Skip to main content

Unsupervised Network Alignment

  • Chapter
  • First Online:
Broad Learning Through Fusions
  • 621 Accesses

Abstract

Identifying the common users shared by different online social sites is a very hard task even for humans. Manually labeling of the anchor links can be extremely challenging, expensive (in human efforts, time, and money costs), and tedious, and the scale of the real-world online social networks involving millions even billions of users also renders the training data labeling much more difficult. In this chapter, we will introduce several approaches to resolve the network alignment problem based on the unsupervised learning setting instead, where no labeled training data will be needed in model building.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://developers.google.com/maps/.

  2. 2.

    https://www.bingmapsportal.com.

  3. 3.

    https://developer.apple.com/maps/.

  4. 4.

    https://docs.python.org/2/library/datetime.html.

  5. 5.

    https://www.tutorialspoint.com/java/util/java_util_date.htm.

  6. 6.

    http://docs.scipy.org/doc/scipy/reference/optimize.html.

  7. 7.

    http://www.gnu.org/software/glpk/.

  8. 8.

    http://www.lpzoo.org.

  9. 9.

    http://www.scarletbarchicago.com.

  10. 10.

    http://docs.scipy.org/doc/scipy/reference/optimize.html.

  11. 11.

    http://www.gnu.org/software/glpk/.

References

  1. L. Adamic, R. Lukose, A. Puniyani, B. Huberman, Search in power-law networks. Phys. Rev. E 64, 046135 (2001). cs.NI/0103016

    Google Scholar 

  2. Y. Aflaloa, A. Bronsteinb, R. Kimmel, On convex relaxation of graph isomorphism. Proc. Natl. Acad. Sci. U S A 112(10), 2942–2947 (2015)

    Article  MathSciNet  Google Scholar 

  3. M. Avriel, Nonlinear Programming: Analysis and Methods (Prentice-Hall, Englewood Cliffs, 1976)

    MATH  Google Scholar 

  4. L. Babai, Graph isomorphism in quasipolynomial time. CoRR, abs/1512.03547 (2015)

    Google Scholar 

  5. R. Baeza-Yates, B. Ribeiro-Neto, Modern Information Retrieval (Addison-Wesley Longman Publishing Co., Inc., Boston, 1999)

    Google Scholar 

  6. C. Bettstetter, On the minimum node degree and connectivity of a wireless multihop network, in Proceedings of the 3rd ACM International Symposium on Mobile Ad Hoc Networking & Computing (MobiHoc ’02) (ACM, New York, 2002)

    Google Scholar 

  7. S. Borgatti, M. Everett, A graph-theoretic perspective on centrality. Soc. Net. 28(4), 466–484 (2006)

    Article  Google Scholar 

  8. W. Cavnar, J. Trenkle, N-gram-based text categorization, in Proceedings of SDAIR-94, 3rd Annual Symposium on Document Analysis and Information Retrieval (1994)

    Google Scholar 

  9. D. Chandler, The norm of the Schur product operation. Numer. Math. 4(1), 343–344 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Charikar, Similarity estimation techniques from rounding algorithms, in Proceedings of the Thirty-Fourth Annual ACM Symposium on Theory of Computing (STOC ’02) (ACM, New York, 2002)

    Google Scholar 

  11. W. Cohen, P. Ravikumar, S. Fienberg, A comparison of string distance metrics for name-matching tasks, in Proceedings of the 2003 International Conference on Information Integration on the Web (IIWEB’03) (AAAI Press, Palo Alto, 2003)

    Google Scholar 

  12. D. Corneil, C. Gotlieb, An efficient algorithm for graph isomorphism. J. ACM 17(1), 51–64 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  13. E. Dinic, Algorithm for solution of a problem of maximum flow in a network with power estimation. Sov. Math. Dokl. 11, 1277–1280 (1970)

    Google Scholar 

  14. J. Edmonds, R. Karp, Theoretical improvements in algorithmic efficiency for network flow problems. J. ACM 19(2), 248–264 (1972)

    Article  MATH  Google Scholar 

  15. M. Garey, D. Johnson, Computers and Intractability; A Guide to the Theory of NP-Completeness (W. H. Freeman & Co., New York, 1990)

    MATH  Google Scholar 

  16. A.A. Goldberg, S. Rao, Beyond the flow decomposition barrier. J. ACM 45(5), 783–797 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Goldberg, R. Tarjan, A new approach to the maximum-flow problem. J. ACM 35(4), 921–940 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  18. W. Gomaa, A. Fahmy, Article: a survey of text similarity approaches. Int. J. Comput. Appl. 68(3), 13–18 (2013)

    Google Scholar 

  19. Z. Harris, Distributional structure. Word 10(23), 146–162 (1954)

    Article  Google Scholar 

  20. T. Harris, F. Ross, Fundamentals of a Method for Evaluating Rail Net Capacities. Research Memorandum (The RAND Corporation, Santa Monica, 1955)

    Google Scholar 

  21. D. Hirschberg, Algorithms for the longest common subsequence problem. J. ACM 24(4), 664–675 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Jaro, Advances in record-linkage methodology as applied to matching the 1985 census of Tampa, Florida. J. Am. Stat. Assoc. 84(406), 414–420 (1989)

    Article  Google Scholar 

  23. T. Joachims, A probabilistic analysis of the Rocchio algorithm with TFIDF for text categorization, in Proceedings of the Fourteenth International Conference on Machine Learning (ICML ’97) (Morgan Kaufmann Publishers Inc., San Francisco, 1997)

    Google Scholar 

  24. X. Kong, J. Zhang, P. Yu, Inferring anchor links across multiple heterogeneous social networks, in Proceedings of the 22nd ACM International Conference on Information & Knowledge Management (CIKM ’13) (ACM, New York, 2013)

    Google Scholar 

  25. D. Koutra, H. Tong, D. Lubensky, Big-align: fast bipartite graph alignment, in 2013 IEEE 13th International Conference on Data Mining (IEEE, Piscataway, 2013)

    Google Scholar 

  26. K. Kunen, Set Theory (Elsevier Science Publishers, Amsterdam, 1980)

    MATH  Google Scholar 

  27. J. Lee, W. Han, R. Kasperovics, J. Lee, An in-depth comparison of subgraph isomorphism algorithms in graph databases, in Proceedings of the VLDB Endowment. VLDB Endowment (2012)

    Google Scholar 

  28. V.I. Levenshtein, Binary codes capable of correcting deletions, insertions and reversals. Sov. Phy. Dok. 10, 707 (1966)

    MathSciNet  Google Scholar 

  29. C. Liao, K. Lu, M. Baym, R. Singh, B. Berger. IsoRankN: spectral methods for global alignment of multiple protein networks. Bioinformatics 25(12), i253–i258 (2009)

    Article  Google Scholar 

  30. B. McKay, Practical graph isomorphism. Congr. Numer. 30, 45–87 (1981)

    MathSciNet  MATH  Google Scholar 

  31. G. Navarro, A guided tour to approximate string matching. ACM Comput. Surv. 33(1), 31–88 (2001)

    Article  Google Scholar 

  32. M. Newman, Analysis of weighted networks. Phy. Rev. E 70, 056131 (2004)

    Article  Google Scholar 

  33. K. Petersen, M. Pedersen, The Matrix Cookbook. Technical report. Technical University of Denmark, Lyngby (2012)

    Google Scholar 

  34. E. Ristad, P. Yianilos, Learning string-edit distance. IEEE Trans. Pattern Anal. Mach. Intell. 20(5), 522–532 (1998)

    Article  Google Scholar 

  35. G. Salton, C. Buckley, Term-weighting approaches in automatic text retrieval. Inf. Process. Manage. 24(5), 513–523 (1988)

    Article  Google Scholar 

  36. G. Salton, A. Wong, C.S. Yang, A vector space model for automatic indexing. Commun. ACM 18(11), 613–620 (1975)

    Article  MATH  Google Scholar 

  37. T. Shi, S. Kasahara, T. Pongkittiphan, N. Minematsu, D. Saito, K. Hirose, A measure of phonetic similarity to quantify pronunciation variation by using ASR technology, in 18th International Congress of Phonetic Sciences (ICPhS 2015) (University of Glasgow, Glasgow, 2015)

    Google Scholar 

  38. R. Singh, J. Xu, B. Berger, Global alignment of multiple protein interaction networks with application to functional orthology detection. Natl. Acad. Sci. 105(35), 12763–12768 (2008)

    Article  Google Scholar 

  39. The National Archives, The Soundex indexing system (2007)

    Google Scholar 

  40. S. Umeyama, An eigendecomposition approach to weighted graph matching problems. IEEE Trans. Pattern Anal. Mach. Intell. 10(5), 695–703 (1988)

    Article  MATH  Google Scholar 

  41. R. Wagner, M. Fischer, The string-to-string correction problem. J. ACM 21(1), 168–173 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  42. W. Winkler, String comparator metrics and enhanced decision rules in the Fellegi-Sunter model of record linkage, in Proceedings of the Section on Survey Research (1990)

    Google Scholar 

  43. D. Wipf, B. Rao, L0-norm minimization for basis selection, in Proceedings of the 17th International Conference on Neural Information Processing Systems (NIPS’04) (MIT Press, Cambridge, 2005)

    Google Scholar 

  44. M. Yu, G. Li, D. Deng, J. Feng, String similarity search and join: a survey. Front. Comput. Sci. 10(3), 399–417 (2016)

    Article  Google Scholar 

  45. R. Zafarani, H. Liu, Connecting users across social media sites: a behavioral-modeling approach, in Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’13) (ACM, New York, 2013)

    Book  Google Scholar 

  46. J. Zhang, P. Yu, MCD: mutual clustering across multiple social networks, in 2015 IEEE International Congress on Big Data (IEEE, Piscataway, 2015)

    Google Scholar 

  47. J. Zhang, P. Yu, Multiple anonymized social networks alignment, in 2015 IEEE International Conference on Data Mining (IEEE, Piscataway, 2015)

    Google Scholar 

  48. J. Zhang, P. Yu, PCT: partial co-alignment of social networks, in Proceedings of the 25th International Conference on World Wide Web (WWW ’16) (International World Wide Web Conferences Steering Committee Republic and Canton of Geneva, Geneva, 2016)

    Book  Google Scholar 

  49. J. Zhang, P. Yu, Z. Zhou, Meta-path based multi-network collective link prediction, in Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’14) (ACM, New York, 2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, J., Yu, P.S. (2019). Unsupervised Network Alignment. In: Broad Learning Through Fusions. Springer, Cham. https://doi.org/10.1007/978-3-030-12528-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12528-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12527-1

  • Online ISBN: 978-3-030-12528-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics