Skip to main content

Small Scale Statistics of Turbulent Fluctuations Close to a Stagnation Point

  • Conference paper
  • First Online:
Book cover Turbulent Cascades II

Part of the book series: ERCOFTAC Series ((ERCO,volume 26))

  • 530 Accesses

Abstract

Experimental data measured with a 3d Shadow-Particle Tracking Velocimetry (S-PTV) setup in fully developed turbulence (\(\mathrm {Re_\lambda }=[175-225]\)) is presented. The underlying flow is of the von Kármán type and as other similar flows, its mean flow is bistable, the two states having the topology of a stagnation point with one contracting and two dilating directions. Tracer particle trajectories permit the investigation of the inhomogeneity and anisotropy of the smallest scales, namely acceleration statistics. The local variance and time-scale of acceleration components are shown to mimic the large scale properties of the flow, the time-scales being more anisotropic than the variances. We explain the hierarchy of time-scales by investigating the Lagrangian Taylor micro-scale which is related to acceleration and velocity variances, and discuss the very high Reynolds number regime.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sawford, B.L.: Lagrangian statistical simulation of concentration mean and fluctuation fields. J. Clim. Appl Meteorol. 24, 1152–1166 (1985)

    Article  Google Scholar 

  2. Paul, E.L., Atiemo-Obeng, V.A., Kresta, S.M.: Handbook of Industrial Mixing: Science and Practice. Wiley , Inc. (2004)

    Google Scholar 

  3. Breuer, S., Oberlack, M., Peters, N.: Non-isotropic length scales during the compression stroke of a motored piston engine. Flow Turbul. Combust. 74(2), 145–167 (2005)

    Article  Google Scholar 

  4. Comte-Bellot, G., Corrsin, S.: The use of a contraction to improve the isotropy of grid-generated turbulence. J. Fluid Mech. 25(04), 657 (1966)

    Article  Google Scholar 

  5. Tucker, H.J., Reynolds, A.J.: The distortion of turbulence by irrotational plane strain. J. Fluid Mech. 32, 657 (1968)

    Article  Google Scholar 

  6. Sagaut, P., Cambon, C.: Homogeneous Turbulence Dynamics. Cambridge University Press (2008)

    Google Scholar 

  7. Ayyalasomayajula, S., Warhaft, Z.: Nonlinear interactions in strained axisymmetric high-Reynolds-number turbulence. 566(2006), 273 (2006)

    Google Scholar 

  8. Clay, M.P., Yeung, P.K.: A numerical study of turbulence under temporally evolving axisymmetric contraction and subsequent relaxation. J. Fluid Mech. 805, 460–493 (2016)

    Article  MathSciNet  Google Scholar 

  9. Lee, C.-M., Gylfason, Á., Perlekar, P., Toschi, F.: Inertial particle acceleration in strained turbulence. J. Fluid Mech. 785, 31–53 (2015)

    Article  MathSciNet  Google Scholar 

  10. Marie, L., Daviaud, L.: Experimental measurement of the scale-by-scale momentum transport budget in a turbulent shear flow. Phys. Fluids 16(2) (2004)

    Article  Google Scholar 

  11. Huck, P.D., Machicoane, N., Volk, R.: Production and dissipation of turbulent fluctuations close to a stagnation point. Phys. Rev. Fluids 2(8), 084601 (2017)

    Google Scholar 

  12. Taylor, G.I.: Statistical theory of turbulence. Proc. Roy. Soc. A 151(873), 421–478 (1935)

    MATH  Google Scholar 

  13. Corrsin, S., Uberoi, M.: Diffusion of heat from a line source in isotropic turbulence. Natl. Adv. Comm. Aeronaut. Tech. Rep. 1142(1142) (1953)

    Google Scholar 

  14. Huck, P.D., Machicoane, N., Volk, R.: A cost-efficient shadow particle tracking velocimetry setup suitable for tracking small objects in a large volume. Procedia IUTAM 20, 175–182 (2017)

    Article  Google Scholar 

  15. Ouellette, N.T., Xu, H., Bodenschatz, E.: A quantitative study of three-dimensional Lagrangian particle tracking algorithms. Exper. Fluids 40(2), 301–313 (2006)

    Article  Google Scholar 

  16. De La Torre, A., Burguete, J.: Slow dynamics in a turbulent von Kármán swirling flow. Phys. Rev. Lett. 99(5), 3–6 (2007)

    Google Scholar 

  17. Ravelet, F., Chiffaudel, A., Daviaud, F.: Supercritical transition to turbulence in an inertially driven von Kármán closed flow. J. Fluid Mech. 601, 339–364 (2008)

    Article  Google Scholar 

  18. Sawford, B.L., Pinton, J.F.: A Lagrangian view of turbulent dispersion and mixing. In: Sreenviasan, K.R., Davidson, P.A., Kaneda, Y. (eds.) Ten Chapters in Turbulence, Chapter 4, pp. 132–175. Cambridge University Press, Cambridge (2012)

    Google Scholar 

  19. Yeung, P.K., Pope, S.B.: Lagrangian statistics from direct numerical simulations of isotropic turbulence. J. Fluid Mech. 207, 531 (1989)

    Article  MathSciNet  Google Scholar 

  20. Sawford, B.L., Yeung, P.K.: Kolmogorov similarity scaling for one-particle Lagrangian statistics. Phys. Fluids 23(9), 1–5 (2011)

    Article  Google Scholar 

  21. Ouellette, N.T., Xu, H., Bourgoin, M., Bodenschatz, E.: Small-scale anisotropy in Lagrangian turbulence. New J. Phys. 8 (2006)

    Article  Google Scholar 

  22. Voth Greg, A., La Porta, A., Crawford, A.M., Alexander, J., Bodenschatz, E.: Measurement of particle accelerations in fully developed turbulence. J. Fluid Mech. 469, 121–160 (2002)

    Google Scholar 

  23. Volk, R., Chareyron, D., Pinton, J.: Mesures d’accélération lagrangienne dans un écoulement anisotrope par vélocimétrie laser Doppler étendue. 20ème Congrès Français De Mécanique, pp. 1–6 (2011)

    Google Scholar 

  24. Toschi, F., Bodenschatz, E.: Lagrangian properties of particles in turbulence. Ann. Rev. Fluid Mech. 41, 375–404 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by research programs ANR-13-BS09-0009 and PALSE/2013/26. Contribution from the EuHIT—European High-performance Infrastructures in Turbulence—is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romain Volk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huck, P.D., Machicoane, N., Volk, R. (2019). Small Scale Statistics of Turbulent Fluctuations Close to a Stagnation Point. In: Gorokhovski, M., Godeferd, F. (eds) Turbulent Cascades II. ERCOFTAC Series, vol 26. Springer, Cham. https://doi.org/10.1007/978-3-030-12547-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12547-9_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12546-2

  • Online ISBN: 978-3-030-12547-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics