Skip to main content

Solving Nonlinear Equation Systems Using Multiobjective Differential Evolution

  • Conference paper
  • First Online:
Evolutionary Multi-Criterion Optimization (EMO 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11411))

Included in the following conference series:

  • 2189 Accesses

Abstract

Nonlinear equation systems (NESs) usually have more than one optimal solution. However, locating all the optimal solutions in a single run, is one of the most challenging issues for evolutionary optimization. In this paper, we address this issue by transforming all the optimal solutions of an NES to the nondominated solutions of a constructed multiobjective optimization problem (MOP). In the general case, we prove that the proposed transformation fully matches the requirement of multiobjective optimization. That is, the multiple objectives always conflict with each other. In this way, multiobjective optimization techniques can be used to locate these multiple optimal solutions simultaneously as they locate the nondominated solutions of the MOPs. Our proposed approach is evaluated on 22 NESs with different features, such as linear and nonlinear equations, different numbers of optimal solutions, and infinite optimal solutions. Experimental results reveal that the proposed approach is highly competitive with some other state-of-the-art algorithms for NES.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aleenejad, M., Ahmadi, R., Moamaei, P.: Selective harmonic elimination for cascaded multicell multilevel power converters with higher number of H-bridge modules. In: Power and Energy Conference at Illinois (PECI), pp. 1–5. IEEE (2014)

    Google Scholar 

  2. Bäck, T., Fogel, D.B., Michalewicz, Z.: Handbook of Evolutionary Computation. CRC Press, Boca Raton (1997)

    Book  Google Scholar 

  3. Basak, A., Das, S., Tan, K.C.: Multimodal optimization using a biobjective differential evolution algorithm enhanced with mean distance-based selection. IEEE Trans. Evol. Comput. 17(5), 666–685 (2013)

    Article  Google Scholar 

  4. Campos, M., Krohling, R.A., Enriquez, I.: Bare bones particle swarm optimization with scale matrix adaptation. IEEE Trans. Cybern. 44(9), 1567–1578 (2014)

    Article  Google Scholar 

  5. Das, S., Mullick, S.S., Suganthan, P.N.: Recent advances in differential evolution-an updated survey. Swarm Evol. Comput. 27, 1–30 (2016)

    Article  Google Scholar 

  6. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  7. Deb, K., Saha, A.: Multimodal optimization using a bi-objective evolutionary algorithm. Evol. Comput. 20(1), 27–62 (2012)

    Article  Google Scholar 

  8. Gong, W., Wang, Y., Cai, Z., Yang, S.: A weighted biobjective transformation technique for locating multiple optimal solutions of nonlinear equation systems. IEEE Trans. Evol. Comput. 21(5), 697–713 (2017)

    Article  Google Scholar 

  9. Hu, X.M., Zhang, J., Chung, H.S.H., Li, Y., Liu, O.: Samaco: variable sampling ant colony optimization algorithm for continuous optimization. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 40(6), 1555–1566 (2010)

    Article  Google Scholar 

  10. Kennedy, J.: Particle swarm optimization. In: Sammut, C., Webb, G.I. (eds.) Encyclopedia of Machine Learning, pp. 760–766. Springer, Heidelberg (2011). https://doi.org/10.1007/978-0-387-30164-8_630

    Chapter  Google Scholar 

  11. Li, X.: Efficient differential evolution using speciation for multimodal function optimization. In: Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation, pp. 873–880. ACM (2005)

    Google Scholar 

  12. Li, X., Engelbrecht, A., Epitropakis, M.G.: Benchmark functions for CEC 2013 special session and competition on niching methods for multimodal function optimization. Technical report, RMIT University, Evolutionary Computation and Machine Learning Group, Australia (2013)

    Google Scholar 

  13. Long, J., Szeto, W., Gao, Z., Huang, H.J., Shi, Q.: The nonlinear equation system approach to solving dynamic user optimal simultaneous route and departure time choice problems. Transp. Res. Part B: Methodol. 83, 179–206 (2016)

    Article  Google Scholar 

  14. Qu, B.Y., Suganthan, P.N., Das, S.: A distance-based locally informed particle swarm model for multimodal optimization. IEEE Trans. Evol. Comput. 17(3), 387–402 (2013)

    Article  Google Scholar 

  15. Qu, B.Y., Suganthan, P.N., Liang, J.J.: Differential evolution with neighborhood mutation for multimodal optimization. IEEE Trans. Evol. Comput. 16(5), 601–614 (2012)

    Article  Google Scholar 

  16. Song, W., Wang, Y., Li, H.X., Cai, Z.: Locating multiple optimal solutions of nonlinear equation systems based on multiobjective optimization. IEEE Trans. Evol. Comput. 19(3), 414–431 (2015)

    Article  Google Scholar 

  17. Stoean, C., Preuss, M., Stoean, R., Dumitrescu, D.: Multimodal optimization by means of a topological species conservation algorithm. IEEE Trans. Evol. Comput. 14(6), 842–864 (2010)

    Article  Google Scholar 

  18. Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  Google Scholar 

  19. Turgut, O.E., Turgut, M.S., Coban, M.T.: Chaotic quantum behaved particle swarm optimization algorithm for solving nonlinear system of equations. Comput. Math. Appl. 68(4), 508–530 (2014)

    Article  MathSciNet  Google Scholar 

  20. Turkyilmazoglu, M.: Determination of the correct range of physical parameters in the approximate analytical solutions of nonlinear equations using the Adomian decomposition method. Mediterr. J. Math. 13(6), 4019–4037 (2016)

    Article  MathSciNet  Google Scholar 

  21. Van Hentenryck, P., McAllester, D., Kapur, D.: Solving polynomial systems using a branch and prune approach. SIAM J. Numer. Anal. 34(2), 797–827 (1997)

    Article  MathSciNet  Google Scholar 

  22. Yao, J., Kharma, N., Grogono, P.: Bi-objective multipopulation genetic algorithm for multimodal function optimization. IEEE Trans. Evol. Comput. 14(1), 80–102 (2010)

    Article  Google Scholar 

  23. Yu, W.J., Ji, J.Y., Gong, Y.J., Yang, Q., Zhang, J.: A tri-objective differential evolution approach for multimodal optimization. Inf. Sci. 423, 1–23 (2018)

    Article  MathSciNet  Google Scholar 

  24. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the Science and Technology Planning Project of Guangdong Province, China (Grant No. 2014B050504005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Jie Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ji, JY., Yu, WJ., Zhang, J. (2019). Solving Nonlinear Equation Systems Using Multiobjective Differential Evolution. In: Deb, K., et al. Evolutionary Multi-Criterion Optimization. EMO 2019. Lecture Notes in Computer Science(), vol 11411. Springer, Cham. https://doi.org/10.1007/978-3-030-12598-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12598-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12597-4

  • Online ISBN: 978-3-030-12598-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics