Nanopesticides and Nanosensors in Agriculture

  • Rajender Boddula
  • Ujwalkumar Trivedi
  • Ramyakrishna Pothu
  • Mahendrapal Singh Rajput
  • Aditya Saran
Part of the Nanotechnology in the Life Sciences book series (NALIS)


Nanotechnology is a conspicuous technology of the modern decade, and it is significantly applicable in electrical, electronics, optical, food packing, sensing, medical and energy fields. Similarly, agriculture is also gratified by the use of nanotechnology in the form of nanopesticides and nanosensors with great hope for future sustainability. This chapter covers the effect of nanopesticides, nanoformulations, nanoencapsulation, detection of pesticides, ecotoxicology and current challenges of sustainability that are exploring by the researchers in the area of nanotechnology in the improvement of agriculture.


Nanopesticides Nanosensors Agri-technology Nanoformulations Ecotoxicology 


  1. Adak T, Kumar J, Shakil N, Walia S (2012) Development of controlled release formulations of imidacloprid employing novel nano-ranged amphiphilic polymers. J Environ Sci Health B 47(3):217–225PubMedCrossRefGoogle Scholar
  2. Ali MA, Rehman I, Iqbal A, Din S, Rao AQ, Latif A, Samiullah TR, Azam S, Husnain T (2014) Nanotechnology, a new frontier in Agriculture. Adv Life Sci 1:129–138Google Scholar
  3. Anjali C, Khan SS, Margulis-Goshen K, Magdassi S, Mukherjee A, Chandrasekaran N (2010) Formulation of water-dispersible nanopermethrin for larvicidal applications. Ecotoxicol Environ Saf 73:1932–1936PubMedCrossRefGoogle Scholar
  4. Anjum NA, Adam V, Kizek R, Duarte AC, Pereira E, Iqbal M, Lukatkin AS, Ahmad I (2015) Nanoscale copper in the soil plant system toxicity and underlying potential mechanisms. Environ Res 138:306–325PubMedCrossRefGoogle Scholar
  5. Anwunobi AP, Emeje MO (2011) Recent applications of natural polymers in nanodrug delivery. J Nanomedic Nanotechnol S4:002. Scholar
  6. Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612. Scholar
  7. Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. Scholar
  8. Aziz N, Faraz M, Sherwani MA, Fatma T, Prasad R (2019) Illuminating the anticancerous efficacy of a new fungal chassis for silver nanoparticle synthesis. Front Chem 7:65.
  9. Bajpai J, Bajpai A, Mishra S (2006) Dynamics of controlled release of potassium nitrate from a highly swelling binary biopolymeric blend of alginate and pectin. J Macromol Sci A 43(1):165–186CrossRefGoogle Scholar
  10. Bang S, Hwang I, Yu Y, Kwon H, Kim D, Park H (2011) Influence of chitosan coating on the liposomal surface on physicochemical properties and the release profile of nanocarrier systems. J Microencapsul 28(7):595–604PubMedCrossRefGoogle Scholar
  11. Basha S, Sarma B, Singh D, Annapurna K, Singh U (2006) Differential methods of inoculation of plant growth-promoting rhizobacteria induce synthesis of phenylalanine ammonia-lyase and phenolic compounds differentially in chickpea. Folia Microbiol 51(5):463–468CrossRefGoogle Scholar
  12. Bhattacharyya A, Duraisamy P, Govindarajan M, Buhroo AA, Prasad R (2016) Nano-biofungicides: emerging trend in insect pest control. In: Prasad R (ed) Advances and applications through fungal nanobiotechnology. Springer International Publishing, Cham, pp 307–319CrossRefGoogle Scholar
  13. Bogue R (2009) Nanosensors: a review of recent research. Sensor Rev 29(4):310–315CrossRefGoogle Scholar
  14. Bollag JM, Myers CJ, Minard RD (1992) Biological and chemical interactions of pesticides with soil organic matter. Sci Total Environ 123:205–217PubMedCrossRefGoogle Scholar
  15. Bossi R, Vejrup KV, Mogensen BB, Asman WA (2002) Analysis of polar pesticides in rainwater in Denmark by liquid chromatography-tandem mass spectrometry. J Chromatogr A 957(1):27–36PubMedCrossRefGoogle Scholar
  16. Clark LC, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci 102(1):29–45. Scholar
  17. Clemente Z, Grillo R, Jonsson M, Santos N, Feitosa L, Lima R, Fraceto L (2014) Ecotoxicological evaluation of poly (ε-caprolactone) nanocapsules containing triazine herbicides. J Nanosci Nanotech 14(7):4911–4917CrossRefGoogle Scholar
  18. Cromwell W, Yang J, Starr J, Jo Y-K (2014) Nematicidal effects of silver nanoparticles on root-knot nematode in bermuda grass. J Nematol 46(3):261PubMedPubMedCentralGoogle Scholar
  19. Cunha S, Fernandes J, Oliveira M (2011) Pesticides-strategies for pesticides analysis. InTech, RijekaGoogle Scholar
  20. de Oliveira JL, Campos EVR, Gonçalves da Silva CM, Pasquoto T, Lima R, Fraceto LF (2015) Solid lipid nanoparticles co-loaded with simazine and atrazine: preparation, characterization, and evaluation of herbicidal activity. J Agric Food Chem 63(2):422–432PubMedCrossRefGoogle Scholar
  21. Dhaliwal G, Jindal V, Dhawan A (2010) Insect pest problems and crop losses: changing trends. Indian J Ecol 37(1):1–7Google Scholar
  22. Forim MR, Costa ES, da Silva MFGF, Fernandes JB, Mondego JM, Boiça Junior AL (2013) Development of a new method to prepare nano-/microparticles loaded with extracts of Azadirachta indica, their characterization and use in controlling Plutella xylostella. J Agric Food Chem 61(38):9131–9139PubMedCrossRefGoogle Scholar
  23. Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M (2009) Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine 5(4):382–386PubMedCrossRefGoogle Scholar
  24. Garratt J, Kennedy A (2006) Use of models to assess the reduction in contamination of water bodies by agricultural pesticides through the implementation of policy instruments: a case study of the voluntary initiative in the UK. Pest Manag Sci 62(12):1138–1149PubMedCrossRefGoogle Scholar
  25. Gheorghe I, Popa M, Marutescu L, Saviuc C, Lazar V, Chifiriuc MC (2017) Lessons from inter-regn communication for the development of novel, ecofriendly pesticides. In: Alexandru Grumezescu (ed) New pesticides and soil sensors. Elsevier, p 1–45Google Scholar
  26. Gong J, Miao X, Zhou T, Zhang L (2011) An enzymeless organophosphate pesticide sensor using Au nanoparticle-decorated graphene hybrid nanosheet as solid-phase extraction. Talanta 85(3):1344–1349PubMedCrossRefGoogle Scholar
  27. Guo Y, Yang Q, Yan W, Li B, Qian K, Li T, Xiao W, He L (2014) Controlled release of acetochlor from poly (butyl methacrylate-diacetone acrylamide) based formulation prepared by nanoemulsion polymerisation method and evaluation of the efficacy. Int J Environ Anal Chem 94(10):1001–1012CrossRefGoogle Scholar
  28. İpek Y, Dinçer H, Koca A (2014) Selective electrochemical pesticide sensor modified with “click electrochemistry” between cobaltphthalocyanine and 4-azidoaniline. J Electrochem Soc 161(9):B183–B190CrossRefGoogle Scholar
  29. Jamal M, Moharramipour S, Zandi M, Negahban M (2013) Efficacy of nanoencapsulated formulation of essential oil from Carum copticum seeds on feeding behavior of Plutella xylostella (Lep.: Plutellidae). J Entomol Soc Iran 33(152):23–31Google Scholar
  30. Jampílek J, Kráľová K (2015) Application of nanotechnology in agriculture and food industry, its prospects and risks. Ecol Chem Eng S 22(3):321–361Google Scholar
  31. Jampílek J, Kráľová K (2017) Nanopesticides: preparation, targeting, and controlled release. In: Alexandru Mihai Grumezescu (ed) New pesticides and soil sensors. Elsevier, p 81–127Google Scholar
  32. Jo YK, Kim BH, Jung G (2009) Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis 93(10):1037–1043PubMedCrossRefGoogle Scholar
  33. Kanhed P, Birla S, Gaikwad S, Gade A, Seabra AB, Rubilar O, Duran N, Rai M (2014) In vitro antifungal efficacy of copper nanoparticles against selected crop pathogenic fungi. Mater Lett 115:13–17CrossRefGoogle Scholar
  34. Kawabata Y, Wada K, Nakatani M, Yamada S, Onoue S (2011) Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: basic approaches and practical applications. Int J Pharm 420(1):1–10PubMedPubMedCentralCrossRefGoogle Scholar
  35. Kim N, Park IS, Kim DK (2007) High-sensitivity detection for model organophosphorus and carbamate pesticide with quartz crystal microbalance-precipitation sensor. Biosens Bioelectron 22(8):1593–1599PubMedCrossRefGoogle Scholar
  36. Krieger R (2010) Hayes’ handbook of pesticide toxicology, vol 1. Academic, LondonGoogle Scholar
  37. Laborde A (2008) Pesticides. World Health Organization, GenevaGoogle Scholar
  38. Li H, Li F, Han C, Cui Z, Xie G, Zhang A (2010) Highly sensitive and selective tryptophan colorimetric sensor based on 4, 4-bipyridine-functionalized silver nanoparticles. Sens Actuators B Chem 145(1):194–199CrossRefGoogle Scholar
  39. Liu F, Wen LX, Li ZZ, Yu W, Sun HY, Chen JF (2006) Porous hollow silica nanoparticles as controlled delivery system for water-soluble pesticide. Mater Res Bull 41(12):2268–2275CrossRefGoogle Scholar
  40. Llorent-Martínez EJ, Ortega-Barrales P, Fernández-de Córdova ML, Ruiz-Medina A (2011) Trends in flow-based analytical methods applied to pesticide detection: a review. Anal Chim Acta 684(1–2):30–39CrossRefGoogle Scholar
  41. Margulis-Goshen K, Magdassi S (2013) Nanotechnology: an advanced approach to the development of potent insecticides. In: Ishaaya, Isaac, Palli, Subba Reddy, Horowitz, A. Rami (Eds.) Advanced technologies for managing insect pests. Springer, p 295–314Google Scholar
  42. Mishra S, Singh BR, Singh A, Keswani C, Naqvi AH, Singh H (2014) Biofabricated silver nanoparticles act as a strong fungicide against Bipolaris sorokiniana causing spot blotch disease in wheat. PLoS One 9(5):e97881PubMedPubMedCentralCrossRefGoogle Scholar
  43. Mohanraj V, Chen Y (2006) Nanoparticles-a review. Trop J Pharm Res 5(1):561–573Google Scholar
  44. Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179(3):154–163CrossRefGoogle Scholar
  45. Namasivayam KRS, Aruna A, Gokila (2014) Evaluation of silver nanoparticles-chitosan encapsulated synthetic herbicide paraquate (AgNp-CS-PQ) preparation for the controlled release and improved herbicidal activity against Eichhornia crassipes. Res J Biotechnol 9(9):19–27Google Scholar
  46. National Research Council (1993) Pesticides in the diets of infants and children. National Academies Press, Washington, DC. Scholar
  47. Neethirajan S, Jayas DS (2011) Nanotechnology for the food and bioprocessing industries. Food Bioprocess Technol 4(1):39–47CrossRefGoogle Scholar
  48. Nisar K, Kumar J, Shakil NA, Pankaj WS, Parmar BS (2009) Controlled release formulations of acephate: water and soil release kinetics. J Environ Sci Health B 44(6):533–537PubMedCrossRefGoogle Scholar
  49. Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73(6):1712–1720PubMedPubMedCentralCrossRefGoogle Scholar
  50. Panáček A, Kvitek L, Prucek R, Kolář M, Večeřová R, Pizúrová N, Sharma VK, Nevěčná TJ, Zbořil R (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 110(33):16248–16253PubMedCrossRefGoogle Scholar
  51. Pant M, Dubey S, Patanjali P, Naik S, Sharma S (2014) Insecticidal activity of eucalyptus oil nanoemulsion with karanja and jatropha aqueous filtrates. Int Biodeterior Biodegrad 91:119–127CrossRefGoogle Scholar
  52. Park HJ, Kim SH, Kim HJ, Choi SH (2006) A new composition of nanosized silica-silver for control of various plant diseases. Plant Pathol J 22(3):295–302CrossRefGoogle Scholar
  53. Pereira AE, Grillo R, Mello NF, Rosa AH, Fraceto LF (2014) Application of poly (epsilon-caprolactone) nanoparticles containing atrazine herbicide as an alternative technique to control weeds and reduce damage to the environment. J Hazard Mater 268:207–215PubMedCrossRefGoogle Scholar
  54. Pérez-de-Luque A, Rubiales D (2009) Nanotechnology for parasitic plant control. Pest Manag Sci 65(5):540–545PubMedCrossRefGoogle Scholar
  55. Perlatti B, de Souza Bergo PcLs, Fernandes JB, Forim MR (2013) Polymeric nanoparticle-based insecticides: a controlled release purpose for agrochemicals. In: Stanislav Trdan (ed) Insecticides-development of safer and more effective technologies. InTechGoogle Scholar
  56. Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713CrossRefGoogle Scholar
  57. Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. Scholar
  58. Pronczuk J, Akre J, Moy G, Vallenas C (2002) Global perspectives in breast milk contamination: infectious and toxic hazards. Environ Health Perspect 110(6):A349–A351PubMedPubMedCentralCrossRefGoogle Scholar
  59. Ragaei M, Sabry A-kH (2014) Nanotechnology for insect pest control. Int J Sci Environ Technol 3:528–545Google Scholar
  60. Rudzinski W, Dave A, Vaishnav U, Kumbar S, Kulkarni A, Aminabhavi T (2002) Hydrogels as controlled release devices in agriculture. Des Monomers Polym 5(1):39–65CrossRefGoogle Scholar
  61. Sarlak N, Taherifar A, Salehi F (2014) Synthesis of nanopesticides by encapsulating pesticide nanoparticles using functionalized carbon nanotubes and application of new nanocomposite for plant disease treatment. J Agric Food Chem 62(21):4833–4838PubMedCrossRefGoogle Scholar
  62. Shaviv A (2001) Advances in controlled-release fertilizers. Adv Agron 71:1–49. Scholar
  63. Soundararajan R (2014) Pesticides: advances in chemical and botanical pesticides. InTechGoogle Scholar
  64. Štajnbaher D, Zupančič-Kralj L (2003) Multiresidue method for determination of 90 pesticides in fresh fruits and vegetables using solid-phase extraction and gas chromatography-mass spectrometry. J Chromatogr A 1015(1–2):185–198PubMedCrossRefGoogle Scholar
  65. Tano J (2011) Identity, physical and chemical properties of pesticides. In: Margarita Stoytcheva (ed) Pesticides in the modern world-trends in pesticides analysis. InTechGoogle Scholar
  66. United States Environmental Protection Agency (2016) What are biopesticides?Google Scholar
  67. Vargas-Bernal R, Rodríguez-Miranda E, Herrera-Pérez G (2012) Evolution and expectations of enzymatic biosensors for pesticides. In: R.P. Soundararajan (ed) Pesticides-advances in chemical and botanical pesticides. InTechGoogle Scholar
  68. Velmurugan N, Kumar GG, Han SS, Nahm KS, Lee YS (2009) Synthesis and characterization of potential fungicidal silver nano-sized particles and chitosan membrane containing silver particles. Iran Polym J 18(5):383–392Google Scholar
  69. Viswanathan S, Radecka H, Radecki J (2009) Electrochemical biosensor for pesticides based on acetylcholinesterase immobilized on polyaniline deposited on vertically assembled carbon nanotubes wrapped with ssDNA. Biosens Bioelectron 24(9):2772–2777PubMedCrossRefGoogle Scholar
  70. Yadav L, Tripathi RM, Prasad R, Pudake RN, Mittal J (2017) Antibacterial activity of Cu nanoparticles against E. coli, Staphylococcus aureus and Pseudomonas aeruginosa. Nano Biomed Eng 9(1):9–14CrossRefGoogle Scholar
  71. Yang F-L, Li X-G, Zhu F, Lei C-L (2009) Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J Agric Food Chem 57(21):10156–10162PubMedCrossRefGoogle Scholar
  72. Yin YH, Guo QM, Yun H, Wang LJ, Wan SQ (2012) Preparation, characterization and nematicidal activity of lansiumamide B nano-capsules. J Integr Agric 11(7):1151–1158CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Rajender Boddula
    • 1
  • Ujwalkumar Trivedi
    • 2
  • Ramyakrishna Pothu
    • 3
  • Mahendrapal Singh Rajput
    • 2
  • Aditya Saran
    • 2
  1. 1.CAS Key Laboratory for Nanosystem and Hierarchical FabricationNational Center for Nanoscience and TechnologyBeijingPeople’s Republic of China
  2. 2.Department of MicrobiologyMarwadi UniversityRajkotIndia
  3. 3.College of Chemistry and Chemical EngineeringHunan UniversityChangshaPeople’s Republic of China

Personalised recommendations