., Barron, D. C., et al (1985). Pacific manganese nodules: Characterization and processing. Bulletin 679, US Bureau of Mines.

    Google Scholar 

  • Hein, J. R. (2012). Prospects for rare earth elements from marine minerals, International Sea Bed Authority Briefing Paper 02/12.

    Google Scholar 

  • Hein, J. R. (2016). Manganese nodules. Santa Cruz: U.S. Geological Survey.

    Google Scholar 

  • Hein, J. R., & Koschinsky, A. (2014). Deep-ocean ferromanganese crusts and nodules, Chapter 11. In H. D. Holland & K. K. Turekian (Eds.), Treatise on geochemistry (Vol. 13, 2nd ed., pp. 273–291). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Hein, J. R., & Petersen, S. (2013). The geology of manganese nodules, Chapter 1. In E. Baker, Y. Beaudoin (Eds.), Deep sea minerals: Manganese nodules; a physical, biological, environmental, and technical review (pp. 7–18). Secretariat of the Pacific Community.

    Google Scholar 

  • Hein, J. R., Mizell, K., Koschinsky, A., & Coinrad, T. A. (2013). Deep-ocean mineral deposits as a source of critical metals for high and green technology applications: Comparison with land based resource. Ore Geology Reviews, 51, 1–14.

    Article  Google Scholar 

  • Hillman, T., & Gosling, B. B. (1985). Mining deep ocean manganese nodules: Description and economic analysis of a potential venture. Washington, DC: U.S. Department of the Interior. https://sciencebusiness.net/news/how-nickel-makes-electric-vehicles-go-green. Accessed Jan 18, 2018.

    Google Scholar 

  • Hubred, G. L. (1980). Manganese nodule extractive metallurgy: A review 1973–1978. Marine Mining, 2, 191–212.

    Google Scholar 

  • ISBA. (2008). Workshop on polymetallic nodule mining technology, status and challenges ahead. Chennai: NIOT. http://www.isa.org.jm/files/documents/EN/Pubs/Chennai.pdf. Accessed 18–22 Feb 2008.

    Google Scholar 

  • Jana, R. K., & Akerkar, D. D. (1989). Studies of the metal–ammonia–carbon dioxide–water system in extraction metallurgy of poly metallic sea nodules. Hydrometallurgy, 22, 363–378.

    Article  Google Scholar 

  • Jana, R. K., Srikanth, S., Pandey, B. D., et al. (1999a). Processing of deep sea manganese nodules at NML for recovery of copper, nickel and cobalt. Metals and Materials Processing, 11, 133–144.

    Google Scholar 

  • Jana, R. K., Pandey, B. D., & Premchand. (1999b). Ammoniacal leaching of roast reduced deep-sea manganese nodules. Hydrometallurgy, 53, 45–56.

    Article  Google Scholar 

  • Kotlinski, R., Stoyanova, H. V., & Avramov, H. A. (2008). An overview of the interoceanmetal (IOM) deep sea technology development (mining and processing) http://www.isa.org.jm/files/documents/EN/Workshops/Feb2008/IOM-Abst.pdf

  • Mero, J. L. (1965). The mineral resources of the sea (Vol. 1, pp. iii–iix). Amsterdam: Elsevier, 1–312.

    Google Scholar 

  • Mittal, N. K., & Sen, P. K. (2003). India’s first medium scale demonstration plant for treating polymetallic nodules. Minerals Engineering, 6, 865–868.

    Article  Google Scholar 

  • Mohwinkel, D., Kleint, C., & Koschinsky, A. (2014). Phase associations and potential selective extraction methods for selected high-tech metals from ferromanganese nodules and crusts with siderophores. Applied Geochemistry, 43, 13–21.

    Article  Google Scholar 

  • Monhemius, A. J. (1980). The extractive metallurgy of deep sea manganese nodule. In R. Burkin (Ed.), Topics in non ferrous extractive metallurgy (pp. 42–69). London: Society of chemical industry.

    Google Scholar 

  • Mukhopadhyay, R., Ghosh Anil, K., & Iyer Sridhar, D. (2018). Resource assessment, Chapter 8. In The Indian Ocean nodule field: Geology and resource potential (2nd ed.). Amsterdam: Elsevier.

    Google Scholar 

  • Neuschutz, D., Scheffler, U., & Junghans, H. (1977). Verfahren ZurAufarbeitung von Manganknollen Durch Schwefelsaure Druck laugung. (Method for the processing of manganese nodules by sulphuric acid pressure leaching). Erzmetall, 30(2), 61–67.

    Google Scholar 

  • Nickel Institute. (2018). Science/business, www.sciencebusiness.net/news/how-nickel-makes-electric-vehicles-go-green.

  • Parhi, P. K., Park, K. H., Kim, H. I., et al. (2011). Recovery of molybdenum from the sea nodule leach liquor by solvent extraction using Alamine 304-I. Hydrometallurgy, 105, 195–200.

    Article  Google Scholar 

  • Parhi, P. K., Park, K. H., Nam, C. W., Park, J. T., et al. (2013). Extraction of rare earth metals from deep sea nodule using H2SO4 solution. International Journal of Mineral Processing, 119, 89.

    Article  Google Scholar 

  • Parhi, P. K., Park, K. H., Nam, C. W., et al. (2015). Liquid-liquid extraction and separation of total rare earth (RE) metals from polymetallic manganese nodule leaching solution. Journal of Rare Earths, 3(2), 207–213.

    Article  Google Scholar 

  • Premchand, Jena R. K. (1999). Processing of polymetallic sea nodules: an overview. Proceedings of 3rd ocean mining symposium, ISOPE, Goa, India, Nov 8–10, 237–245.

    Google Scholar 

  • Reaugh, L. W. (2018). American Manganese Inc., www.americanmanganeseinc.com

  • Rodriguez, M. P., Aja, R., Miyares, R. C. (2013). Optimization of the existing methods for recovery of basic metals from polymetallic nodules. Proceedings of the 10th ISOPE ocean mining and gas hydrates symposium. Szczecin, Poland, Sept 22–26, 2013, p 173.

    Google Scholar 

  • Sazbo, L. J. (1976). Recovery of metal values from manganese deep sea nodules using ammoniacal cuprous leach solutions US patent 3,983,017, Sept 28, 1976.

    Google Scholar 

  • Sen, P. K. (2010). Metals and materials from deep sea nodules: An outlook for the future. International Materials Reviews, 55(6), 364–391.

    Article  Google Scholar 

  • Soreide, F. (2001). Deep ocean mining reconsidered: A study of the manganese nodule deposits. In Cook Island. fourth ISOPE ocean mining symposium, Sept 23–27, Szczecin, Poland, ISOPE-M-01-015, International Society of Offshore and Polar Engineers.

  • Sridhar, R. (1974). Thermal upgrading of sea nodules. Journal of Metals, 26(12), 18–22.

    Google Scholar 

  • Sridhar, R., Jones, W. E., & Warner, J. S. (1976). Extraction of copper, nickel, cobalt from sea nodules. Journal of Metals, 28(4), 32–37.

    Google Scholar 

  • Sridhar, R., Warner, J. S., Bell, M. C. E. (1977). Non-ferrous metal recovery from deep sea nodules. US Patent 4,049,438, September 20, 1977.

    Google Scholar 

  • Srikanth, S., Alex, T. C., Agrawal, A. et al. (1997). Reduction roasting of deep-sea manganese nodules using liquid and gaseous reductants. Proceedings of 2nd ocean mining symposium, Seoul, South Korea, Nov 24–26, 1997, (pp. 177–184).

    Google Scholar 

  • Volkmann, S. E., Kuhn, T., & Lehnen, F. (2018). A comprehensive approach for a techno-economic assessment of nodule mining in the deep sea. Mineral Economics. https://doi.org/10.1007/s13563-018-0143-1.

    Article  Google Scholar 

  • Wikipedia. (2018). https://ipfs.io/ipfs/QmXoypizjW3WknFiJnKLwHCnL72vedxjQkDDP1m XWo6uco /wiki/Manganese_nodule.html.

  • Xiang, Z., Zequan, H., Yujun, S. et al. (1999). The smelting –rusting-solvent extraction processes to recover valuable metals from polymetallic nodules. Proceedings of 3rd ocean mining symposium, ISOPE, Goa, India, Nov 8–10, 1999, (pp. 227–231).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navin Mittal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mittal, N., Anand, S. (2019). Techno-economic Perspective on Processing of Polymetallic Ocean Nodules. In: Sharma, R. (eds) Environmental Issues of Deep-Sea Mining. Springer, Cham. https://doi.org/10.1007/978-3-030-12696-4_20

Download citation

Publish with us

Policies and ethics