Skip to main content

Application of Bismuth-Based Photocatalysts in Environmental Protection

  • Chapter
  • First Online:
Nanophotocatalysis and Environmental Applications

Part of the book series: Environmental Chemistry for a Sustainable World ((ECSW,volume 30))

Abstract

Photocatalysis by use of advanced oxidation processes (AOPs) is gaining attention as an effective method of air purification and water treatment. Undoubtedly, photocatalysis can also be applied to produce useful fuels from photocatalytic reduction of CO2 and splitting of water, or it can be utilized as a “green” technology in industrial production. Despite recent research into other photocatalysts (e.g., TiO2 and perovskites), bismuth-based semiconductors such as Bi2O3, BiPO4, (BiO)2CO3, BiOX (where X = Cl, Br, and I), and pentavalent bismuthates (e.g., NaBiO3) are most promising because of their low cost, nontoxicity, and high oxidizing and reduction abilities in solar and visible light. Moreover, the conduction band edge and the valence band edge of Bi-based photocatalysts can be designed by using a suitable strategy for preparation of these materials. The photocatalytic activity of Bi-based materials can be additionally enhanced by heterostructures, e.g., using carbon or graphene quantum dots, Ag/AgCl, modified TiO2, or Fe3O4.

This chapter aims to highlight recent advancements in application of Bi-based photocatalysts and heterostructures in environmental protection. Albeit nonexhaustive, this review explores the progress made in the last 6 years by focusing on solar and visible light–driven degradation processes to eliminate such contaminants as antibiotics, nonsteroidal anti-inflammatory drugs, beta blockers, anticonvulsants, hormones, resorcinol, bisphenol A, and other derivatives of phenol, many of which have been detected in aqueous ecosystems. The application of Bi-based photocatalysts for removing NOx from indoor air using solar and visible light illumination is also presented. Finally, advances in water splitting and CO2 reduction to CO and CH4 with Bi-based photocatalysts are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Download references

Acknowledgements

The author would like to acknowledge financial support received from the Polish Ministry of 406 Science and Higher Education under grant number DS 530-8626-D596-19-1F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewa Maria Siedlecka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Siedlecka, E.M. (2020). Application of Bismuth-Based Photocatalysts in Environmental Protection. In: Inamuddin, Asiri, A., Lichtfouse, E. (eds) Nanophotocatalysis and Environmental Applications . Environmental Chemistry for a Sustainable World, vol 30. Springer, Cham. https://doi.org/10.1007/978-3-030-12619-3_4

Download citation

Publish with us

Policies and ethics