Skip to main content

Computationally Efficient and Secure HVS Based Composite Fingerprinting Scheme Using SHS and ECDSA

  • Chapter
  • First Online:
Recent Advances in Computational Intelligence

Part of the book series: Studies in Computational Intelligence ((SCI,volume 823))

  • 641 Accesses

Abstract

Fingerprinting is an extension to the watermarking principle where each copy of the image is embedded with unique purchaser’s information. Secure fingerprinting aims to prevent efforts to identify the embedded contents. It offers an effective tracing contrivance and protects the legitimacy of digital data. Only an authenticated user can retrieve the implanted contents. In this chapter a secure Human Visual System (HVS) based fingerprinting scheme is proposed for embedding unique composite fingerprints to safeguard buyer’s certification accompanied by image integrity. Combination of authentication and reliability issues is determined using Secure Hash Standard (SHS): Secure Hash Algorithm (SHA-512/256) and Elliptic Curve Digital Signature Algorithm (ECDSA). SHS generates a unique authentication code by integrating image information with buyer’s credentials. Uniqueness property of digest allows for identification of authentication deceit by ensuring maximum collision resistance strength. Composite fingerprint (CF) created using ECDSA is embedded using a maximally separated imperceptible mode, by means of HVS approach. The positions take advantage of color content of digital images to reduce the visible distortion introduced by embedding CF. Signing and verifying digital signatures are two core elements adopted while embedding and retrieving of CF. Test cases are generated for different image dimensions used for embedding varying size fingerprints. Experimental results prove the approach to be beneficial by forming a maximally resilient counter to collusion attacks. An efficient imperceptible semi-blind fingerprinting scheme is achieved without degrading the quality and integrity of the host image.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pi, M.H., Li, C.H., Li, H.: A novel fractal image watermarking. IEEE Trans. Multimedia 8(3), 488–499 (2006)

    Article  Google Scholar 

  2. Hu, Y., Jeon, B.: Reversible visible watermarking and lossless recovery of original images. IEEE Trans. Circuits Syst. Video Technol. 16(11), 1423–1429 (2006)

    Article  Google Scholar 

  3. Thodi, D.M., Rodriguez, J.J.: Expansion embedding techniques for reversible watermarking. IEEE Trans. Image Process. 16(3), 721–730 (2007)

    Article  MathSciNet  Google Scholar 

  4. Lin, P.-Y., Lee, J.S., Chang, C.C.: dual digital watermarking for internet media based on hybrid strategies. IEEE Trans. Circuits Syst. Video Technol. 19(8), 1169–1177 (2009)

    Article  Google Scholar 

  5. Liu, T.Y., Tsai, W.H.: Generic lossless visible watermarking-a new approach. IEEE Trans. Image Process. 19(5), 1224–1235 (2010)

    Article  MathSciNet  Google Scholar 

  6. Viswanathan, P., Krishna, P.V.: A joint FED watermarking system using spatial fusion for verifying the security issues of teleradiology. IEEE J. Biomed. Health Inf. 18(3), 753–764 (2014)

    Article  Google Scholar 

  7. Shang Chih, C., Chun Hsiang, H., Ja Ling, W.: Unseen visible watermarking. In: IEEE International Conference on Image Processing, pp. 261–264 (2007)

    Google Scholar 

  8. Lu, Y.C., Wu, W.T., Song, Y.C.: A mixed blind algorithm of watermarking based on transform domain. In: International Conference on Information Management, Innovation Management and Industrial Engineering (ICIII), pp. 500–502 (2012)

    Google Scholar 

  9. Bansal, A., Singh Bhadauria, S., Gupta, R.: Performance comparison of watermarking techniques of various domains. In: IEEE International Conference on Digital Ecosystems and Technologies, pp. 1–10 (2009)

    Google Scholar 

  10. Ming, C., Zhenyong, C., Xiao, Z., Zhang, X.: Model order selection in reversible image watermarking. IEEE J. Sel. Top. Signal Process. 4(3), 592–604 (2010)

    Article  Google Scholar 

  11. Fan, Z., Wenyu, L., Weisi, L., King Ngi, N.: Spread spectrum image watermarking based on perceptual quality metric. IEEE Trans. Image Process. 20(11), 3207–3218 (2011)

    Article  MathSciNet  Google Scholar 

  12. Tingyuan, N., Yansheng, L., Xiaoke, X., Toyonaga, M.: Performance evaluation for watermarking techniques. In: International Conference on Biomedical Engineering and Computer Science (ICBECS), pp. 1–4 (2010)

    Google Scholar 

  13. Ibrahim, I.M., El Din, S.H.N., Hegazy, A.F.A.: An effective and secure buyer-seller watermarking protocol. In: Third International Symposium on Information Assurance and Security, pp. 21–28 (2007)

    Google Scholar 

  14. Cuomo, A., Frattolillo, F., Landolfi, F., Villano, U.: A simple and secure watermarking protocol. In: Fourth International Conference on Computational Aspects of Social Networks, pp. 206–211 (2012)

    Google Scholar 

  15. Balci, S.E.: Robust Watermarking of Images. The Middle East Technical University, Department of Electrical and Electronics Engineering (2003)

    Google Scholar 

  16. Kim, W.G., Suh, Y.: Short N-secure fingerprinting code for image. In: International Conference on Image Processing (ICIP), pp. 2167–2170 (2004)

    Google Scholar 

  17. Chang, C.H., Zhi, Y., Zhang, M.: Fuzzy-ART based adaptive digital watermarking scheme. IEEE Trans. Circuits Syst. Video Technol. 15(1), 65–81 (2005)

    Article  Google Scholar 

  18. Lee, J.S., Yoon, K.S.: The system integration of DRM and fingerprinting. In: The 8th International Conference Advanced Communication Technology (ICACT), pp. 2180–2183 (2006)

    Google Scholar 

  19. Shan, H., Min, W.: Adaptive detection for group-based multimedia fingerprinting. IEEE Signal Process. Lett. 14(12), 964–967 (2007)

    Article  Google Scholar 

  20. Swaminathan, A., Wu, M., Liu, K.J.R.: Digital image forensics via intrinsic fingerprints. IEEE Trans. Inf. Forensics Secur. 3(1), 101–117 (2008)

    Article  Google Scholar 

  21. Varna, A.L., He, S., Swaminathan, A., Wu, M.: Fingerprinting compressed multimedia signals. IEEE Trans. Inf. Forensics Secur. 4(3), 330–345 (2009)

    Article  Google Scholar 

  22. Rial, A., Deng, M., Bianchi, T., Piva, A., Preneel, B.: A provably secure anonymous buyer seller watermarking protocol. IEEE Trans. Inf. Forensics Secur. 5(4), 920–931 (2010)

    Article  Google Scholar 

  23. Mohanpurkar, A.A., Joshi, M.S.: Applying watermarking for copyright protection, traitor identification and joint ownership: a review. In: World Congress on Information and Communication Technologies (WICT), pp. 1014–1019 (2011)

    Google Scholar 

  24. Lv, X., Wang, Z.J.: Perceptual image hashing based on shape contexts and local feature points. IEEE Trans. Inf. Forensics Secur. 7(3), 1081–1093 (2012)

    Article  Google Scholar 

  25. Chou, C.-H., Liu, K.C.: A perceptually tuned watermarking scheme for color images. IEEE Trans. Image Process. 19(11), 2966–2982 (2010)

    Google Scholar 

  26. Das, S., Bandyopadhyay, P., Paul, S., Ray, A.S., Banerjee, M.: A new introduction towards invisible image watermarking on color image. In: IEEE International Advance Computing Conference, pp. 1224–1229 (2009)

    Google Scholar 

  27. NIST: Recommendation for Applications Using Approved Hash Algorithms, in NIST Special Publication, pp. 1–17 (2009)

    Google Scholar 

  28. Zhou, X.Q., Huang, H.K., Lou, S.L.: Authenticity and integrity of digital mammography images. IEEE Trans. Med. Imaging 20(8), 784–791 (2001)

    Article  Google Scholar 

  29. Samuel, S., Penzhorn, W.T.: Digital watermarking for copyright protection. In: 7th AFRICON Conference in Africa, pp. 953–957 (2004)

    Google Scholar 

  30. Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Proceedings of the 24th Annual International Conference on Theory and Applications of Cryptographic Techniques Aarhus, pp. 19–35. Springer-Verlag, Denmark (2005)

    Google Scholar 

  31. Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In: Proceedings of the 25th Annual International Conference on Advances in Cryptology Santa Barbara, pp. 17–36. Springer-Verlag, California (2005)

    Chapter  Google Scholar 

  32. NIST: Secure Hash Standard (SHS), in Federal Information Processing Standards Publications 180-4, pp. 1–30 (2012)

    Google Scholar 

  33. NIST: Secure Hash Standard (SHS), in Federal Information Processing Standards Publications 180-3, pp. 1–27 (2008)

    Google Scholar 

  34. Juliato, M., Gebotys, C., Elbaz, R.: Efficient fault tolerant SHA-2 hash functions for space applications. In: IEEE Aerospace Conference, pp. 1–16 (2009)

    Google Scholar 

  35. Xiaojiang, D., Guizani, M., Yang, X., Hsiao-Hwa, C.: A routing-driven elliptic curve cryptography based key management scheme for heterogeneous sensor networks. IEEE Trans. Wireless Commun. 8(3), 1223–1229 (2009)

    Article  Google Scholar 

  36. Delgosha, F., Fekri, F.: Public-key cryptography using paraunitary matrices. IEEE Trans. Signal Process. 54(9), 3489–3504 (2006)

    Article  Google Scholar 

  37. Zhang, C., Chi, L., Zhang, Y.: Secure and efficient generalized signcryption scheme based on a short ECDSA. In: Sixth International Conference on Intelligent Information Hiding and Multimedia Signal Processing, pp. 466–469 (2010)

    Google Scholar 

  38. Prabu, M., Shanmugalakshmi, R.: A comparative analysis of signature schemes in a new approach of variant on ECDSA. In: International Conference on Information and Multimedia Technology, pp. 491–494 (2009)

    Google Scholar 

  39. Naskar, R., Chakraborty, R.S.: Performance of reversible digital image watermarking under error-prone data communication: a simulation-based study. IET Image Proc. 6(6), 728–737 (2012)

    Article  Google Scholar 

  40. Walia, E., Suneja, A.: Fragile and blind watermarking technique based on Weber’s law for medical image authentication. IET Comput. Vision 7(1), 9–19 (2013)

    Article  Google Scholar 

  41. Qiu, Y., Yana, Z., Cheng, Y., Wei, L.: Information entropy used in digital watermarking. In: Symposium on Photonics and Optoelectronics (SOPO), pp. 1–4 (2012)

    Google Scholar 

  42. Philipp, S., Stephan, K., Wolfgang, E., Niels, T.: Semi-automatic registration of videos for improved watermark detection. In: Proceedings of the First Annual ACM SIGMM Conference on Multimedia Systems Phoenix, Arizona, pp. 23–34. ACM, USA (2010)

    Google Scholar 

  43. Hui Li, T., Zhengguo, L., Yih Han, T., Rahardja, S., Chuohuo, Y.: A perceptually relevant MSE-based image quality metric. IEEE Trans. Image Process. 22(11), 4447–4459 (2013)

    Google Scholar 

  44. Umamageswari, A., Suresh, G.R.: Security in medical image communication with Arnold’s cat map method and reversible watermarking. In: International Conference on Circuits, Power and Computing Technologies (ICCPCT), pp. 1116–1121 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vineet Mehan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mehan, V. (2019). Computationally Efficient and Secure HVS Based Composite Fingerprinting Scheme Using SHS and ECDSA. In: Kumar, R., Wiil, U. (eds) Recent Advances in Computational Intelligence. Studies in Computational Intelligence, vol 823. Springer, Cham. https://doi.org/10.1007/978-3-030-12500-4_15

Download citation

Publish with us

Policies and ethics