Skip to main content

Robust Encryption, Extended

  • Conference paper
  • First Online:
Topics in Cryptology – CT-RSA 2019 (CT-RSA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11405))

Included in the following conference series:

Abstract

Robustness is a notion often tacitly assumed while working with encrypted data. Roughly speaking, it states that a ciphertext cannot be decrypted under different keys. Initially formalized in a public-key context, it has been further extended to key-encapsulation mechanisms, and more recently to pseudorandom functions, message-authentication codes and authenticated encryption. In this work, we motivate the importance of establishing similar guarantees for functional encryption schemes, even under adversarially generated keys. Our main security notion is intended to capture the scenario where a ciphertext obtained under a master key (corresponding to Authority 1) is decrypted by functional keys issued under a different master key (Authority 2). Furthermore, we show there exist simple functional encryption schemes where robustness under adversarial key-generation is not achieved. As a secondary and independent result, we formalize robustness for digital signatures – a signature should not verify under multiple keys – and point out that certain signature schemes are not robust when the keys are adversarially generated.

We present simple, generic transforms that turn a scheme into a robust one, while maintaining the original scheme’s security. For the case of public-key functional encryption, we look into ciphertext anonymity and provide a transform achieving it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    There are several scenarios leading to such corruption, including memory corruption.

  2. 2.

    We may assume that malformed keys would be easily recognisable and rejected.

  3. 3.

    See for instance [5] for the definition and usage of a cryptographic pairing.

  4. 4.

    \(\mathsf {sk}\) is common to all users querying a \({\mathsf {sk}_f}\).

References

  1. Abdalla, M., Bellare, M., Neven, G.: Robust encryption. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 480–497. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-2_28

    Chapter  Google Scholar 

  2. Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption schemes for inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 733–751. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2_33

    Chapter  Google Scholar 

  3. Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for inner products, from standard assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 333–362. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-3_12

    Chapter  Google Scholar 

  4. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_4

    Chapter  Google Scholar 

  5. Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH assumption in bilinear groups. J. Cryptol. 21(2), 149–177 (2008)

    Article  MathSciNet  Google Scholar 

  6. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6_16

    Chapter  Google Scholar 

  7. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom functions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0_29

    Chapter  Google Scholar 

  8. Brakerski, Z., Komargodski, I., Segev, G.: Multi-input functional encryption in the private-key setting: stronger security from weaker assumptions. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 852–880. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_30

    Chapter  MATH  Google Scholar 

  9. Chou, T., Orlandi, C.: The simplest protocol for oblivious transfer. In: Lauter, K., Rodríguez-Henríquez, F. (eds.) LATINCRYPT 2015. LNCS, vol. 9230, pp. 40–58. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22174-8_3

    Chapter  Google Scholar 

  10. Cohen, A., Holmgren, J., Nishimaki, R., Vaikuntanathan, V., Wichs, D.: Watermarking cryptographic capabilities. In: Wichs, D., Mansour, Y. (eds.) 48th ACM STOC, pp. 1115–1127. ACM Press, June 2016

    Google Scholar 

  11. Damgård, I.B.: Collision free hash functions and public key signature schemes. In: Chaum, D., Price, W.L. (eds.) EUROCRYPT 1987. LNCS, vol. 304, pp. 203–216. Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-39118-5_19

    Chapter  Google Scholar 

  12. Farshim, P., Libert, B., Paterson, K.G., Quaglia, E.A.: Robust encryption, revisited. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 352–368. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-7_22

    Chapter  Google Scholar 

  13. Farshim, P., Orlandi, C., Roşie, R.: Security of symmetric primitives under incorrect usage of keys. IACR Trans. Symm. Cryptol. 2017(1), 449–473 (2017)

    Google Scholar 

  14. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J. ACM 33(4), 792–807 (1986)

    Article  MathSciNet  Google Scholar 

  15. Goldwasser, S., Micali, S., Rivest, R.L.: A “Paradoxical” solution to the signature problem. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, p. 467. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7_37

    Chapter  Google Scholar 

  16. Grubbs, P., Lu, J., Ristenpart, T.: Message franking via committing authenticated encryption. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 66–97. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63697-9_3

    Chapter  Google Scholar 

  17. Jarecki, S., Krawczyk, H., Xu, J.: OPAQUE: an asymmetric PAKE protocol secure against pre-computation attacks. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 456–486. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7_15

    Chapter  Google Scholar 

  18. Komargodski, I., Segev, G.: From minicrypt to obfustopia via private-key functional encryption. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 122–151. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7_5

    Chapter  Google Scholar 

  19. Mohassel, P.: A closer look at anonymity and robustness in encryption schemes. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 501–518. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_29

    Chapter  MATH  Google Scholar 

  20. O’Neill, A.: Definitional issues in functional encryption. Cryptology ePrint Archive, Report 2010/556 (2010). http://eprint.iacr.org/2010/556

  21. Yao, A.C.-C.: Theory and applications of trapdoor functions (extended abstract). In: 23rd FOCS, pp. 80–91. IEEE Computer Society Press, November 1982

    Google Scholar 

Download references

Acknowledgements

The authors thank to anonymous reviewers for valuable comments. Roşie was supported by EU Horizon 2020 research and innovation programme under grant agreements No H2020-ERC-2017-ADG-787390 CLOUDMAP and No H2020-MSCA-ITN-2014-643161 ECRYPT-NET.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rémi Géraud , David Naccache or Răzvan Roşie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Géraud, R., Naccache, D., Roşie, R. (2019). Robust Encryption, Extended. In: Matsui, M. (eds) Topics in Cryptology – CT-RSA 2019. CT-RSA 2019. Lecture Notes in Computer Science(), vol 11405. Springer, Cham. https://doi.org/10.1007/978-3-030-12612-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12612-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12611-7

  • Online ISBN: 978-3-030-12612-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics