Skip to main content

Interactions Between Turbulence and Interfaces with Surface Tension

  • Conference paper
  • First Online:

Part of the book series: ERCOFTAC Series ((ERCO,volume 26))

Abstract

Turbulence is a complex, multi-scale fluid process that can be strongly modified by the presence of multiple phases. In this work, we will discuss various aspects of the interaction between turbulence and interfaces with surface tension, as commonly encountered in liquid-gas flows. This study is based on a series of direct numerical simulations of homogeneous and isotropic turbulence in the presence of an initially flat interface that separates two fluids of equal densities and viscosities. This highly simplified flow configuration is selected as it isolates a critical aspect of turbulent liquid-gas flows and allows for deeper analysis. A second order numerical discretization that conserves mass, momentum, and kinetic energy is employed for all simulations. The scales of interface corrugation are presented, identifying the presence of a critical cutoff length scale below which surface tension suppresses interface deformation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Fulgosi, M., Lakehal, D., Banerjee, S., De Angelis, V.: Direct numerical simulation of turbulence in a sheared airwater flow with a deformable interface. J. Fluid Mech. 482, 319–345 (2003)

    Article  Google Scholar 

  2. Reboux, S., Sagaut, P., Lakehal, D.: Large-eddy simulation of sheared interfacial flow. Phys. Fluids 18 (2006)

    Article  MathSciNet  Google Scholar 

  3. Trontin, P., Vincent, S., Estivalezes, J.L., Caltagirone, J.P.: Direct numerical simulation of a freely decaying turbulent interfacial flow. Int. J. Multiphase Flow 36 (2010)

    Article  Google Scholar 

  4. Osher, S., Sethian, J.: Front propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)

    Article  MathSciNet  Google Scholar 

  5. Sussman, M., Smereka, P., Osher, S.: A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 114 (1994)

    Article  Google Scholar 

  6. Lundgren, T.S.: Linear forcing in numerical simulations of isotropic turbulence: physical space implementations and convergence properties. In: Center for Turbulence Research Annual Research Briefs, pp. 461–473 (2003)

    Google Scholar 

  7. Rosales, C., Meneveau, C.: Linear forcing in numerical simulations of isotropic turbulence: physical space implementations and convergence properties. Phys. Fluids 17 (2005)

    Article  MathSciNet  Google Scholar 

  8. Desjardins, O., Blanquart, G., Balarac, G., Pitsch, H.: High order conservative finite difference scheme for variable density low Mach number turbulent flows. J. Comput. Phys. 227(15), 7125–7159 (2008)

    Article  MathSciNet  Google Scholar 

  9. Desjardins, O., McCaslin, J., Owkes, M., Brady, P.: Direct numerical and large-Eddy simulation of primary atomization in complex geometries. Atom. Sprays 23(11), 1001–1048 (2013)

    Article  Google Scholar 

  10. Owkes, M., Desjardins, O.: A computational framework for conservative, three-dimensional, unsplit, geometric transport with application to the volume-of-fluid (VOF) method. J. Comput. Phys. 270, 587–612 (2014)

    Article  MathSciNet  Google Scholar 

  11. Pilliod, J.E., Puckett, E.G.: Second-order accurate volume-of-fluid algorithms for tracking material interfaces. J. Comput. Phys. 199(2), 465–502 (2004)

    Article  MathSciNet  Google Scholar 

  12. Scardovelli, R., Zaleski, S.: Analytical relations connecting linear interfaces and volume fractions in rectangular grids. J. Comput. Phys. 164(1), 228–237 (2000)

    Article  MathSciNet  Google Scholar 

  13. Fedkiw, R., Aslam, T., Merriman, B., Osher, S.: A non-oscillatory eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys. 152(2), 457–492 (1999)

    Article  MathSciNet  Google Scholar 

  14. Marchandise, E., Geuzaine, P., Chevaugeon, N., Remacle, J.-F.: A stabilized finite element method using a discontinuous level set approach for the computation of bubble dynamics. J. Comput. Phys. 225(1), 949–974 (2007)

    Article  MathSciNet  Google Scholar 

  15. Lesieur, M., Rogallo, R.: Large-eddy simulation of passive scalar diffusion in isotropic turbulence. Phys. Fluids A Fluid Dyn. 1, 718–722 (1989)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Desjardins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chiodi, R., McCaslin, J., Desjardins, O. (2019). Interactions Between Turbulence and Interfaces with Surface Tension. In: Gorokhovski, M., Godeferd, F. (eds) Turbulent Cascades II. ERCOFTAC Series, vol 26. Springer, Cham. https://doi.org/10.1007/978-3-030-12547-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12547-9_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12546-2

  • Online ISBN: 978-3-030-12547-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics