Skip to main content

Error Detection in Monotone Span Programs with Application to Communication-Efficient Multi-party Computation

  • Conference paper
  • First Online:
Topics in Cryptology – CT-RSA 2019 (CT-RSA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11405))

Included in the following conference series:

Abstract

Recent improvements in the state-of-the-art of MPC for non-full-threshold access structures introduced the idea of using a collision-resistant hash functions and redundancy in the secret-sharing scheme to construct a communication-efficient MPC protocol which is computationally-secure against malicious adversaries, with abort. The prior work is based on replicated secret-sharing; in this work we extend this methodology to any LSSS implementing a \(\mathcal {Q}_{2}\) access structure. To do so we need to establish a folklore property of error detection for such LSSS and their associated Monotone Span Programs. In doing so we obtain communication-efficient online and offline protocols for MPC in the pre-processing model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the full version we provide a formal description of MSPs in which all qualified sets of parties can reconstruct the entire share vector and explain how such MSPs are “good” for our protocol.

  2. 2.

    If using a small ring/finite field we simply need to modify the sacrificing stage in the triple production process; no changes are needed for the online phase at all.

References

  1. Araki, T., Furukawa, J., Lindell, Y., Nof, A., Ohara, K.: High-throughput semi-honest secure three-party computation with an honest majority. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 805–817. ACM Press, October 2016

    Google Scholar 

  2. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_34

    Chapter  Google Scholar 

  3. Beaver, D., Wool, A.: Quorum-based secure multi-party computation. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 375–390. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054140

    Chapter  Google Scholar 

  4. Beimel, A., Gál, A., Paterson, M.: Lower bounds for monotone span programs. In: 36th FOCS, pp. 674–681. IEEE Computer Society Press, October 1995

    Google Scholar 

  5. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation (extended abstract). In: 20th ACM STOC, pp. 1–10. ACM Press, May 1988

    Google Scholar 

  6. Ben-Sasson, E., Fehr, S., Ostrovsky, R.: Near-linear unconditionally-secure multiparty computation with a dishonest minority. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 663–680. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_39

    Chapter  Google Scholar 

  7. Bendlin, R., Damgård, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption and multiparty computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 169–188. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_11

    Chapter  Google Scholar 

  8. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Higher-order threshold implementations. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part II. LNCS, vol. 8874, pp. 326–343. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-8_18

    Chapter  Google Scholar 

  9. Blakley, G.R.: Safeguarding cryptographic keys. In: Proceedings of AFIPS 1979 National Computer Conference, vol. 48, pp. 313–317 (1979)

    Google Scholar 

  10. Bogdanov, D., Kamm, L., Kubo, B., Rebane, R., Sokk, V., Talviste, R.: Students and taxes: a privacy-preserving social study using secure computation. Cryptology ePrint Archive, Report 2015/1159 (2015). http://eprint.iacr.org/2015/1159

  11. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: a framework for fast privacy-preserving computations. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS, vol. 5283, pp. 192–206. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88313-5_13

    Chapter  Google Scholar 

  12. Bogetoft, P., et al.: Secure multiparty computation goes live. In: Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 325–343. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03549-4_20

    Chapter  Google Scholar 

  13. Canetti, R.: Security and composition of multiparty cryptographic protocols. J. Cryptology 13(1), 143–202 (2000)

    Article  MathSciNet  Google Scholar 

  14. Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. Cryptology ePrint Archive, Report 2000/067 (2000). http://eprint.iacr.org/2000/067

  15. Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols (extended abstract). In: 20th ACM STOC, pp. 11–19. ACM Press, May 1988

    Google Scholar 

  16. Chida, K., et al.: Fast large-scale honest-majority MPC for malicious adversaries. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part III. LNCS, vol. 10993, pp. 34–64. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0_2

    Chapter  Google Scholar 

  17. Cramer, R., Damgård, I., Ishai, Y.: Share conversion, pseudorandom secret-sharing and applications to secure computation. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 342–362. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30576-7_19

    Chapter  Google Scholar 

  18. Cramer, R., Damgård, I., Maurer, U.: General secure multi-party computation from any linear secret-sharing scheme. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6_22

    Chapter  Google Scholar 

  19. Cramer, R., et al.: On codes, matroids and secure multi-party computation from linear secret sharing schemes. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 327–343. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218_20

    Chapter  Google Scholar 

  20. Damgård, I., Geisler, M., Krøigaard, M., Nielsen, J.B.: Asynchronous multiparty computation: theory and implementation. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 160–179. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00468-1_10

    Chapter  Google Scholar 

  21. Damgård, I., Ishai, Y., Krøigaard, M.: Perfectly secure multiparty computation and the computational overhead of cryptography. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 445–465. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_23

    Chapter  Google Scholar 

  22. Damgård, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical covertly secure MPC for dishonest majority – or: breaking the SPDZ limits. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp. 1–18. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40203-6_1

    Chapter  Google Scholar 

  23. Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_38

    Chapter  Google Scholar 

  24. van Dijk, M.: Secret key sharing and secret key generation. Ph.D. thesis, Eindhoven University of Technology (1997)

    Google Scholar 

  25. Furukawa, J., Lindell, Y., Nof, A., Weinstein, O.: High-throughput secure three-party computation for malicious adversaries and an honest majority. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part II. LNCS, vol. 10211, pp. 225–255. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56614-6_8

    Chapter  Google Scholar 

  26. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th ACM STOC, pp. 218–229. ACM Press, May 1987

    Google Scholar 

  27. Hirt, M., Maurer, U.M.: Complete characterization of adversaries tolerable in secure multi-party computation (extended abstract). In: Burns, J.E., Attiya, H. (eds.) 16th ACM PODC, pp. 25–34. ACM, August 1997

    Google Scholar 

  28. Ito, M., Saito, A., Nishizeki, T.: Secret sharing schemes realizing general access structure. In: Proceedings of IEEE Global Telecommunication Conference (Globecom 1987), pp. 99–102 (1987)

    Google Scholar 

  29. Karchmer, M., Wigderson, A.: On span programs. In: Proceedings of Structures in Complexity Theory, pp. 102–111 (1993)

    Google Scholar 

  30. Keller, M., Orsini, E., Scholl, P.: MASCOT: faster malicious arithmetic secure computation with oblivious transfer. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 830–842. ACM Press, October 2016

    Google Scholar 

  31. Keller, M., Rotaru, D., Smart, N.P., Wood, T.: Reducing communication channels in MPC. In: Catalano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 181–199. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98113-0_10

    Chapter  Google Scholar 

  32. Maurer, U.M.: Secure multi-party computation made simple. Discrete Appl. Math. 154(2), 370–381 (2006)

    Article  MathSciNet  Google Scholar 

  33. Nikova, S., Rijmen, V., Schläffer, M.: Secure hardware implementation of nonlinear functions in the presence of glitches. J. Cryptology 24(2), 292–321 (2011)

    Article  MathSciNet  Google Scholar 

  34. Reparaz, O., Bilgin, B., Nikova, S., Gierlichs, B., Verbauwhede, I.: Consolidating masking schemes. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part I. LNCS, vol. 9215, pp. 764–783. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6_37

    Chapter  Google Scholar 

  35. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

    Article  MathSciNet  Google Scholar 

  36. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: 27th FOCS, pp. 162–167. IEEE Computer Society Press, October 1986

    Google Scholar 

Download references

Acknowledgements

We thank for the anonymous reviewers for their helpful comments and remarks. This work has been supported in part by ERC Advanced Grant ERC-2015-AdG-IMPaCT, by the Defense Advanced Research Projects Agency (DARPA) and Space and Naval Warfare Systems Center, Pacific (SSC Pacific) under contract No. N66001-15-C-4070, and by EPSRC via grant EP/N021940/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nigel P. Smart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Smart, N.P., Wood, T. (2019). Error Detection in Monotone Span Programs with Application to Communication-Efficient Multi-party Computation. In: Matsui, M. (eds) Topics in Cryptology – CT-RSA 2019. CT-RSA 2019. Lecture Notes in Computer Science(), vol 11405. Springer, Cham. https://doi.org/10.1007/978-3-030-12612-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12612-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12611-7

  • Online ISBN: 978-3-030-12612-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics