Plant Nanobionics pp 165-181 | Cite as
Nanopesticides and Nanosensors in Agriculture
Chapter
First Online:
- 493 Downloads
Abstract
Nanotechnology is a conspicuous technology of the modern decade, and it is significantly applicable in electrical, electronics, optical, food packing, sensing, medical and energy fields. Similarly, agriculture is also gratified by the use of nanotechnology in the form of nanopesticides and nanosensors with great hope for future sustainability. This chapter covers the effect of nanopesticides, nanoformulations, nanoencapsulation, detection of pesticides, ecotoxicology and current challenges of sustainability that are exploring by the researchers in the area of nanotechnology in the improvement of agriculture.
Keywords
Nanopesticides Nanosensors Agri-technology Nanoformulations EcotoxicologyReferences
- Adak T, Kumar J, Shakil N, Walia S (2012) Development of controlled release formulations of imidacloprid employing novel nano-ranged amphiphilic polymers. J Environ Sci Health B 47(3):217–225PubMedCrossRefGoogle Scholar
- Ali MA, Rehman I, Iqbal A, Din S, Rao AQ, Latif A, Samiullah TR, Azam S, Husnain T (2014) Nanotechnology, a new frontier in Agriculture. Adv Life Sci 1:129–138Google Scholar
- Anjali C, Khan SS, Margulis-Goshen K, Magdassi S, Mukherjee A, Chandrasekaran N (2010) Formulation of water-dispersible nanopermethrin for larvicidal applications. Ecotoxicol Environ Saf 73:1932–1936PubMedCrossRefGoogle Scholar
- Anjum NA, Adam V, Kizek R, Duarte AC, Pereira E, Iqbal M, Lukatkin AS, Ahmad I (2015) Nanoscale copper in the soil plant system toxicity and underlying potential mechanisms. Environ Res 138:306–325PubMedCrossRefGoogle Scholar
- Anwunobi AP, Emeje MO (2011) Recent applications of natural polymers in nanodrug delivery. J Nanomedic Nanotechnol S4:002. https://doi.org/10.4172/2157-7439.S4-002CrossRefGoogle Scholar
- Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612. https://doi.org/10.1021/acs.langmuir.5b03081PubMedCrossRefGoogle Scholar
- Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. https://doi.org/10.3389/fmicb.2016.01984PubMedPubMedCentralCrossRefGoogle Scholar
- Aziz N, Faraz M, Sherwani MA, Fatma T, Prasad R (2019) Illuminating the anticancerous efficacy of a new fungal chassis for silver nanoparticle synthesis. Front Chem 7:65. https://doi.org/10.3389/fchem.2019.00065
- Bajpai J, Bajpai A, Mishra S (2006) Dynamics of controlled release of potassium nitrate from a highly swelling binary biopolymeric blend of alginate and pectin. J Macromol Sci A 43(1):165–186CrossRefGoogle Scholar
- Bang S, Hwang I, Yu Y, Kwon H, Kim D, Park H (2011) Influence of chitosan coating on the liposomal surface on physicochemical properties and the release profile of nanocarrier systems. J Microencapsul 28(7):595–604PubMedCrossRefGoogle Scholar
- Basha S, Sarma B, Singh D, Annapurna K, Singh U (2006) Differential methods of inoculation of plant growth-promoting rhizobacteria induce synthesis of phenylalanine ammonia-lyase and phenolic compounds differentially in chickpea. Folia Microbiol 51(5):463–468CrossRefGoogle Scholar
- Bhattacharyya A, Duraisamy P, Govindarajan M, Buhroo AA, Prasad R (2016) Nano-biofungicides: emerging trend in insect pest control. In: Prasad R (ed) Advances and applications through fungal nanobiotechnology. Springer International Publishing, Cham, pp 307–319CrossRefGoogle Scholar
- Bogue R (2009) Nanosensors: a review of recent research. Sensor Rev 29(4):310–315CrossRefGoogle Scholar
- Bollag JM, Myers CJ, Minard RD (1992) Biological and chemical interactions of pesticides with soil organic matter. Sci Total Environ 123:205–217PubMedCrossRefGoogle Scholar
- Bossi R, Vejrup KV, Mogensen BB, Asman WA (2002) Analysis of polar pesticides in rainwater in Denmark by liquid chromatography-tandem mass spectrometry. J Chromatogr A 957(1):27–36PubMedCrossRefGoogle Scholar
- Clark LC, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci 102(1):29–45. https://doi.org/10.1111/j.1749-6632.1962.tb13623.xPubMedCrossRefGoogle Scholar
- Clemente Z, Grillo R, Jonsson M, Santos N, Feitosa L, Lima R, Fraceto L (2014) Ecotoxicological evaluation of poly (ε-caprolactone) nanocapsules containing triazine herbicides. J Nanosci Nanotech 14(7):4911–4917CrossRefGoogle Scholar
- Cromwell W, Yang J, Starr J, Jo Y-K (2014) Nematicidal effects of silver nanoparticles on root-knot nematode in bermuda grass. J Nematol 46(3):261PubMedPubMedCentralGoogle Scholar
- Cunha S, Fernandes J, Oliveira M (2011) Pesticides-strategies for pesticides analysis. InTech, RijekaGoogle Scholar
- de Oliveira JL, Campos EVR, Gonçalves da Silva CM, Pasquoto T, Lima R, Fraceto LF (2015) Solid lipid nanoparticles co-loaded with simazine and atrazine: preparation, characterization, and evaluation of herbicidal activity. J Agric Food Chem 63(2):422–432PubMedCrossRefGoogle Scholar
- Dhaliwal G, Jindal V, Dhawan A (2010) Insect pest problems and crop losses: changing trends. Indian J Ecol 37(1):1–7Google Scholar
- Forim MR, Costa ES, da Silva MFGF, Fernandes JB, Mondego JM, Boiça Junior AL (2013) Development of a new method to prepare nano-/microparticles loaded with extracts of Azadirachta indica, their characterization and use in controlling Plutella xylostella. J Agric Food Chem 61(38):9131–9139PubMedCrossRefGoogle Scholar
- Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M (2009) Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine 5(4):382–386PubMedCrossRefGoogle Scholar
- Garratt J, Kennedy A (2006) Use of models to assess the reduction in contamination of water bodies by agricultural pesticides through the implementation of policy instruments: a case study of the voluntary initiative in the UK. Pest Manag Sci 62(12):1138–1149PubMedCrossRefGoogle Scholar
- Gheorghe I, Popa M, Marutescu L, Saviuc C, Lazar V, Chifiriuc MC (2017) Lessons from inter-regn communication for the development of novel, ecofriendly pesticides. In: Alexandru Grumezescu (ed) New pesticides and soil sensors. Elsevier, p 1–45Google Scholar
- Gong J, Miao X, Zhou T, Zhang L (2011) An enzymeless organophosphate pesticide sensor using Au nanoparticle-decorated graphene hybrid nanosheet as solid-phase extraction. Talanta 85(3):1344–1349PubMedCrossRefGoogle Scholar
- Guo Y, Yang Q, Yan W, Li B, Qian K, Li T, Xiao W, He L (2014) Controlled release of acetochlor from poly (butyl methacrylate-diacetone acrylamide) based formulation prepared by nanoemulsion polymerisation method and evaluation of the efficacy. Int J Environ Anal Chem 94(10):1001–1012CrossRefGoogle Scholar
- İpek Y, Dinçer H, Koca A (2014) Selective electrochemical pesticide sensor modified with “click electrochemistry” between cobaltphthalocyanine and 4-azidoaniline. J Electrochem Soc 161(9):B183–B190CrossRefGoogle Scholar
- Jamal M, Moharramipour S, Zandi M, Negahban M (2013) Efficacy of nanoencapsulated formulation of essential oil from Carum copticum seeds on feeding behavior of Plutella xylostella (Lep.: Plutellidae). J Entomol Soc Iran 33(152):23–31Google Scholar
- Jampílek J, Kráľová K (2015) Application of nanotechnology in agriculture and food industry, its prospects and risks. Ecol Chem Eng S 22(3):321–361Google Scholar
- Jampílek J, Kráľová K (2017) Nanopesticides: preparation, targeting, and controlled release. In: Alexandru Mihai Grumezescu (ed) New pesticides and soil sensors. Elsevier, p 81–127Google Scholar
- Jo YK, Kim BH, Jung G (2009) Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis 93(10):1037–1043PubMedCrossRefGoogle Scholar
- Kanhed P, Birla S, Gaikwad S, Gade A, Seabra AB, Rubilar O, Duran N, Rai M (2014) In vitro antifungal efficacy of copper nanoparticles against selected crop pathogenic fungi. Mater Lett 115:13–17CrossRefGoogle Scholar
- Kawabata Y, Wada K, Nakatani M, Yamada S, Onoue S (2011) Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: basic approaches and practical applications. Int J Pharm 420(1):1–10PubMedPubMedCentralCrossRefGoogle Scholar
- Kim N, Park IS, Kim DK (2007) High-sensitivity detection for model organophosphorus and carbamate pesticide with quartz crystal microbalance-precipitation sensor. Biosens Bioelectron 22(8):1593–1599PubMedCrossRefGoogle Scholar
- Krieger R (2010) Hayes’ handbook of pesticide toxicology, vol 1. Academic, LondonGoogle Scholar
- Laborde A (2008) Pesticides. World Health Organization, GenevaGoogle Scholar
- Li H, Li F, Han C, Cui Z, Xie G, Zhang A (2010) Highly sensitive and selective tryptophan colorimetric sensor based on 4, 4-bipyridine-functionalized silver nanoparticles. Sens Actuators B Chem 145(1):194–199CrossRefGoogle Scholar
- Liu F, Wen LX, Li ZZ, Yu W, Sun HY, Chen JF (2006) Porous hollow silica nanoparticles as controlled delivery system for water-soluble pesticide. Mater Res Bull 41(12):2268–2275CrossRefGoogle Scholar
- Llorent-Martínez EJ, Ortega-Barrales P, Fernández-de Córdova ML, Ruiz-Medina A (2011) Trends in flow-based analytical methods applied to pesticide detection: a review. Anal Chim Acta 684(1–2):30–39CrossRefGoogle Scholar
- Margulis-Goshen K, Magdassi S (2013) Nanotechnology: an advanced approach to the development of potent insecticides. In: Ishaaya, Isaac, Palli, Subba Reddy, Horowitz, A. Rami (Eds.) Advanced technologies for managing insect pests. Springer, p 295–314Google Scholar
- Mishra S, Singh BR, Singh A, Keswani C, Naqvi AH, Singh H (2014) Biofabricated silver nanoparticles act as a strong fungicide against Bipolaris sorokiniana causing spot blotch disease in wheat. PLoS One 9(5):e97881PubMedPubMedCentralCrossRefGoogle Scholar
- Mohanraj V, Chen Y (2006) Nanoparticles-a review. Trop J Pharm Res 5(1):561–573Google Scholar
- Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179(3):154–163CrossRefGoogle Scholar
- Namasivayam KRS, Aruna A, Gokila (2014) Evaluation of silver nanoparticles-chitosan encapsulated synthetic herbicide paraquate (AgNp-CS-PQ) preparation for the controlled release and improved herbicidal activity against Eichhornia crassipes. Res J Biotechnol 9(9):19–27Google Scholar
- National Research Council (1993) Pesticides in the diets of infants and children. National Academies Press, Washington, DC. https://doi.org/10.17226/2126CrossRefGoogle Scholar
- Neethirajan S, Jayas DS (2011) Nanotechnology for the food and bioprocessing industries. Food Bioprocess Technol 4(1):39–47CrossRefGoogle Scholar
- Nisar K, Kumar J, Shakil NA, Pankaj WS, Parmar BS (2009) Controlled release formulations of acephate: water and soil release kinetics. J Environ Sci Health B 44(6):533–537PubMedCrossRefGoogle Scholar
- Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73(6):1712–1720PubMedPubMedCentralCrossRefGoogle Scholar
- Panáček A, Kvitek L, Prucek R, Kolář M, Večeřová R, Pizúrová N, Sharma VK, Nevěčná TJ, Zbořil R (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 110(33):16248–16253PubMedCrossRefGoogle Scholar
- Pant M, Dubey S, Patanjali P, Naik S, Sharma S (2014) Insecticidal activity of eucalyptus oil nanoemulsion with karanja and jatropha aqueous filtrates. Int Biodeterior Biodegrad 91:119–127CrossRefGoogle Scholar
- Park HJ, Kim SH, Kim HJ, Choi SH (2006) A new composition of nanosized silica-silver for control of various plant diseases. Plant Pathol J 22(3):295–302CrossRefGoogle Scholar
- Pereira AE, Grillo R, Mello NF, Rosa AH, Fraceto LF (2014) Application of poly (epsilon-caprolactone) nanoparticles containing atrazine herbicide as an alternative technique to control weeds and reduce damage to the environment. J Hazard Mater 268:207–215PubMedCrossRefGoogle Scholar
- Pérez-de-Luque A, Rubiales D (2009) Nanotechnology for parasitic plant control. Pest Manag Sci 65(5):540–545PubMedCrossRefGoogle Scholar
- Perlatti B, de Souza Bergo PcLs, Fernandes JB, Forim MR (2013) Polymeric nanoparticle-based insecticides: a controlled release purpose for agrochemicals. In: Stanislav Trdan (ed) Insecticides-development of safer and more effective technologies. InTechGoogle Scholar
- Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713CrossRefGoogle Scholar
- Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. https://doi.org/10.3389/fmicb.2017.01014PubMedPubMedCentralCrossRefGoogle Scholar
- Pronczuk J, Akre J, Moy G, Vallenas C (2002) Global perspectives in breast milk contamination: infectious and toxic hazards. Environ Health Perspect 110(6):A349–A351PubMedPubMedCentralCrossRefGoogle Scholar
- Ragaei M, Sabry A-kH (2014) Nanotechnology for insect pest control. Int J Sci Environ Technol 3:528–545Google Scholar
- Rudzinski W, Dave A, Vaishnav U, Kumbar S, Kulkarni A, Aminabhavi T (2002) Hydrogels as controlled release devices in agriculture. Des Monomers Polym 5(1):39–65CrossRefGoogle Scholar
- Sarlak N, Taherifar A, Salehi F (2014) Synthesis of nanopesticides by encapsulating pesticide nanoparticles using functionalized carbon nanotubes and application of new nanocomposite for plant disease treatment. J Agric Food Chem 62(21):4833–4838PubMedCrossRefGoogle Scholar
- Shaviv A (2001) Advances in controlled-release fertilizers. Adv Agron 71:1–49. https://doi.org/10.1016/S0065-2113(01)71011-5CrossRefGoogle Scholar
- Soundararajan R (2014) Pesticides: advances in chemical and botanical pesticides. InTechGoogle Scholar
- Štajnbaher D, Zupančič-Kralj L (2003) Multiresidue method for determination of 90 pesticides in fresh fruits and vegetables using solid-phase extraction and gas chromatography-mass spectrometry. J Chromatogr A 1015(1–2):185–198PubMedCrossRefGoogle Scholar
- Tano J (2011) Identity, physical and chemical properties of pesticides. In: Margarita Stoytcheva (ed) Pesticides in the modern world-trends in pesticides analysis. InTechGoogle Scholar
- United States Environmental Protection Agency (2016) What are biopesticides?Google Scholar
- Vargas-Bernal R, Rodríguez-Miranda E, Herrera-Pérez G (2012) Evolution and expectations of enzymatic biosensors for pesticides. In: R.P. Soundararajan (ed) Pesticides-advances in chemical and botanical pesticides. InTechGoogle Scholar
- Velmurugan N, Kumar GG, Han SS, Nahm KS, Lee YS (2009) Synthesis and characterization of potential fungicidal silver nano-sized particles and chitosan membrane containing silver particles. Iran Polym J 18(5):383–392Google Scholar
- Viswanathan S, Radecka H, Radecki J (2009) Electrochemical biosensor for pesticides based on acetylcholinesterase immobilized on polyaniline deposited on vertically assembled carbon nanotubes wrapped with ssDNA. Biosens Bioelectron 24(9):2772–2777PubMedCrossRefGoogle Scholar
- Yadav L, Tripathi RM, Prasad R, Pudake RN, Mittal J (2017) Antibacterial activity of Cu nanoparticles against E. coli, Staphylococcus aureus and Pseudomonas aeruginosa. Nano Biomed Eng 9(1):9–14CrossRefGoogle Scholar
- Yang F-L, Li X-G, Zhu F, Lei C-L (2009) Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J Agric Food Chem 57(21):10156–10162PubMedCrossRefGoogle Scholar
- Yin YH, Guo QM, Yun H, Wang LJ, Wan SQ (2012) Preparation, characterization and nematicidal activity of lansiumamide B nano-capsules. J Integr Agric 11(7):1151–1158CrossRefGoogle Scholar
Copyright information
© Springer Nature Switzerland AG 2019