Skip to main content

Towards High-Order Diffraction Suppression Using Two-Dimensional Quasi-Periodic Gratings

  • Chapter
  • First Online:
Book cover Optics, Photonics and Laser Technology 2017

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 222))

Abstract

Two-dimensional (2D) diffraction gratings are playing an increasingly important role in the optics community due to their promising dispersion properties in two perpendicular directions. However, conventional 2D diffraction gratings often suffer from wavelength overlapping caused by high-order diffractions, and producing diffraction gratings with nanometer feature size still remains a challenge. In recent years, 2D quasi-periodic diffraction gratings have emerged that seek to suppress high-order diffractions, and to be compatibility with silicon planar process. This chapter reviews the optical properties of 2D quasi-periodic gratings comprised of quasi-triangle array of holes, and details the effects of hole shape and location distribution on the high-order diffraction suppression. It is also discuss the feasibility of various nanofabrication techniques for high volume manufacturing 2D quasi-periodic gratings at the nanoscale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Strong, The Johns Hopkins University and diffraction gratings. J. Opt. Soc. Am. A 50(12), 1148–1152 (1960)

    Article  ADS  Google Scholar 

  2. R.L.C. Filho, M.G.P. Homem, R. Landers, A.N. de Brito, Advances on the Brazilian toroidal grating monochromator (TGM) beamline. J. Electron Spectrosc. Relat. Phenom. 144–147, 1125–1127 (2005)

    Article  Google Scholar 

  3. A. Freise, A. Bunkowski, R. Schnabel, Phase and alignment noise in grating interferometers. New J. Phys. 9, 433 (2007)

    Article  ADS  Google Scholar 

  4. H. Zhang, J. Zhu, Z. Zhu, Y. Jin, Q. Li, G. Jin, Surface-plasmon-enhanced GaN-LED based on a multilayered M-shaped nano-grating. Opt. Express 21(11), 13492–13501 (2013)

    Article  ADS  Google Scholar 

  5. C. Palmer, E. Loewen, in Diffraction Grating Handbook (Newport Corp., 2005)

    Google Scholar 

  6. http://web.mit.edu/spectroscopy/history/nobel.html

  7. N. Bonod, J. Neauport, Diffraction gratings: from principles to applications in high-intensity lasers. Adv. Opt. Photonics 8(1), 156–199 (2016)

    Article  ADS  Google Scholar 

  8. R.K. Heilmann, M. Ahn, E.M. Gullikson, M.L. Schattenburg, Blazed high-efficiency x-ray diffraction via transmission through arrays of nanometer-scale mirrors. Opt. Express 16, 8658–8669 (2008)

    Article  ADS  Google Scholar 

  9. M. Born, E. Wolf, in Principles of Optics (Pergamon, London, 1980)

    Chapter  Google Scholar 

  10. P. Jin, Y. Gao, T. Liu, X. Li, J. Tan, Resist shaping for replication of micro-optical elements with continuous relief in fused silica. Opt. Lett. 35(8), 1169–1171 (2010)

    Article  ADS  Google Scholar 

  11. G. Vincent, R. Haidar, S. Collin, N. Guérineau, J. Primot, E. Cambril, J.-L. Pelouard, Realization of sinusoidal transmittance with subwavelength metallic structures. J. Opt. Soc. Am. B 25(5), 834–840 (2008)

    Article  ADS  Google Scholar 

  12. L. Cao, E. Förster, A. Fuhrmann, C. Wang, L. Kuang, S. Liu, Y. Ding, Single order x-ray diffraction with binary sinusoidal transmission grating. Appl. Phys. Lett. 90(5), 053501 (2007)

    Article  ADS  Google Scholar 

  13. C. Wang, L. Kuang, Z. Wang, S. Liu, Y. Ding, L. Cao, E. Foerster, D. Wang, C. Xie, T. Ye, Characterization of the diffraction properties of quantum-dot-array diffraction grating. Rev. Sci. Instrum. 78, 053503 (2007)

    Article  ADS  Google Scholar 

  14. L. Kuang, L. Cao, X. Zhu, S. Wu, Z. Wang, C. Wang, S. Liu, S. Jiang, J. Yang, Y. Ding, C. Xie, J. Zheng, Quasi-sinusoidal single-order diffraction transmission grating used in x-ray spectroscopy. Opt. Lett. 36(20), 3954–3956 (2011)

    Article  ADS  Google Scholar 

  15. N. Gao, C. Xie, High-order diffraction suppression using modulated groove position gratings. Opt. Lett. 36(21), 4251–4253 (2011)

    Article  ADS  Google Scholar 

  16. H. Zang, C. Wang, Y. Gao, W. Zhou, L. Kuang, L. Wei, W. Fan, W. Zhang, Z. Zhao, L. Cao, Y. Gu, B. Zhang, G. Jiang, X. Zhu, C. Xie, Y. Zhao, M. Cui, Elimination of higher order diffraction using zigzag transmission grating in soft x-ray region. Appl. Phys. Lett. 100(11), 111904 (2012)

    Article  ADS  Google Scholar 

  17. Q. Fan, Y. Liu, C. Wang, Z. Yang, L. Wei, X. Zhu, C. Xie, Q. Zhang, F. Qian, Z. Yan, Y. Gu, W. Zhou, G. Jiang, L. Cao, Single-order diffraction grating designed by trapezoidal transmission function. Opt. Lett. 40(11), 2657–2660 (2015)

    Article  ADS  Google Scholar 

  18. F.J. Torcal-Milla, L.M. Sanchez-Brea, E. Bernabeu, Diffraction of gratings with rough edges. Opt. Express 16(24), 19757–19769 (2008)

    Article  ADS  Google Scholar 

  19. S. Gupta, Single-order transmission diffraction gratings based on dispersion engineered all-dielectric metasurfaces. J. Opt. Soc. Am. A 33(8), 1641–1647 (2016)

    Article  ADS  Google Scholar 

  20. W. Lee, H. Lee, J. Hahn, Correction of spectral deformation by second-order diffraction overlap in a mid-infrared range grating spectrometer using a PbSe array detector. Infrared Phys. Technol. 67, 327–332 (2014)

    Article  ADS  Google Scholar 

  21. F. Quinn, D. Teehan, M. MacDonald, S. Downes, P. Bailey, Higher-order suppression in diffraction-grating monochromators using thin films. J. Synchrotron Radiat. 5, 783–785 (1998)

    Article  Google Scholar 

  22. R. BrZuer, O. Bryngdahl, Electromagnetic diffraction analysis of two-dimensional gratings. Opt. Commun. 100, 1–5 (1993)

    Google Scholar 

  23. E. Grann, M. Moharam, D.A. Pommet, Artificial uniaxial and biaxial dielectrics with use of two-dimensional subwavelength binary gratings. J. Opt. Soc. Am. A 11(10), 2695–2703 (1994)

    Article  ADS  Google Scholar 

  24. M. Kagias, Z. Wang, P. Villanueva-Perez, K. Jefimovs, M. Stampanoni, 2D-omnidirectional hard-x-ray scattering sensitivity in a single shot. Phys. Rev. Lett. 116, 093902 (2016)

    Article  ADS  Google Scholar 

  25. S. Rutishauser, M. Bednarzik, I. Zanette, T. Weitkamp, M. Borner, J. Mohr, C. David, Fabrication of two-dimensional hard X-ray diffraction gratings. Microelectron. Eng. 101, 12–16 (2013)

    Article  Google Scholar 

  26. G. Dai, F. Pohlenz, T. Dziomba, M. Xu, A. Diener, L. Koenders, H. Danzebrink, Accurate and traceable calibration of two-dimensional gratings. Meas. Sci. Technol. 18, 415–421 (2007)

    Article  ADS  Google Scholar 

  27. Y. Kayser, S. Rutishauser, T. Katayama, T. Kameshima, H. Ohashi, U. Flechsig, M. Yabashi, C. David, Shot-to-shot diagnostic of the longitudinal photon source position at the SPring-8 Angstrom Compact Free Electron Laser by means of x-ray grating interferometry. Opt. Lett. 41(4), 733–736 (2016)

    Article  ADS  Google Scholar 

  28. L. Kipp, M. Skibowski, R.L. Johnson, R. Berndt, R. Adelung, S. Harm, R. Seemann, Sharper images by focusing soft X-rays with photon sieves. Nature 414(6860), 184–188 (2001)

    Article  ADS  Google Scholar 

  29. K. Huang, H. Liu, F. J. Garcia-Vidal, M. Hong, B. Luk’yanchuk, J. Teng, C. Qiu, Ultrahigh-capacity non-periodic photon sieves operating in visible light. Nat. Commun. 6, 7059 (2015)

    Google Scholar 

  30. C. Xie, X. Zhu, H. Li, L. Shi, Y. Hua, M. Liu, Toward two-dimensional nanometer resolution hard X-ray differential-interference-contrast imaging using modified photon sieves. Opt. Lett. 37(4), 749–751 (2012)

    Article  ADS  Google Scholar 

  31. F. Huang, T. Kao, V. Fedotov, Y. Chen, N. Zheludev, Nanohole array as a lens. Nano Lett. 8(8), 2469–2472 (2008)

    Article  ADS  Google Scholar 

  32. J. Niu, L. Shi, Z. Liu, T. Pu, H. Li, G. Wang, C. Xie, High order diffraction suppression by quasi-periodic two-dimensional gratings. Opt. Mater. Express 7, 366–375 (2017)

    Article  ADS  Google Scholar 

  33. L. Shi, H. Li, Z. Liu, T. Pu, N. Gao, C. Xie, The quasi-triangle array of rectangular holes with the completely suppression of high order diffractions, in Proceedings of the 5th International Conference on Photonics, Optics and Laser Technology—Volume 1: PHOTOPTICS, Porto, Portugal, 2017, pp. 54–58

    Google Scholar 

  34. E. Di Fabrizio, S. Cabrini, D. Cojoc, F. Romanato, L. Businaro, M. Altissimo, B. Kaulich, T. Wilhein, J. Susini, M. De Vittorio, E. Vitale, G. Gigli, R. Cingolani, Shaping X-rays by diffractive coded nano-optics. Microelectron. Eng. 67–68, 87–95 (2003)

    Article  Google Scholar 

  35. H.I. Smith, 100 years of x-ray: impact on micro- and nanofabrication. J. Vac. Sci. Technol. B, 13, 2323–2328 (1995)

    Article  ADS  Google Scholar 

  36. G.R. Harrison, S.W. Thompson, H. Kazukonis, J.R. Connell, 750-mm ruling engine producing large gratings and echelles. J. Opt. Soc. Am. 62, 751–756 (1972)

    Article  ADS  Google Scholar 

  37. X. Li, H. Yu, X. Qi, S. Feng, J. Cui, S. Zhang, J. Tu, Y. Tang, 300 mm ruling engine producing gratings and echelles under interferometric control in China. Appl. Opt. 54, 1819–1826 (2015)

    Article  ADS  Google Scholar 

  38. B. Paivanranta, A. Langner, E. Kirk, C. David, Y. Ekinci, Sub-10 nm patterning using EUV interference lithography. Nanotechnology 22, 375302 (2011)

    Article  Google Scholar 

  39. A. Ritucci, A. Reale, P. Zuppella, L. Reale, P. Tucceri, G. Tomassetti, P. Bettotti, L. Pavesi, Interference lithography by a soft x-ray laser beam: nanopatterning on photoresists. J. Appl. Phys. 102(3), 034313–034314 (2007)

    Article  ADS  Google Scholar 

  40. P. Wachulak, M. Grisham, S. Heinbuch, D. Martz, W. Rockward, D. Hill, J. Rocca, C. Menoni, E. Anderson, M. Marconi, Interferometric lithography with an amplitude division interferometer and a desktop extreme ultraviolet laser. J. Opt. Soc. Am. B 25, 104–107 (2008)

    Article  ADS  Google Scholar 

  41. H. Shiotani, S. Suzuki, D. Gun Lee, P. Naulleau, Y. Fukushima, R. Ohnishi, T. Watanabe, H. Kinoshita, Dual grating interferometric lithography for 22-nm node. Jpn. J. Appl. Phys. 47, 4881–4885 (2008)

    Article  ADS  Google Scholar 

  42. M.L. Schattenburg, C.R. Canizares, D. Dewey, K.A. Flanagan, M.A. Hamnett, A.M. Levine, K.S.K. Lum, R. Manikkalingam, T.H. Markert, H.I. Smith, Transmission grating spectroscopy and the Advanced X-Ray Astrophysics Facility (AXAF). Opt. Eng. 30(10), 1590–1600 (1991)

    Article  ADS  Google Scholar 

  43. J.K.W. Yang, B. Cord, H. Duan, K.K. Berggren, J. Klingfus, S.W. Nam, K.B. Kim, M.J. Rooks, Understanding of hydrogen silsesquioxane electron resist for sub-5-nm-half-pitch lithography. J. Vac. Sci. Technol. B 27(6), 2622–2627 (2009)

    Article  Google Scholar 

  44. W. Chao, B.D. Harteneck, J.A. Liddle, E.H. Anderson. D.T. Attwood, Soft x-ray microscopy at a spatial resolution better than 15 nm. Nature 435(7046), 1210–1213 (2005)

    Article  ADS  Google Scholar 

  45. Y. Usami, T. Watanabe, Y. Kanazawa, K. Taga, H. Kawai, K. Ichikawa, 405 nm laser thermal lithography of 40 nm pattern using super resolution organic resist material. Appl. Phys. Express 2, 126502 (2009)

    Article  ADS  Google Scholar 

  46. L. Li, R.R. Gattass, E. Gershgoren, H. Hwang, J.T. Fourkas, Achieving l/20 resolution by one-color initiation and deactivation of polymerization. Science 324, 910–913 (2009)

    Article  ADS  Google Scholar 

  47. Y. Cao, M. Gu, λ/26 silver nanodots fabricated by direct laser writing through highly sensitive two-photon photoreduction. Appl. Phys. Lett. 103, 213104 (2013)

    Article  ADS  Google Scholar 

  48. Z. Gan, Y. Cao, R.A. Evans, M, Gu, Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size. Nat. Commun. 4, 2061 (2013)

    Google Scholar 

  49. S.Y. Chou, P.R. Krauss, P.J. Renstrom, Imprint of sub-25 nm vias and trenches in polymers. Appl. Phys. Lett. 67, 3114 (1995)

    Article  ADS  Google Scholar 

  50. http://www.itrs.net/. Accessed 2017

  51. J.V. Schoot, H. Schift, Next-generation lithography-an outlook on EUV projection and nanoimprint. Adv. Opt. Techn. 6(3–4), 159–162 (2017)

    Google Scholar 

  52. M.T. Gale, C. Gimkiewicz, S. Obi, M. Schnieper, J. Sochtig, H. Thiele, S. Westenhofer, Replication technology for optical microsystems. Opt. Lasers Eng. 43, 373–386 (2005)

    Article  Google Scholar 

  53. M. Colburn, S. Johnson, M. Stewart, S. Damle, T. Bailey, B. Choi, M. Wedlake, T. Michaelson, S.V. Sreenivasan, J. Ekerdt, C.G. Willson, Step and flash imprint lithography: a new approach to high-resolution patterning. Proc. SPIE 3676, 379–385 (1999)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are particularly grateful to the noteworthy assistance of their colleagues. We also would like to thank L. Cao for helpful discussion over many years. This work was funded by National Key Research and Development Program of China (2017YFA0206002) and National Natural Science Foundation of China (61275170, 61107032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lina Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xie, C., Shi, L., Li, H., Liu, Z., Pu, T., Gao, N. (2019). Towards High-Order Diffraction Suppression Using Two-Dimensional Quasi-Periodic Gratings. In: Ribeiro, P., Andrews, D., Raposo, M. (eds) Optics, Photonics and Laser Technology 2017. Springer Series in Optical Sciences, vol 222. Springer, Cham. https://doi.org/10.1007/978-3-030-12692-6_2

Download citation

Publish with us

Policies and ethics