Skip to main content

Suppression of Zeroth-Order Diffraction in Phase-Only Spatial Light Modulator

  • Chapter
  • First Online:

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 222))

Abstract

A correction beam is created using a spatial light modulator (SLM) to suppress the zeroth-order diffraction (ZOD) that is produced by the unmodulated light coming from the dead areas of the said SLM. The correction beam is designed to interfere destructively with the undesirable ZOD that degrades the overall quality of the propagated SLM signal. Two possible techniques are developed and tested for correction-beam generation: aperture division and field addition. With a properly-calibrated SLM, ZOD suppression is demonstrated numerically and experimentally at sufficiently high area factor (AF) values where suitable matching is achieved between the correction beam and the ZOD profiles to result in a \(39\%\) reduction of the ZOD intensity via angular aperture division, \(32\%\) reduction via annular aperture division, and \(24\%\) reduction via vertical aperture division. At low AF values however, meaningful ZOD suppression is not obtained. With the field addition method, a ZOD reduction as high as \(99\%\) is gained numerically which was not realized experimentally using an SLM with a fill factor of 0.81 due to limitations posed by an iterative phase-recovery algorithm (ghost image) as well as unwanted signal contributions from the SLM anti-reflection coating, SLM surface variations, optical misalignment and aberrations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. R. Eriksen, V. Daria, J. Gluckstad, Fully dynamic multiple-beam optical tweezers. Opt. Express 10, 597–602 (2002)

    Article  ADS  Google Scholar 

  2. M. Polin, K. Ladavac, S.H. Lee, Y. Roichman, D.G. Grier, Optimized holographic optical traps. Opt. Express 13, 5831–5845 (2005)

    Article  ADS  Google Scholar 

  3. D. Palima, V. Daria, Effect of spurious diffraction orders in arbitrary multifoci patterns produced via phase-only holograms. Appl. Opt. 45, 6689–6693 (2006)

    Article  ADS  Google Scholar 

  4. V. Nikolenko, B.O. Watson, R. Araya, A. Woodruff, D. Peterka, R. Yuste, Slm microscopy: scanless two-photon imaging and photostimulation using spatial light modulators. Front. Neural Circuits 2, 5 (2008)

    Article  Google Scholar 

  5. N.J. Jenness, R.T. Hill, A. Hucknall, A. Chilkoti, R.L. Clark, A versatile diffractive maskless lithography for single-shot and serial microfabrication. Opt. Express 18, 11754–11762 (2010)

    Article  ADS  Google Scholar 

  6. P.L. Hilario, M.J. Villangca, G. Tapang, Independent light fields generated using a phase-only spatial light modulator. Opt. Lett. 39, 2036–2039 (2014)

    Article  ADS  Google Scholar 

  7. L. Zhu, J. Wang, Arbitrary manipulation of spatial amplitude and phase using phase-only spatial light modulators. Sci. Rep. 4, 7441 (2014)

    Article  ADS  Google Scholar 

  8. E.R. Dufresne, G.C. Spalding, M.T. Dearing, S.A. Sheets, D.G. Grier, Computer-generated holographic optical tweezers arrays. Rev. Sci. Instrum. 72, 1810–1816 (2001)

    Article  ADS  Google Scholar 

  9. H. Melville, G.F. Milne, G.C. Spalding, W. Sibbett, K. Dholakia, D. McGloin, Optical trapping of three-dimensional structures using dynamic holograms. Opt. Express 11, 3562–3567 (2003)

    Article  ADS  Google Scholar 

  10. M. Farsari, S. Huang, P. Birch, F. Claret-Tournier, R. Young, D. Budgett, C. Bradfield, C. Chatwin, Microfabrication by use of a spatial light modulator in the ultraviolet: experimental results. Opt. Lett. 24, 549–550 (1999)

    Article  ADS  Google Scholar 

  11. Y. Shao, W. Qin, H. Liu, J. Qu, X. Peng, H. Niu, B.Z. Gao, Addressable multiregional and multifocal multiphoton microscopy based on a spatial light modulator. J. Biomed. Opt. 17, 0305051–0305053 (2012)

    Google Scholar 

  12. F.O. Fahrbach, V. Gurchenkov, K. Alessandri, P. Nassoy, A. Rohrbach, Light-sheet microscopy in thick media using scanned bessel beams and two-photon fluorescence excitation. Opt. Express 21, 13824–13839 (2013)

    Article  ADS  Google Scholar 

  13. M.A. Alagao, M.A. Go, M. Soriano, G.A. Tapang, Improving the point spread function of an aberrated 7-mirror segmented reflecting telescope, in 4th International Conference on Optics, Photonics and Laser Technology, Institute for Systems and Technologies of Information, Control and Communication (2015)

    Google Scholar 

  14. D. Palima, V. Daria, Holographic projection of arbitrary light patterns with a suppressed zero-order beam. Appl. Opt. 46, 4197–4201 (2007)

    Article  ADS  Google Scholar 

  15. I. Moreno, J.A. Davis, T.M. Hernandez, D.M. Cottrell, D. Sand, Complete polarization control of light from a liquid crystal spatial light modulator. Opt. Express 20, 364–376 (2012)

    Article  ADS  Google Scholar 

  16. Hamamatsu: SLM module, programmable phase modulator (2003)

    Google Scholar 

  17. Y. Takiguchi, T. Otsu, T. Inoue, H. Toyoda, Self-distortion compensation of spatial light modulator under temperature-varying conditions. Opt. Express 22, 16087–16098 (2014)

    Article  ADS  Google Scholar 

  18. T. Inoue, H. Tanaka, N. Fukuchi, M. Takumi, N. Matsumoto, T. Hara, N. Yoshida, Y. Igasaki, Y. Kobayashi, Lcos spatial light modulator controlled by 12-bit signals for optical phase-only modulation, in Integrated Optoelectronic Devices 2007 (International Society for Optics and Photonics, 2007), pp. 64870Y–64870Y

    Google Scholar 

  19. S. Reichelt, Spatially resolved phase-response calibration of liquid-crystal-based spatial light modulators. Appl. Opt. 52, 2610–2618 (2013)

    Article  ADS  Google Scholar 

  20. M. Persson, D. Engström, M. Goksör, Reducing the effect of pixel crosstalk in phase only spatial light modulators. Opt. Express 20, 22334–22343 (2012)

    Article  ADS  Google Scholar 

  21. E. Hällstig, J. Stigwall, T. Martin, L. Sjöqvist, M. Lindgren, Fringing fields in a liquid crystal spatial light modulator for beam steering. J. Mod. Opt. 51, 1233–1247 (2004)

    Article  ADS  Google Scholar 

  22. L. Yang, J. Xia, C. Chang, X. Zhang, Z. Yang, J. Chen, Nonlinear dynamic phase response calibration by digital holographic microscopy. Appl. Opt. 54, 7799–7806 (2015)

    Article  ADS  Google Scholar 

  23. V. Arrizon, E. Carreon, M. Testorf, Implementation of fourier array illuminators using pixelated slm: efficiency limitations. Opt. Commun. 160, 207–213 (1999)

    Article  ADS  Google Scholar 

  24. E. Ronzitti, M. Guillon, V. de Sars, V. Emiliani, LCOS nematic SLM characterization and modeling for diffraction efficiency optimization, zero and ghost orders suppression. Opt. Express 20, 17843–17855 (2012)

    Article  ADS  Google Scholar 

  25. J. Liang, Z. Cao, M.F. Becker, Phase compression technique to suppress the zero-order diffraction from a pixelated spatial light modulator (SLM), in Frontiers in Optics (Optical Society of America, 2010), p. FThBB6

    Google Scholar 

  26. W.D.G.D. Improso, P.L.A.C. Hilario, G.A. Tapang, Zero order diffraction suppression in a phase-only spatial light modulator via the gs algorithm, in Frontiers in Optics (Optical Society of America, 2014), p. FTu4C–3

    Google Scholar 

  27. W.D.G.D. Improso, G.A. Tapang, C.A. Saloma, Suppression of zeroth-order diffraction in phase-only spatial light modulator via destructive interference with a correction beam, in 5th International Conference on Photonics, Optics, and Laser Technology, Institute for Systems and Technologies of Information, Control and Communication (2017), pp. 208–214

    Google Scholar 

  28. G. Tapang, C. Saloma, Behavior of the point-spread function in photon-limited confocal microscopy. Appl. Opt. 41, 1534–1540 (2002)

    Article  ADS  Google Scholar 

  29. J.R. Fienup, Phase retrieval algorithms: a comparison. Appl. Opt. 21, 2758–2769 (1982)

    Article  ADS  Google Scholar 

  30. C. Gaur, K. Khare, Sparsity assisted phase retrieval of complex valued objects, in SPIE Photonics Europe (International Society for Optics and Photonics, 2016), p. 98960G

    Google Scholar 

  31. A. Lizana, I. Moreno, A. Márquez, C. Iemmi, E. Fernández, J. Campos, M. Yzuel, Time fluctuations of the phase modulation in a liquid crystal on silicon display: characterization and effects in diffractive optics. Opt. Express 16, 16711–16722 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partly funded by the UP System Emerging Interdisciplinary Research Program (OVPA-EIDR-C2-B-02-612-07) and the UP System Enhanced Creative Work and Research Grant (ECWRG 2014-11). This work was also supported by the Versatile Instrumentation System for Science Education and Research, and the PCIEERD DOST STAMP (Standards and Testing Automated Modular Platform) Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wynn Dunn Gil D. Improso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Improso, W.D.G.D., Tapang, G.A., Saloma, C.A. (2019). Suppression of Zeroth-Order Diffraction in Phase-Only Spatial Light Modulator. In: Ribeiro, P., Andrews, D., Raposo, M. (eds) Optics, Photonics and Laser Technology 2017. Springer Series in Optical Sciences, vol 222. Springer, Cham. https://doi.org/10.1007/978-3-030-12692-6_1

Download citation

Publish with us

Policies and ethics