Impact of Nanomaterials in Plant Systems

  • Rishabh Anand Omar
  • Shagufta Afreen
  • Neetu Talreja
  • Divya Chauhan
  • Mohammad Ashfaq
Part of the Nanotechnology in the Life Sciences book series (NALIS)


Nano-sized materials have been developed to exhibit novel characteristics, such as high surface area, morphology, tunable pore size, and high reactivity, compared with the characteristics of bulky materials. Nanomaterials exhibit various properties, including properties as herbicides, pesticides, antibacterials, and fertilizers, that target specific sites in plants and microbial systems.

Nanomaterials alleviate abiotic stress-induced damage through activating plant defense systems. Small-sized nanomaterials facilitate the easy penetration of water and regulate water channels that assist in seed germination and the growth of plants. Moreover, their improved surface area facilitates adsorption and the targeted delivery of substances. Future research addressing the scalability, economics, and safety of these systems is likely to overcome many of the current limitations and create opportunities to revolutionize drinking water treatment.


Nanomaterials Nanofertilizers Crop plants Nanopesticides Phytotoxicity Fullerene 


  1. Abd-Elsalam KA, Prasad R (2018) Nanobiotechnology applications in plant protection. Springer International Publishing. (ISBN 978-3-319-91161-8)
  2. Afreen S, Omar RA, Talreja N, Chauhan D, Ashfaq M (2018) Carbon-based nanostructured materials for energy and environmental remediation applications. In: Prasad R, Aranda E (eds) Approaches in bioremediation, Nanotechnology in the life sciences. Springer, ChamGoogle Scholar
  3. Aghdam MTB, Mohammadi H, Ghorbanpour M (2016) Effects of nanoparticulate anatase titanium dioxide on physiological and biochemical performance of Linum usitatissimum (Linaceae) under well-watered and drought stress conditions. Braz J Bot 39(1):139–146CrossRefGoogle Scholar
  4. Almutairi ZM (2016) Effect of nano-silicon application on the expression of salt tolerance genes in germinating tomato (Solanum lycopersicum L.) seedlings under salt stress. Plant Omics 9(1):106Google Scholar
  5. Amiri RM, Yur’eva NO, Shimshilashvili KR, Goldenkova-Pavlova IV, Pchelkin VP, Kuznitsova EI, Tsydendambaev VD, Trunova TI, Los DA, Jouzani GS, Nosov AM (2010) Expression of acyl-lipid Δ12-desaturase gene in prokaryotic and eukaryotic cells and its effect on cold stress tolerance of potato. J Integr Plant Biol 52(3):289–297PubMedCrossRefGoogle Scholar
  6. Anjum NA, Singh N, Singh MK, Shah ZA, Duarte AC, Pereira E, Ahmad I (2013) Single-bilayer graphene oxide sheet tolerance and glutathione redox system significance assessment in faba bean (Vicia faba L.). J Nanopart Res 15(7):1770CrossRefGoogle Scholar
  7. Arora S, Sharma P, Kumar S, Nayan R, Khanna PK, Zaidi MGH (2012) Gold-nanoparticle induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regul 66(3):303–310CrossRefGoogle Scholar
  8. Ashfaq M, Singh S, Sharma A, Verma N (2013) Cytotoxic evaluation of the hierarchal web of carbon micro-nanofibers. Ind Eng Chem Res 52:4672–4682CrossRefGoogle Scholar
  9. Ashfaq M, Khan S, Verma N (2014) Synthesis of PVA-CAP-based biomaterial in situ dispersed with Cu nanoparticles and carbon micro-nanofibers for antibiotic drug delivery applications. Biochem Eng J 90:79–89CrossRefGoogle Scholar
  10. Ashfaq M, Verma N, Khan S (2016a) Copper/zinc bimetal nanoparticles-dispersed carbon nanofibers: a novel potential antibiotics material. Mater Sci Eng C 59:938–947CrossRefGoogle Scholar
  11. Ashfaq M, Verma N, Khan S (2016b) Highly effective Cu/Zn-carbon micro/nanofiber-polymer nanocomposite-based wound dressing biomaterial against the P. aeruginosa multi-and extensively drug-resistant strains. Mater Sci Eng C 77:630–641CrossRefGoogle Scholar
  12. Ashfaq M, Verma N, Khan S (2017) Carbon nanofibers as a micronutrient carrier in plants: efficient translocation and controlled release of Cu nanoparticles. Environ Sci Nano 4:138–148CrossRefGoogle Scholar
  13. Ashfaq M, Verma N, Khan S (2018) Novel polymeric composite grafted with metal nanoparticle-dispersed CNFs as a chemiresistive non-destructive fruit sensor material. Mater Chem Phys 217:216–227CrossRefGoogle Scholar
  14. Ashkavand P, Tabari M, Zarafshar M, Tomášková I, Struve D (2015) Effect of SiO2 nanoparticles on drought resistance in hawthorn seedlings. For Res Paper 76(4):350–359CrossRefGoogle Scholar
  15. Azimi R, Borzelabad MJ, Feizi H, Azimi A (2014) Interaction of SiO2 nanoparticles with seed prechilling on germination and early seedling growth of tall wheatgrass (Agropyron elongatum L.). Pol J Chem Technol 16(3):25–29CrossRefGoogle Scholar
  16. Aziz N, Fatma T, Varma A, Prasad R (2014) Biogenic synthesis of silver nanoparticles using Scenedesmus abundans and evaluation of their antibacterial activity. J Nanopart 2014:689419. Scholar
  17. Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612. Scholar
  18. Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984.
  19. Aziz N, Faraz M, Sherwani MA, Fatma T, Prasad R (2019) Illuminating the anticancerous efficacy of a new fungal chassis for silver nanoparticle synthesis. Front Chem 7:65.
  20. Begum P, Ikhtiari R, Fugetsu B, Matsuoka M, Akasaka T, Watari F (2012) Phytotoxicity of multi-walled carbon nanotubes assessed by selected plant species in the seedling stage. Appl Surf Sci 262:120–124CrossRefGoogle Scholar
  21. Bhattacharyya A, Duraisamy P, Govindarajan M, Buhroo AA, Prasad R (2016) Nano-biofungicides: emerging trend in insect pest control. In: Prasad R (e (ed) Advances and applications through fungal nanobiotechnology. Springer International Publishing, Cham, pp 307–319CrossRefGoogle Scholar
  22. Cañas JE, Long M, Nations S, Vadan R, Dai L, Luo M, Ambikapathi R, Lee EH, Olszyk D (2008) Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of select crop species. Environ Toxicol Chem 27(9):1922–1931PubMedCrossRefGoogle Scholar
  23. Chandra S, Chakraborty N, Dasgupta A, Sarkar J, Panda K, Acharya K (2015) Chitosan nanoparticles: a positive modulator of innate immune responses in plants. Sci Rep 5:15195PubMedPubMedCentralCrossRefGoogle Scholar
  24. Chauhan D, Afreen S, Mishra S, Sankararamakrishnan N (2016) Synthesis, characterization and application of zinc augmented aminated PAN nanofibers towards decontamination of chemical and biological contaminants. J Ind Eng Chem 55:50–64CrossRefGoogle Scholar
  25. Chen H, Gong Y, Han R (2014) Cadmium telluride quantum dots (CdTe-QDs) and enhanced ultraviolet-B (UV-B) radiation trigger antioxidant enzyme metabolism and programmed cell death in wheat seedlings. PLoS One 9(10):110400CrossRefGoogle Scholar
  26. Chen J, Liu X, Wang C, Yin SS, Li XL, Hu WJ, Simon M, Shen ZJ, Xiao Q, Chu CC, Peng XX (2015) Nitric oxide ameliorates zinc oxide nanoparticles-induced phytotoxicity in rice seedlings. J Hazard Mater 297:173–182PubMedCrossRefGoogle Scholar
  27. Drew MC, Armstrong W (2002) Root growth and metabolism under oxygen deficiency. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half, 3rd edn. Marcel Dekker, New York, pp 729–761CrossRefGoogle Scholar
  28. Ghorbanpour M, Hatami M (2014) Spray treatment with silver nanoparticles plus thidiazuron increases anti-oxidant enzyme activities and reduces petal and leaf abscission in four cultivars of geranium (Pelargonium zonale) during storage in the dark. J Hortic Sci Biotechnol 89(6):712–718CrossRefGoogle Scholar
  29. Gu H, Ho PL, Tong E, Wang L, Xu B (2003) Presenting vancomycin on nanoparticles to enhance antimicrobial activities. Nano Lett 3(9):1261–1263CrossRefGoogle Scholar
  30. Gupta N, Upadhyaya CP, Singh A, Abd-Elsalam KA, Prasad R (2018) Applications of silver nanoparticles in plant protection. In: Abd-Elsalam K, Prasad R (eds) Nanobiotechnology applications in plant protection. Springer International Publishing AG, Cham, pp 247–266CrossRefGoogle Scholar
  31. Haghighi M, Afifipour Z, Mozafarian M (2012) The effect of N-Si on tomato seed germination under salinity levels. J Biol Environ Sci 6(16):87–90Google Scholar
  32. Haghighi M, Pessarakli M (2013) Influence of silicon and nano-silicon on salinity tolerance of cherry tomatoes (Solanum lycopersicum L) at early growth stage. Sci Hortic 161:111–117CrossRefGoogle Scholar
  33. Haghighi M, Abolghasemi R, da Silva JAT (2014) Low and high temperature stress affect the growth characteristics of tomato in hydroponic culture with Se and nano-Se amendment. Sci Hortic 178:231–240CrossRefGoogle Scholar
  34. Hasanpour H, Maali-Amir R, Zeinali H (2015) Effect of TiO2 nanoparticles on metabolic limitations to photosynthesis under cold in chickpea. Russ J Plant Physiol 62(6):779–787CrossRefGoogle Scholar
  35. Hatami M, Ghorbanpour M (2013) Effect of nanosilver on physiological performance of pelargonium plants exposed to dark storage. J Hort Res 21(1):15–20Google Scholar
  36. Hatami M, Ghorbanpour M (2014) Defense enzyme activities and biochemical variations of Pelargonium zonale in response to nanosilver application and dark storage. Turk J Biol 38(1):130–139CrossRefGoogle Scholar
  37. Hawrylak-Nowak B, Matraszek R, Szymańska M (2010) Selenium modifies the effect of short-term chilling stress on cucumber plants. Biol Trace Elem Res 138(1–3):307–315PubMedCrossRefGoogle Scholar
  38. Hong FS, Yang P, Gao FQ, Liu C, Zheng L, Yang F, Zhou J (2005a) Effect of nano-anatase TiO2 on spectral characterization of photosystem II particles from spinach. Chem Res Chin Univ 21(2):196–200Google Scholar
  39. Hong F, Zhou J, Liu C, Yang F, Wu C, Zheng L, Yang P (2005b) Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach. Biol Trace Elem Res 105(1–3):269–279PubMedCrossRefGoogle Scholar
  40. Hong F, Liu C, Zheng L, Wang X, Wu K, Song W, Lü S, Tao Y, Zhao G (2005c) Formation of complexes of rubisco-rubisco activase from La 3+, Ce 3+ treatment spinach. Sci China B 48(1):67CrossRefGoogle Scholar
  41. Husen A, Siddiqi KS (2014) Phytosynthesis of nanoparticles: concept, controversy and application. Nanoscale Res Lett 9(1):229PubMedPubMedCentralCrossRefGoogle Scholar
  42. Ismail M, Prasad R, Ibrahim AIM, Ahmed ISA (2017) Modern prospects of nanotechnology in plant pathology. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology. Springer Nature Singapore Pte Ltd., Singapore, pp 305–317CrossRefGoogle Scholar
  43. Jaberzadeh A, Moaveni P, Moghadam HRT, Zahedi H (2013) Influence of bulk and nanoparticles titanium foliar application on some agronomic traits, seed gluten and starch contents of wheat subjected to water deficit stress. Not Bot Horticult Agrobot Cluj Napoca 41(1):201–207CrossRefGoogle Scholar
  44. Jang H, Pell LE, Korgel BA, English DS (2003) Photoluminescence quenching of silicon nanoparticles in phospholipid vesicle bilayers. J Photoch Photobio A 158(2–3):111–117CrossRefGoogle Scholar
  45. Joshi N, Jain N, Pathak A, Singh J, Prasad R, Upadhyaya CP (2018) Biosynthesis of silver nanoparticles using Carissa carandas berries and its potential antibacterial activities. J Sol-Gel Sci Techn 86(3):682–689. Scholar
  46. Jośko I, Oleszczuk P (2014) Phytotoxicity of nanoparticles-problems with bioassay choosing and sample preparation. Environ Sci Pollut Res 21(17):10215–10224CrossRefGoogle Scholar
  47. Ju-Nam Y, Lead JR (2008) Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications. Sci Total Environ 400(1–3):396–414PubMedCrossRefGoogle Scholar
  48. Kaittanis C, Santra S, Perez JM (2010) Emerging nanotechnology-based strategies for the identification of microbial pathogenesis. Adv Drug Deliv Rev 62(4–5):408–423PubMedCrossRefGoogle Scholar
  49. Kalteh M, Alipour ZT, Ashraf S, Aliabadi MM, Nosratabadi AF (2014) Effect of silica nanoparticles on basil (Ocimum basilicum) under salinity stress. JCHR 4(3):49–55Google Scholar
  50. Karuppanapandian T, Wang HW, Prabakaran N, Jeyalakshmi K, Kwon M, Manoharan K, Kim W (2011) 2, 4-Dichlorophenoxyacetic acid-induced leaf senescence in mung bean (Vigna radiata L. Wilczek) and senescence inhibition by co-treatment with silver nanoparticles. Plant Physiol Biochem 49(2):168–177PubMedCrossRefGoogle Scholar
  51. Kazemipour S, Hashemabadi D, Kaviani B (2013) Effect of silver nanoparticles on the vase life and quality of cut chrysanthemum (Chrysanthemum morifolium L.) flower. European. J Exp Bot 3(6):298–302Google Scholar
  52. Khan MN, Mobin M, Abbas ZK, AlMutairi KA, Siddiqui ZH (2017) Role of nanomaterials in plants under challenging environments. Plant Physiol Biochem 110:194–209PubMedCrossRefGoogle Scholar
  53. Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z, Watanabe F, Biris AS (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3(10):3221–3227PubMedCrossRefGoogle Scholar
  54. Khodakovskaya MV, De Silva K, Biris AS, Dervishi E, Villagarcia H (2012) Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 6(3):2128–2135PubMedCrossRefGoogle Scholar
  55. Khodakovskaya MV, De Silva K, Nedosekin DA, Dervishi E, Biris AS, Shashkov EV, Galanzha EI, Zharov VP (2011) Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions. Proc Natl Acad Sci U S A 108(3):1028–1033PubMedCrossRefGoogle Scholar
  56. Kiapour H, Moaveni P, Habibi D, Sani B (2015) Evaluation of the application of gibberellic acid and titanium dioxide nanoparticles under drought stress on some traits of basil (Ocimum basilicum L.). Int J Agron Agric Res 6:138–150Google Scholar
  57. Kim JH, Oh Y, Yoon H, Hwang I, Chang YS (2015) Iron nanoparticle-induced activation of plasma membrane H+-ATPase promotes stomatal opening in Arabidopsis thaliana. Environ Sci Technol 49(2):1113–1119PubMedCrossRefPubMedCentralGoogle Scholar
  58. Kohan-Baghkheirati E, Geisler-Lee J (2015) Gene expression, protein function and pathways of Arabidopsis thaliana responding to silver nanoparticles in comparison to silver ions, cold, salt, drought, and heat. Nanomaterials 5(2):436–467PubMedPubMedCentralCrossRefGoogle Scholar
  59. Komatsu S, Yamamoto R, Nanjo Y, Mikami Y, Yunokawa H, Sakata K (2009) A comprehensive analysis of the soybean genes and proteins expressed under flooding stress using transcriptome and proteome techniques. J Proteome Res 8(10):4766–4778PubMedCrossRefGoogle Scholar
  60. Kumar V, Talreja N, Deva D, Sankararamakrishnan N, Sharma A, Verma N (2011) Development of bi-metal doped micro and nano multifunctional polymeric adsorbent for the removal of fluoride and arsenic in waste-water. Desalination 282:27–38CrossRefGoogle Scholar
  61. Kumar R, Ashfaq M, Verma N (2018) Novel PVA/starch-encapsulated Cu/Zn bimetal nanoparticle carrying carbon nanofibers as a biodegradable and anti-reactive oxidative nanofertilizer. J Mater Sci 53(10):7150–7164CrossRefGoogle Scholar
  62. Küpper H, Šetlík I, Spiller M, Küpper FC, Prášil O (2002) Heavy metal-induced inhibition of photosynthesis: targets of in vivo heavy metal chlorophyll formation1. J Phycol 38(3):429–441Google Scholar
  63. Lei Z, Mingyu S, Xiao W, Chao L, Chunxiang Q, Liang C, Hao H, Xiaoqing L, Fashui H (2008) Antioxidant stress is promoted by nano-anatase in spinach chloroplasts under UV-B radiation. Biol Trace Elem Res 121(1):69–79PubMedCrossRefGoogle Scholar
  64. Li Z, Huang J (2014) Effects of nanoparticle hydroxyapatite on growth and antioxidant system in pakchoi (Brassica chinensis L.) from cadmium-contaminated soil. J Nanomater 2014:7Google Scholar
  65. Madhavi V, Prasad T, Reddy AVB, Madhavi G (2013) Plant growth promoting potential of nano-bioremediation under Cr (vi) stress. Int J Nanotechnol Appl 3:1–10Google Scholar
  66. Marmiroli M, Imperiale D, Pagano L, Villani M, Zappettini A, Marmiroli N (2015) The proteomic response of Arabidopsis thaliana to cadmium sulfide quantum dots, and its correlation with the transcriptomic response. Front Plant Sci 6:1104PubMedPubMedCentralCrossRefGoogle Scholar
  67. Martínez-Fernández D, Vítková M, Bernal MP, Komárek M (2015) Effects of nano- maghemite on trace element accumulation and drought response of Helianthus annuus L. in a contaminated mine soil. Water Air Soil Pollut 226(4):101CrossRefGoogle Scholar
  68. Martínez-Fernández D, Barroso D, Komárek M (2016) Root water transport of Helianthus annuus L. under iron oxide nanoparticle exposure. Environ Sci Pollut Res 23(2):1732–1741CrossRefGoogle Scholar
  69. Miralles P, Church TL, Harris AT (2012) Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants. Environ Sci Technol 46(17):9224–9239PubMedCrossRefGoogle Scholar
  70. Mingyu S, Chao L, Chunxiang Q, Lei Z, Liang C, Hao H, Xiaoqing L, Xiao W, Fashui H (2008) Nano-anatase relieves the inhibition of electron transport caused by linolenic acid in chloroplasts of spinach. Biol Trace Elem Res 122(1):73–81PubMedCrossRefGoogle Scholar
  71. Mohammadi R, Maali-Amiri R, Abbasi A (2013) Effect of TiO2 nanoparticles on chickpea response to cold stress. Biol Trace Elem Res 152(3):403–410PubMedCrossRefGoogle Scholar
  72. Mohammadi R, Maali-Amiri R, Mantri NL (2014) Effect of TiO2 nanoparticles on oxidative damage and antioxidant defense systems in chickpea seedlings during cold stress. Russ J Plant Physiol 61(6):768–775CrossRefGoogle Scholar
  73. Møller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481PubMedCrossRefGoogle Scholar
  74. Mustafa S, Khan HM, Shukla I, Shujatullah F, Shahid M, Ashfaq M, Azam A (2011) Effect of ZnO nanoparticles on ESBL producing Escherichia coli & Klebsiella sp. East J Med 16:253–257Google Scholar
  75. Mustafa G, Sakata K, Komatsu S (2015) Proteomic analysis of flooded soybean root exposed to aluminum oxide nanoparticles. J Proteome 128:280–297CrossRefGoogle Scholar
  76. Nath M, Bhatt D, Prasad R, Gill SS, Anjum NA, Tuteja N (2016) Reactive oxygen species generation-scavenging and signaling during plant-arbuscular mycorrhizal and Piriformospora indica interaction under stress condition. Front Plant Sci 7:1574.
  77. Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, Sigg L, Behra R (2008) Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol 42:8959–8964PubMedCrossRefGoogle Scholar
  78. Oleszczuk P, Jośko I, Xing B (2011) The toxicity to plants of the sewage sludges containing multiwalled carbon nanotubes. J Hazard Mater 186(1):436–442PubMedCrossRefGoogle Scholar
  79. Ouzounidou G, Gaitis F (2011) The use of nano-technology in shelf life extension of green vegetables. JIEM 2:163–171Google Scholar
  80. Pradhan S, Patra P, Das S, Chandra S, Mitra S, Dey KK, Akbar S, Palit P, Goswami A (2013) Photochemical modulation of bio safe manganese nanoparticles on Vigna radiata: a detailed molecular, biochemical, and biophysical study. Environ Sci Technol 47:13122–13131PubMedCrossRefGoogle Scholar
  81. Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanopart 2014:963961.
  82. Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713CrossRefGoogle Scholar
  83. Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. Scholar
  84. Prasad R, Bhattacharyya A, Nguyen QD (2017a) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014.
  85. Prasad R, Pandey R, Varma A, Barman I (2017b) Polymer based nanoparticles for drug delivery systems and cancer therapeutics. In: Kharkwal H, Janaswamy S (eds) Natural polymers for drug delivery. CAB International, Wallingford, pp 53–70Google Scholar
  86. Prasad R, Gupta N, Kumar M, Kumar V, Wang S, Abd-Elsalam KA (2017c) Nanomaterials act as plant defense mechanism. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology. Springer Nature Singapore Pte Ltd., Singapore, pp 253–269CrossRefGoogle Scholar
  87. Qados AMA (2015) Mechanism of nanosilicon-mediated alleviation of salinity stress in faba bean (Vicia faba L.) plants. Am J Exp Agric 7(2):78Google Scholar
  88. Qados AMA, Moftah AE (2015) Influence of silicon and nano-silicon on germination, growth and yield of faba bean (Vicia faba L.) under salt stress conditions. Am J Expt Agricul 5(6):509CrossRefGoogle Scholar
  89. Qi M, Liu Y, Li T (2013) Nano-TiO2 improve the photosynthesis of tomato leaves under mild heat stress. Biol Trace Elem Res 156(1–3):323–328PubMedCrossRefPubMedCentralGoogle Scholar
  90. Rao S, Shekhawat GS (2014) Toxicity of ZnO engineered nanoparticles and evaluation of their effect on growth, metabolism and tissue specific accumulation in Brassica juncea. J Environ Chem Eng 2(1):105–114CrossRefGoogle Scholar
  91. Regier N, Cosio C, von Moos N, Slaveykova VI (2015) Effects of copper-oxide nanoparticles, dissolved copper and ultraviolet radiation on copper bioaccumulation, photosynthesis and oxidative stress in the aquatic macrophyte Elodea nuttallii. Chemosphere 128:56–61PubMedCrossRefGoogle Scholar
  92. Rezvani N, Sorooshzadeh A, Farhadi N (2012) Effect of nano-silver on growth of saffron in flooding stress. World Acad Sci Eng Technol 6(1):517–522Google Scholar
  93. Rico CM, Morales MI, McCreary R, Castillo-Michel H, Barrios AC, Hong J, Tafoya A, Lee WY, Varela-Ramirez A, Peralta-Videa JR, Gardea-Torresdey JL (2013) Cerium oxide nanoparticles modify the antioxidative stress enzyme activities and macromolecule composition in rice seedlings. Environ Sci Technol 47(24):14110–14118PubMedCrossRefGoogle Scholar
  94. Roy A, Bhattacharya J (2012) Removal of Cu (II), Zn (II) and Pb (II) from water using microwave-assisted synthesized maghemite nanotubes. Chem Eng J 211:493–500CrossRefGoogle Scholar
  95. Sangeetha J, Thangadurai D, Hospet R, Purushotham P, Karekalammanavar G, Mundaragi AC, David M, Shinge MR, Thimmappa SC, Prasad R, Harish ER (2017a) Agricultural nanotechnology: concepts, benefits, and risks. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology. Springer Nature Singapore Pte Ltd., Singapore, pp 1–17Google Scholar
  96. Sangeetha J, Thangadurai D, Hospet R, Harish ER, Purushotham P, Mujeeb MA, Shrinivas J, David M, Mundaragi AC, Thimmappa AC, Arakera SB, Prasad R (2017b) Nanoagrotechnology for soil quality, crop performance and environmental management. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology. Springer Nature Singapore Pte Ltd, Singapore, pp 73–97CrossRefGoogle Scholar
  97. Sankararamakrishnan N, Chauhan D (2014) Studies on the use of novel nano composite (CNT/Chitosan/Fe(0)) towards arsenate removal. J Environ Res Dev 8:594–599Google Scholar
  98. Sankararamakrishnan N, Chauhan D, Dwivedi J (2016) Synthesis of functionalized carbon nanotubes by floating catalytic chemical vapor deposition method and their sorption behavior toward arsenic. Chem Eng J 284:599–608CrossRefGoogle Scholar
  99. Saraswat R, Talreja N, Deva D, Sankararamakrisnan N, Sharma A, Verma N (2012) Development of novel in-situ nickel-doped, phenolic resin-based micro-nanoactivated carbon adsorbents for the removal of vitamin B-12. Chem Eng J 197:250–260CrossRefGoogle Scholar
  100. Schrick B, Hydutsky BW, Blough JL, Mallouk TE (2004) Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater. Chem Mater 16(11):2187–2193CrossRefGoogle Scholar
  101. Sedghi M, Hadi M, Toluie SG (2013) Effect of nano zinc oxide on the germination parameters of soybean seeds under drought stress. Ann West Univ Timişoara Ser Biol 16(2):73–78Google Scholar
  102. Seghatoleslami M, Feizi H, Mousavi G, Berahmand A (2015) Effect of magnetic field and silver nanoparticles on yield and water use efficiency of Carum copticum under water stress conditions. Pol J Chem Technol 17(1):110–114CrossRefGoogle Scholar
  103. Shabnam N, Pardha-Saradhi P, Sharmila P (2014) Phenolics impart Au3+-stress tolerance to cowpea by generating nanoparticles. PLoS One 9(1):85242CrossRefGoogle Scholar
  104. Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Aust J Bot 2012:1–26Google Scholar
  105. Sheet I, Kabbani A, Holail H (2014) Removal of heavy metals using nanostructured graphite oxide, silica nanoparticles and silica/graphite oxide composite. Energy Procedia 50:130–138CrossRefGoogle Scholar
  106. Siddiqui MH, Al-Whaibi MH, Faisal M, Al Sahli AA (2014) Nano-silicon dioxide mitigates the adverse effects of salt stress on Cucurbita pepo L. Environ Toxicol Chem 33(11):2429–2437PubMedCrossRefGoogle Scholar
  107. Singh J, Lee BK (2016) Influence of nano-TiO2 particles on the bioaccumulation of Cd in soybean plants (Glycine max): a possible mechanism for the removal of Cd from the contaminated soil. J Environ Manag 170:88–96CrossRefGoogle Scholar
  108. Soliman AS, El-feky SA, Darwish E (2015) Alleviation of salt stress on Moringa peregrina using foliar application of nanofertilizers. J Hortic For 7(2):36–47CrossRefGoogle Scholar
  109. Syu YY, Hung JH, Chen JC, Chuang HW (2014) Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. Plant Physiol Biochem 83:57–64PubMedCrossRefGoogle Scholar
  110. Talreja N, Verma N, Kumar D (2014) Removal of hexavalent chromium from water using Fe-grown carbon nanofibers containing porous carbon microbeads. J Water Process Eng 3:34–45CrossRefGoogle Scholar
  111. Talreja N, Verma N, Kumar D (2016) Carbon bead-supported ethylene diamine functionalized carbon nanofibers: an excellent adsorbent for salicyclic acid. CLEAN Soil Air Water 44(11):1461–1470CrossRefGoogle Scholar
  112. Tang Y, Tian J, Li S, Xue C, Xue Z, Yin D, Yu S (2015) Combined effects of graphene oxide and Cd on the photosynthetic capacity and survival of Microcystis aeruginosa. Sci Total Environ 532:154–161PubMedCrossRefGoogle Scholar
  113. Torabian S, Zahedi M, Khoshgoftar AH (2016) Effects of foliar spray of two kinds of zinc oxide on the growth and ion concentration of sunflower cultivars under salt stress. J Plant Nutr 39(2):172–180CrossRefGoogle Scholar
  114. Tripathi DK, Singh VP, Prasad SM, Chauhan DK, Dubey NK (2015) Silicon nanoparticles (SiNp) alleviate chromium (VI) phytotoxicity in Pisum sativum (L.) seedlings. Plant Physiol Biochem 96:189–198PubMedCrossRefGoogle Scholar
  115. Wagstaff C, Chanasut U, Harren FJ, Laarhoven LJ, Thomas B, Rogers HJ, Stead AD (2005) Ethylene and flower longevity in Alstroemeria: relationship between tepal senescence, abscission and ethylene biosynthesis. J Exp Bot 56(413):1007–1016PubMedCrossRefGoogle Scholar
  116. Wang Z, Chen J, Li X, Shao J, Peijnenburg WJ (2012a) Aquatic toxicity of nanosilver colloids to different trophic organisms: contributions of particles and free silver ion. Environ Toxicol Chem 31(10):2408–2413PubMedCrossRefGoogle Scholar
  117. Wang Z, Xie X, Zhao J, Liu X, Feng W, White JC, Xing B (2012b) Xylem-and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environ Sci Technol 46(8):4434–4441PubMedCrossRefGoogle Scholar
  118. Worms IA, Boltzman J, Garcia M, Slaveykova VI (2012) Cell-wall-dependent effect of carboxyl-CdSe/ZnS quantum dots on lead and copper availability to green microalgae. Environ Pollut 167:27–33PubMedCrossRefGoogle Scholar
  119. Yang WW, Miao AJ, Yang LY (2012) Cd2+ toxicity to a green alga Chlamydomonas reinhardtii as influenced by its adsorption on TiO2 engineered nanoparticles. PLoS One 7(3):32300CrossRefGoogle Scholar
  120. Zaimenko NV, Didyk NP, Dzyuba OI, Zakrasov OV, Rositska NV, Viter AV (2014) Enhancement of drought resistance in wheat and corn by nanoparticles of natural mineral analcite. Ecologia Balkanica 6(1):1–10Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Rishabh Anand Omar
    • 1
  • Shagufta Afreen
    • 2
  • Neetu Talreja
    • 3
  • Divya Chauhan
    • 4
  • Mohammad Ashfaq
    • 5
    • 6
  1. 1.Centre for Environmental Science and EngineeringIndian Institute of Technology KanpurKanpurIndia
  2. 2.CAS Key Laboratory of Bio-based materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, PR ChinaQingdaoChina
  3. 3.Department of Bio-nanotechnologyGachon UniversitySeongnamSouth Korea
  4. 4.Department of ChemistryPunjab UniversityChandigarhIndia
  5. 5.School of Life ScienceBS Abdur Rahaman Institute of Science and TechnologyChennaiIndia
  6. 6.Department of Mechanical Engineering, Faculty of EngineeringChulalongkorn UniversityBangkokThailand

Personalised recommendations