Skip to main content

Energy Transfer and Spectra in Simulations of Two-Dimensional Compressible Turbulence

  • Conference paper
  • First Online:
Turbulent Cascades II

Part of the book series: ERCOFTAC Series ((ERCO,volume 26))

Abstract

We present results of high-resolution numerical simulations of compressible 2D turbulence forced at intermediate spatial scales with a solenoidal white-in-time external acceleration. A case with an isothermal equation of state, low energy injection rate, and turbulent Mach number \(M\approx 0.34\) without energy condensate is studied in detail. Analysis of energy spectra and fluxes shows that the classical dual-cascade picture familiar from the incompressible case is substantially modified by compressibility effects. While the small-scale direct enstrophy cascade remains largely intact, a large-scale energy flux loop forms with the direct acoustic energy cascade compensating for the inverse transfer of solenoidal kinetic energy. At small scales, the direct enstrophy and acoustic energy cascades are fully decoupled at small Mach numbers and hence the corresponding spectral energy slopes comply with theoretical predictions, as expected. At large scales, dispersion of acoustic waves on vortices softens the dilatational velocity spectrum, while the pseudo-sound component of the potential energy associated with coherent vortices steepens the potential energy spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aluie, H., Li, S., Li, H.: Conservative cascade of kinetic energy in compressible turbulence. ApJL 751, L29 (2012)

    Article  Google Scholar 

  2. Banerjee, S., Kritsuk, A.G.: Exact relations for energy transfer in self-gravitating isothermal turbulence. Phys. Rev. E 96, 053116 (2017)

    Article  Google Scholar 

  3. Banerjee, S., Kritsuk, A.G.: Energy transfer in compressible magnetohydrodynamic turbulence for isothermal self-gravitating fluids. Phys. Rev. E 97, 023107 (2018)

    Article  Google Scholar 

  4. Block, D.L., Puerari, I., Elmegreen, B.G., Bournaud, F.: A two-component power law covering nearly four orders of magnitude in the power spectrum of spitzer far-infrared emission from the large magellanic cloud. ApJL 718, L1 (2010)

    Article  Google Scholar 

  5. Boffetta, G., Celani, A., Musacchio, S.: Split energy cascade in quasi-2D turbulence. In: Eckhardt, B. (ed.) Advances in Turbulence XII. Springer Proceedings in Turbulence, vol. 132, p. 173 (2009)

    Google Scholar 

  6. Boffetta, G., Celani, A., Vergassola, M.: Inverse cascade in two-dimensional turbulence: deviations from Gaussian behavior. Phys. Rev. E 61, R29 (2000)

    Article  Google Scholar 

  7. Bournaud, F., Elmegreen, B.G., Teyssier, R., Block, D.L., Puerari, I.: ISM properties in hydrodynamic galaxy simulations: turbulence cascades, cloud formation, role of gravity and feedback. MNRAS 409, 1088 (2010)

    Article  Google Scholar 

  8. Broadbent, E.G., Moore, D.W.: Acoustic destabilization of vortices. Philos. Trans. R. Soc. A 290, 353 (1979)

    Article  Google Scholar 

  9. Burgess, B.H., Scott, R.K., Shepherd, T.G.: Kraichnan-Leith-Batchelor similarity theory and two-dimensional inverse cascades. J. Fluid Mech. 767, 467 (2015)

    Article  MathSciNet  Google Scholar 

  10. Colella, P., Woodward, P.R.: The piecewise parabolic method (PPM) for gas-dynamical simulations. J. Comput. Phys. 54, 174 (1984)

    Article  Google Scholar 

  11. Combes, F., Boquien, M., Kramer, C., et al.: Dust and gas power spectrum in M 33. A&A 539, A67 (2012)

    Article  Google Scholar 

  12. Ducros, F., Ferrand, V., Nicoud, F., Weber, C., Darracq, D., Gacherieu, C., Poinsot, T.: Large-eddy simulation of the shock/turbulence interaction. J. Comput. Phys. 152, 517 (1999)

    Article  Google Scholar 

  13. Ducros, F., Laporte, F., Soulères, T., Guinot, V., Moinat, P., Caruelle, B.: High-order fluxes for conservative skew-symmetric-like schemes in structured meshes: application to compressible flows. J. Comput. Phys. 161, 114 (2000)

    Article  MathSciNet  Google Scholar 

  14. Dutta, P., Begum, A., Bharadwaj, S., Chengalur, J.N.: HI power spectrum of the spiral galaxy NGC628. MNRAS 384, L34 (2008)

    Article  Google Scholar 

  15. Dutta, P., Begum, A., Bharadwaj, S., Chengalur, J.N.: The scaleheight of NGC 1058 measured from its HI power spectrum. MNRAS 397, L60 (2009)

    Article  Google Scholar 

  16. Dutta, P., Begum, A., Bharadwaj, S., Chengalur, J.N.: Probing interstellar turbulence in spiral galaxies using HI power spectrum analysis. New Astron. 19, 89 (2013)

    Article  Google Scholar 

  17. Elmegreen, B.G., Scalo, J.: Interstellar turbulence I: observations and processes. ARA&A 42, 211 (2004)

    Article  Google Scholar 

  18. Elsässer, K., Schamel, H.: Energy spectra of turbulent sound waves. Zeitschrift Phys. B 23, 89 (1976)

    Article  Google Scholar 

  19. Falkovich, G., Kritsuk, A.G.: How vortices and shocks provide for a flux loop in two-dimensional compressible turbulence. Phys. Rev. Fluids 2, 092603 (2017)

    Article  Google Scholar 

  20. Hennebelle, P., Falgarone, E.: Turbulent molecular clouds. A & A Rev. 20, 55 (2012)

    Google Scholar 

  21. Kadomtsev, B.B., Petviashvili, V.I.: Acoustic turbulence. Sov. Phys. Doklady 18, 115 (1973)

    Google Scholar 

  22. Klyatskin, V.I.: Sound radiation by a system of vortices. Izv. Akad. Nauk. SSSR, Mekh. Zhidk. Gaza 1, 87 (1966)

    Google Scholar 

  23. Kop’ev, V.F., Leont’ev, E.A.: On acoustic instability of an axial vortex. Akust. Zh. 29, 192 (1983)

    Google Scholar 

  24. Kotov, D.V., Yee, H.C., Wray, A.A., Hadjadj, A., Sjögreen, B.: High order numerical methods for the dynamic SGS model of turbulent flows with shocks. Comm. Comput. Phys. 19, 273 (2016)

    Article  MathSciNet  Google Scholar 

  25. Kraichnan, R.H.: Inertial ranges in two-dimensional turbulence. Phys. Fluids 10, 1417 (1967)

    Article  MathSciNet  Google Scholar 

  26. Kraichnan, R.H.: Inertial-range transfer in two- and three-dimensional turbulence. J. Fluid Mech. 47, 525 (1971)

    Article  Google Scholar 

  27. Kritsuk, A.G., Norman, M.L., Padoan, P., Wagner, R.: The statistics of supersonic isothermal turbulence. Astrophys. J. 665, 416 (2007)

    Article  Google Scholar 

  28. Lvov, V.S., Mikhailov, A.V.: Sound and hydrodynamic turbulence in a compressible fluid. Zh. Eksper. Teor. Fiziki 74, 1445 (1978)

    Google Scholar 

  29. Lvov, V.S., Mikhailov, A.V.: Scattering and interaction of sound with sound in a turbulent medium. Zh. Eksper. Teor. Fiziki 75, 1669 (1978)

    Google Scholar 

  30. Lvov, V.S., Mikhailov, A.V.: Contribution to the nonlinear theory of sound and hydrodynamic turbulence of a compressible liquid. Physica D 2, 224 (1981)

    Article  Google Scholar 

  31. McKee, C.F., Ostriker, E.C.: Theory of star formation. ARA&A 45, 565 (2007)

    Google Scholar 

  32. Mizuta, A., Matsumoto, T., Toh, S.: Transition of the scaling law in inverse energy cascade range caused by a nonlocal excitation of coherent structures observed in two-dimensional turbulent fields. Phys. Rev. E 88, 053009 (2013)

    Article  Google Scholar 

  33. Moiseev, S.S., Sagdeev, R.Z., Tur, A.V., Ianovskii, V.V.: Structure of acoustic-vortical turbulence. Akad. Nauk SSSR Doklady 236, 1112 (1977)

    Google Scholar 

  34. Musacchio, S., Boffetta, G.: Split energy cascade in turbulent thin fluid layers. Phys. Fluids 29, 111106 (2017)

    Article  Google Scholar 

  35. Naugol’nykh, K.A.: Nonlinear sound waves upon collapse of a vortex dipole. Acoust. Phys. 60, 424 (2014)

    Article  Google Scholar 

  36. Sarkar, S., Erlebacher, G., Hussaini, M.Y., Kreiss, H.O.: The analysis and modelling of dilatational terms in compressible turbulence. J. Fluid Mech. 227, 473 (1991)

    Article  Google Scholar 

  37. Scott, R.K.: Nonrobustness of the two-dimensional turbulent inverse cascade. Phys. Rev. E 75, 046301 (2007)

    Article  Google Scholar 

  38. Wang, L.P., Kritsuk, A.G.: Scaling and intermittency in two-dimensional compressible turbulence. Phys. Rev. (in preparation) (2018)

    Google Scholar 

  39. Wang, W., Yee, H.C., Sjögreen, B., Magin, T., Shu, C.-W.: Construction of low dissipative high-order well-balanced filter schemes for non-equilibrium flows. J. Comput. Phys. 230, 4316 (2011)

    Article  MathSciNet  Google Scholar 

  40. Zakharov, V.E., Sagdeev, R.Z.: Spectrum of acoustic turbulence. Sov. Phys. Doklady 15, 439 (1970)

    MATH  Google Scholar 

  41. Zhang, H.-X., Hunter, D.A., Elmegreen, B.G.: H I power spectra and the turbulent interstellar medium of Dwarf irregular galaxies. ApJ 754, 29 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported in part by the National Science Foundation through Grant No. AST-1412271 as well as through XSEDE allocation MCA07S014 on Stampede-1/2 at TACC (production runs) and on Comet at SDSC (data analysis).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexei G. Kritsuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kritsuk, A.G. (2019). Energy Transfer and Spectra in Simulations of Two-Dimensional Compressible Turbulence. In: Gorokhovski, M., Godeferd, F. (eds) Turbulent Cascades II. ERCOFTAC Series, vol 26. Springer, Cham. https://doi.org/10.1007/978-3-030-12547-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12547-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12546-2

  • Online ISBN: 978-3-030-12547-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics