Advances in Nanobiotechnology with Special Reference to Plant Systems

  • Madan L. Verma
  • Pankaj Kumar
  • Deepka Sharma
  • Aruna D. Verma
  • Asim K. Jana
Part of the Nanotechnology in the Life Sciences book series (NALIS)


Recent advances in nanotechnology have made the massive use of engineered nanomaterials that has led to the interaction with the plants and environment. Nanoparticles enter into the plant system by two routes of penetration, namely, foliar/shoot and root system. Nanomaterial regulates the primary and secondary metabolism of the plants. Plant-nanomaterial interaction may induce beneficial, neutral, and even antagonistic effects to the growth and development of plant. The most recent advances in the plant nanobiotechnology is to develop a plant nanobionic system. Nanoengineering of plant organelles, in particular chloroplast, was done in order to develop a nanobionic plant. Recent few studies on the development of nanobionic plants have improved significantly the efficiency of the plants systems at the level of photosynthetic sensing.


Plant Secondary metabolism Nanoparticles Carbon nanotubes Nanobionics 


  1. Abraham RE, Verma ML, Barrow CJ, Puri M (2014) Suitability of magnetic nanoparticles immobilised cellulases in enhancing enzymatic saccharification of pretreated hemp biomass. Biotechnol Biofuels 7:90PubMedPubMedCentralCrossRefGoogle Scholar
  2. Ahmad SS, Khosroushahi Y (2017) Overviews on the cellular uptake mechanism of polysaccharide colloidal nanoparticles. J Cell Mol Med 21(9):1668–1686CrossRefGoogle Scholar
  3. Asli S, Neumann PM (2009) Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant Cell Environ 32:577–584PubMedCrossRefGoogle Scholar
  4. Atha DH, Wang H, Petersen EJ, Cleveland D, Holbrook RD, Jaruga P, Dizdaroglu M, Xing B, Nelson BC (2012) Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environ Sci Technol 46(3):1819–1827PubMedCrossRefGoogle Scholar
  5. Begum P, Fugetsu B (2012) Phytotoxicity of multi-walled carbon nanotubes on red spinach (Amaranthus tricolor L) and the role of ascorbic acid as an antioxidant. J Hazard Mater 243:212–222PubMedCrossRefGoogle Scholar
  6. Begum P, Fugetsu B (2013) Induction of cell death by graphene in Arabidopsis thaliana (Columbia ecotype) T87 cell suspensions. J Hazard Mater 260:1032–1041PubMedCrossRefGoogle Scholar
  7. Belava VN, Panyuta OO, Yakovleva GM, Pysmenna YM, Volkogon MV (2017) The effect of silver and copper nanoparticles on the Wheat-Pseudocercosporella herpotrichoides patho system. Nanoscale Res Lett 12:250Google Scholar
  8. Canas JE, Long M, Nations S, Vadan R, Dai L, Luo M, Ambikapathi R, Lee EH, Oslzyk D (2008) Effects of functionalized and non-functionalized single-walled carbon nanotubes on root elongation of select crop species. Environ Toxicol Chem 27:1922–1931PubMedCrossRefGoogle Scholar
  9. Chichiricco G, Poma A (2016) Penetration and toxicity of nanoparticles in higher plants. Nanomaterials 5:851–873CrossRefGoogle Scholar
  10. Cvjetko P, Milosic A, Domijan AM, Vinkovi C, Vrcek I, Toli CS, Peharec Stefanic P, Letofsky-Papst I, Tkalec M, Balen B (2017) Toxicity of silver ions and differently coated silver nanoparticles in Allium cepa roots. Ecotoxicol Environ Saf 137:18–28PubMedCrossRefGoogle Scholar
  11. Dimkpa CO, McLean JE, Latta DE, Manangon E, Britt DW, Johnson WP, Boyanov MI, Anderson AJ (2012) CuO and ZnO nanoparticles: phytotoxicity, metal speciation and induction of oxidative stress in sand-grown wheat. J Nanopart Res 14:1125–1140CrossRefGoogle Scholar
  12. Du W, Sun Y, Ji R, Zhu J, Wu J, Gua H (2011) TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. J Environ Monit 13:822–828PubMedCrossRefGoogle Scholar
  13. Eichert T, Kurtz A, Steiner U, Goldbach HE (2008) Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles. Physiol Plant 134:151–160PubMedCrossRefGoogle Scholar
  14. Eltarahony M, Zaki S, ElKady M, Abd-El-Haleem D (2018) Biosynthesis, characterization of some combined nanoparticles, and its biocide potency against a broad spectrum of pathogens. J Nanomater 2018:1–16Google Scholar
  15. Etxeberria E, Gonzalez P, Baroja-Fernandez E, Romero JP (2006) Fluid phase endocytic uptake of artificial nano-spheres and fluorescent quantum dots by sycamore cultured cells: evidence for the distribution of solutes to different intracellular compartments. Plant Signal Behav 1:196–200PubMedPubMedCentralCrossRefGoogle Scholar
  16. Faisal M, Saquib Q, Alatar AA, Al-Khedhairy AA, Hegazy AK, Musarrat J (2013) Phytotoxic hazards of NiO-nanoparticles in tomato: a study on mechanism of cell death. J Hazard Mater 250–251:318–332PubMedCrossRefGoogle Scholar
  17. Flores D, Chacon R, Alvarado L, Schmidt A, Alvarado C, Chaves J (2014) Effect of using two different types of carbon nanotubes for blackberry (Rubus adenotrichos) in vitro plant rooting, growth and histology. Am J Plant Sci 5:3510–3518CrossRefGoogle Scholar
  18. Gajanan G, Deuk SY, Donghee P, Sung LD (2010) Phytotoxicity of carbon nanotubes assessed by Brassica Juncea and Phaseolus Mungo. J Nanoelectron Optoelectron 5:157–160CrossRefGoogle Scholar
  19. Giraldo JP, Landry MP, Faltermeier SM, McNicholas TP, Iverson TP, Boghossian AA, Reuel NF, Hilmer AJ, Sen F, Bre JA, Strano MS (2014) Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater 13:400–408PubMedCrossRefGoogle Scholar
  20. Gopinath K, Gowri S, Karthika V, Arumugam A (2014) Green synthesis of gold nanoparticles from fruit extract of Terminalia arjuna, for the enhanced seed germination activity of Gloriosa superba. J Nanostruct Chem 4:1–11Google Scholar
  21. Goswami L, Kim KH, Deep A, Das P, Bhattacharya SS, Kumar S (2017) Engineered nano particles: nature, behavior, and effect on the environment. J Environ Manag 196:297–315CrossRefGoogle Scholar
  22. Griffin S, Massod MI, Nasim J, Muhammad S, Azubuike E, Karl-Herbert S, Cornelia K, Claus J (2017) Natural nanoparticles: a particular matter inspired by nature. Antioxidant 7:3–10CrossRefGoogle Scholar
  23. Haghighi M, Afifipour Z, Mozafarian M (2012) The effect of N-Si on tomato seed germination under salinity levels. J Biol Environ Sci 6:87–90Google Scholar
  24. Hong J, Peralta-Videa JR, Rico C, Sahi S, Viveros MN, Bartonio J, Zhao L, Gardea-Torresdey JL (2014) Evidence of translocation and physiological impacts of foliar applied CeO2 nanoparticles on cucumber (Cucumis sativus) plants. Environ Sci Technol 48:4376–4385PubMedCrossRefGoogle Scholar
  25. Horiuchi R, Nakajima Y, Kashiwada S, Miyanishi N (2018) Effects of silver nanocolloids on plant complex type N-glycans in Oryza sativa roots. Sci Rep 8:1000PubMedPubMedCentralCrossRefGoogle Scholar
  26. Hu X, Kang J, Lu K, Zhou R, Mu L, Zhou Q (2014) Graphene oxide amplifies the phytotoxicity of arsenic in wheat. Sci Rep 19:6122Google Scholar
  27. Jasim B, Thomas R, Mathew J, Radhakrishnan EK (2017) Plant growth and diosgenin enhancement effect of silver nanoparticles in Fenugreek (Trigonella foenum-graecum L.). Saudi Pharm J 25:443–447PubMedCrossRefGoogle Scholar
  28. Jiang HS, Qiu XN, Li GB, Li W, Yin LY (2014) Silver nanoparticles induced accumulation of reactive oxygen species and alteration of antioxidant systems in the aquatic plant Spirodela polyrhiza. Environ Toxicol Chem 33:1398–1405PubMedCrossRefGoogle Scholar
  29. Kaegi R, Ulrich A, Sinnet B, Vonbank R, Wichser A, Zuleeg S, Simmler H, Brunner S, Vonmont H, Burkhardt M, Boller M (2008) Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment. Environ Pollut 156(2):233–239PubMedCrossRefGoogle Scholar
  30. Khodakovskaya MV, de Silva K, Biris AS, Dervishi E, Villagarcia H (2012) Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 6:2128–2135PubMedCrossRefGoogle Scholar
  31. Kole C, Kole P, Randunu KM, Choudhary P, Podila R, Ke P, Rao AM, Marcus RK (2013) Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia). BMC Biotechnol 13:37–46PubMedPubMedCentralCrossRefGoogle Scholar
  32. Kong FY, Zhang JW, Li RF, Wang ZX, Wang WJ, Wang W (2017) Unique roles of gold nanoparticles in drug delivery, targeting and imaging applications. Molecules 22:1445–1451PubMedCentralCrossRefPubMedGoogle Scholar
  33. Krishnaraj C, Jagan EG, Ramachandran R, Abirami SM, Mohan N, Kalaichelvan PT (2012) Effect of biologically synthesized silver nanoparticles on Bacopa monnieri (Linn.) Wettst. plant growth metabolism. Process Biochem 47(4):51–65CrossRefGoogle Scholar
  34. Kumar P, Srivastava DK (2016) Biotechnological advancement in genetic improvement of broccoli (Brassica oleracea L. var. italica), an important vegetable crop. Biotechnol Lett 38:1049–1063PubMedCrossRefGoogle Scholar
  35. Kurepa J, Paunesku T, Vogt S, Arora H, Rabatic BM, Lu J, Wanzer MB, Woloschak GE, Smalle JA (2010) Uptake and distribution of ultra-small anatase TiO2 alizarin red S nanoconjugates in Arabidopsis thaliana. Nano Lett 10:2296–2302PubMedPubMedCentralCrossRefGoogle Scholar
  36. Kwak SY, Giraldo JP, Wong MH, Koman VB, Lew TTS, Ell J, Weidman MC, Sinclair RM, Landry MP, Tisdale WA, Strano MS (2017) A nanobionic light-emitting plant. Nano Lett 17(12):7951–7961CrossRefGoogle Scholar
  37. Larue C, Castillo-Michel H, Sobanska S, Bureau S, Barthès V, Ouerdane L, Carrière M, Sarret G (2014) Foliar exposure of the crop Lactuca sativa to silver nanoparticles: evidence for internalization and changes in Ag speciation. J Hazard Mater 261:98–106CrossRefGoogle Scholar
  38. Laware SL, Raskar SV (2014) Effect of titanium dioxide nanoparticles on hydrolytic and antioxidant enzymes during seed germination in onion. Int J Curr Microbiol App Sci 3:749–760Google Scholar
  39. Liden G (2011) The European commission tries to define nanomaterials. Ann Occup Hyg 55:1–5PubMedGoogle Scholar
  40. Lin D, Xing B (2008) Uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42:5580–5585PubMedCrossRefGoogle Scholar
  41. Lin MT, Occhialini A, Andralojc PJ, Parry MA, Hanson MR (2014) A faster Rubisco with potential to increase photosynthesis in crops. Nature 513(7519):547–550PubMedPubMedCentralCrossRefGoogle Scholar
  42. Mahakham W, Sarmah AK, Maensiri S, Theerakulpisut P (2017) Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using photosynthesized silver nanoparticles. Sci Rep 7:8263PubMedPubMedCentralCrossRefGoogle Scholar
  43. Mahmoodzadeh H, Nabavi M, Kashefi H (2013) Effect of nanoscale titanium dioxide particles on the germination and growth of canola (Brassica napus). J Ornamental Hort Plants 3:25–32Google Scholar
  44. Marslin G, Selvakesavan RK, Franklin G, Sarmento B, Dias AC (2015) Antimicrobial activity of cream incorporated with silver nanoparticles biosynthesized from Withania somnifera. Int J Nanomedicine 10:5955–5963PubMedPubMedCentralGoogle Scholar
  45. Marslin G, Sheeba CJ, Franklin G (2017) Nanoparticles alter secondary metabolism in plants via ROS burst. Front Plant Sci 8:832PubMedPubMedCentralCrossRefGoogle Scholar
  46. Mondal A, Basu R, Das S, Nandy P (2011) Beneficial role of carbon nanotubes on mustard plant growth: an agricultural prospect. J Nanopart Res 13:4519–4528CrossRefGoogle Scholar
  47. Monica RC, Cremonini R (2009) Nanoparticles and higher plants. Caryologia 62:161–165CrossRefGoogle Scholar
  48. Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163CrossRefGoogle Scholar
  49. Nalwade AR, Neharkar SB (2013) Carbon nanotubes enhance the growth and yield of hybrid Bt cotton var. ACH-177-2. Int J Adv Sci Tech Res 3:840–846Google Scholar
  50. Nath M, Bhatt D, Prasad R, Gill SS, Anjum NA, Tuteja N (2016) Reactive oxygen species generation-scavenging and signaling during plant-arbuscular mycorrhizal and Piriformospora indica interaction under stress condition. Front Plant Sci 7:1574. Scholar
  51. Nath M, Bhatt D, Prasad R, Tuteja N (2017) Reactive oxygen species (ROS) metabolism and signaling in plant-mycorrhizal association under biotic and abiotic stress conditions. In: Varma A, Prasad R, Tuteja N (eds) Mycorrhiza. Springer International Publishing AG, Cham, pp 223–232CrossRefGoogle Scholar
  52. Nel AE, Madler L, Velegol D, Xia T, Hoek EM, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Understanding biophysicochemical interactions at the nano–bio interface. Nat Mater 8(7):543–557PubMedCrossRefGoogle Scholar
  53. Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150:5–22PubMedCrossRefGoogle Scholar
  54. Pakrashi S, Jain N, Dalai S, Jayakumar J, Chandrasekaran PT, Raichur AM et al (2014) In vivo genotoxicity assessment of titanium dioxide nanoparticles by Allium cepa root tip assay at high exposure concentrations. PLoS ONE 9:e87789PubMedPubMedCentralCrossRefGoogle Scholar
  55. Patra P, Choudhury SR, Mandal S, Basu A, Goswami A, Gogoi R, Srivastava C, Kumar R, Gopal M (2013) Effect sulfur and ZnO nanoparticles on stress physiology and plant (Vigna radiata) nutrition. In: Giri PK, Goswami DK, Perumal A (eds) Advanced nanomaterials and nanotechnology. Springer, Berlin Heidelberg, pp 301–309Google Scholar
  56. Perez-de-Luque A (2017) Interaction of nanomaterials with plants: what do we need for real applications in agriculture? Front Environ Sci 10:5–12Google Scholar
  57. Pittermann J, Choat B, Jansen S, Stuart SA, Lynn L, Dawson TE (2010) The relationships between xylem safety and hydraulic efficiency in the Cu-pressaceae: the evolution of pit membrane form and function. Plant Physiol 153:1919–1931PubMedPubMedCentralCrossRefGoogle Scholar
  58. Pradhan M, Singh D, Singh MR (2013) Novel colloidal carriers for psoriasis: current issues, mechanistic insight and novel delivery approaches. J Control Release 170:380–395PubMedCrossRefGoogle Scholar
  59. Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanoparticles 2014:963961. Scholar
  60. Prasad TNVKV, Sudhakar P, Sreenivasulu Y, Latha P, Munaswamy V, Reddy KR, Sreeprasad TSP, Sajanlal R, Pradeep T (2012) Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J Plant Nutr 35(6):905–927CrossRefGoogle Scholar
  61. Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. Scholar
  62. Prasad R, Gupta N, Kumar M, Kumar V, Wang S, Abd-Elsalam KA (2017) Nanomaterials act as plant defense mechanism. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology. Springer Nature Singapore Pte Ltd., Singapore, pp 253–269CrossRefGoogle Scholar
  63. Puri M, Barrow CJ, Verma ML (2013) Enzyme immobilization on nanomaterials for biofuel production. Trends Biotechnol 31:215–216PubMedCrossRefGoogle Scholar
  64. Raliya R, Tarafdar JC (2013) ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in cluster bean (Cyamopsis tetragonoloba L.). Agric Res 2:48–57CrossRefGoogle Scholar
  65. Raliya R, Franke C, Chavalmane S, Nair R, Reed N, Biswas P (2016) Quantitative understanding of nanoparticle uptake in watermelon plants. Front Plant Sci 7:1288PubMedPubMedCentralCrossRefGoogle Scholar
  66. Ramesh M, Palanisamy K, Babu K, Sharma NK (2014) Effects of bulk and nano-titanium dioxide and zinc oxide on physio-morphological changes in Triticum aestivum Linn. J Glob Biosci 3:415–422Google Scholar
  67. Raskar SV, Laware SL (2014) Effect of zinc oxide nanoparticles on cytology and seed germination in onion. Int J Curr Microbiol App Sci 3:467–473Google Scholar
  68. Rastogi A, Zivcak M, Sytar O, Kalaji HM, He X, Mbarki S, Brestic M (2017) Impact of metal and metal oxide nanoparticles on plant: a critical review. Front Chem 5:78–110PubMedPubMedCentralCrossRefGoogle Scholar
  69. Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59:3485–3498PubMedPubMedCentralCrossRefGoogle Scholar
  70. Roberts AG, Oparka KJ (2003) Plasmodesmata and the control of symplastic transport. Plant Cell Environ 26:103–124CrossRefGoogle Scholar
  71. Ruffini CM, Giorgetti L, Geri C, Cremonini R (2011) The effects of nano-TiO2 on seed germination, development and mitosis of root tip cells of Vicia narbodensis L. and Zea mays L. J Nanopart Res 13:2443–2449Google Scholar
  72. Ruttkay-Nedecky B, Krystofova O, Nejdl L, Adam V (2017) Nanoparticles based on essential metals and their phytotoxicity. J Nanobiotechnol 15:33CrossRefGoogle Scholar
  73. Saha N, Gupta SD (2017) Low-dose toxicity of biogenic silver nanoparticles fabricated by Swertia chirata on root tips and flower buds of Allium cepa. J Hazard Mater 330:18–28PubMedCrossRefGoogle Scholar
  74. Samadi N, Yahyaabadi S, Rezayatmand Z (2014) Effect of TiO2 and TiO2 nanoparticle on germination, root and shoot length and photosynthetic pigments of Mentha piperita. Int J Plant Soil Sci 3:408–418CrossRefGoogle Scholar
  75. Sangeetha J, Thangadurai D, Hospet R, Harish ER, Purushotham P, Mujeeb MA, Shrinivas J, David M, Mundaragi AC, Thimmappa AC, Arakera SB, Prasad R (2017a) Nanoagrotechnology for soil quality, crop performance and environmental management. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology. Springer Nature Singapore Pte Ltd, Singapore, pp 73–97CrossRefGoogle Scholar
  76. Sangeetha J, Thangadurai D, Hospet R, Purushotham P, Karekalammanavar G, Mundaragi AC, David M, Shinge MR, Thimmappa SC, Prasad R, Harish ER (2017b) Agricultural nanotechnology: concepts, benefits, and risks. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology. Springer Nature Singapore Pte Ltd, Singapore, pp 1–17Google Scholar
  77. Schwab F, Zhai G, Kern M, Turner A, Schnoor JL, Wiesner MR (2015) Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants-critical review. Nanotoxicology 10:257–278PubMedGoogle Scholar
  78. Sealy C (2014) Nanobionic plants turn over new leaf. Nano Today 9:261–265CrossRefGoogle Scholar
  79. Sedghi M, Hadi M, Toluie SG (2013) Effect of nano zinc oxide on the germination of soybean seeds under drought stress. Ann West Uni Timisoara ser Biol XVI 2:73–78Google Scholar
  80. Siddiqui MH, Al-Whaibi MH (2014) Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds Mill). Saudi Biol Sci 21:13–17CrossRefGoogle Scholar
  81. Siddiqui MH, Al-Whaibi MH, Faisal M, Al-Sahli AA (2014) Nano-silicon dioxide mitigates the adverse effects of salt stress on Cucurbita pepo L. Environ Toxicol Chem 33:2429–2437PubMedCrossRefGoogle Scholar
  82. Siddiqui MH, Al-Whaibi MH, Firoz M, Al-Khaishany MY (2015) Role of nanoparticles in plants. In: Siddiqui MH, Al-Whaibi MH, Firoz M (eds) Nanotechnology and plant sciences. Springer International Publishing, Cham, pp 19–35Google Scholar
  83. Song G, Gao Y, Wu H, Hou W, Zhang C, Ma H (2012) Physiological effect of anatase TiO2 nanoparticles on Lemna minor. Environ Toxicol Chem 31:2147–2152PubMedCrossRefGoogle Scholar
  84. Stampoulis D, Sinha SK, White JC (2009) White assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473–9479PubMedCrossRefGoogle Scholar
  85. Su M, Liu H, Liu C, Qu C, Zheng L, Hong F (2009) Promotion of nano-anatase TiO2 on the spectral responses and photochemical activities of D1/D2/Cyt b559 complex of spinach. Spectrochim Acta A 72(5):1112–1116CrossRefGoogle Scholar
  86. Sun D, Hussain HI, Yi Z, Siegele R, Cresswell T, Kong L, Cahill DM (2014) Uptake and cellular distribution, in four plant species, of fluorescently labeled mesoporous silica nanoparticles. Plant Cell Rep 33(8):1389–1402PubMedCrossRefGoogle Scholar
  87. Syu YY, Hung JH, Chen JC, Chuang HW (2014) Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. Plant Physiol Biochem 83:57–64PubMedCrossRefGoogle Scholar
  88. Taran N, Batsmanova L, Konotop Y, Okanenko A (2014) Redistribution of elements of metals in plant tissues under treatment by non-ionic colloidal solution of biogenic metal nanoparticles. Nanoscale Res Lett 9:354–357PubMedPubMedCentralCrossRefGoogle Scholar
  89. Tervonen T, Linkov I, Figueira JR, Steevens J, Chappell M, Merad M (2009) Risk-based classification system of nanomaterials. J Nanopart Res 11(4):757–766CrossRefGoogle Scholar
  90. Timmusk S, Seisenbaeva G, Behers L (2018) Titania (TiO2) nanoparticles enhance the performance of growth-promoting rhizobacteria. Sci Rep 8:617PubMedPubMedCentralCrossRefGoogle Scholar
  91. Torabian S, Zahedi M, Khoshgoftar AH (2016) Effects of foliar spray of nano-particles of FeSO4 on the growth and ion content of sunflower under saline condition. J Plant Nutr 40:615–623CrossRefGoogle Scholar
  92. Vannini C, Domingo G, Onelli E, De Mattia F, Bruni I, Marsoni M, Bracale M (2014) Phytotoxic and genotoxic effects of silver nanoparticles exposure on germinating wheat seedlings. J Plant Physiol 171:1142–1148PubMedCrossRefGoogle Scholar
  93. Vecerova K, Vecera Z, Docekal B, Oravec M, Pompeiano A, Triska J (2016) Changes of primary and secondary metabolites in barley plants exposed to CdO nanoparticles. Environ Pollut 218:207–218PubMedCrossRefGoogle Scholar
  94. Verma ML (2017a) Fungus-mediated bioleaching of metallic nanoparticles from agro-industrial by-products. In: Prasad R (ed) Fungal nanotechnology. Fungal biology. Springer, Cham, pp 89–102Google Scholar
  95. Verma ML (2017b) Nanobiotechnology advances in enzymatic biosensors for the agri-food industry. Environ Chem Lett 15(4):555–560CrossRefGoogle Scholar
  96. Verma ML (2017c) Enzymatic nanobiosensors in the agricultural and food industry. In: Ranjan S, Dasgupta N, Lichfouse E (eds) Nanoscience in food and agriculture, Sustainable Agriculture Reviews, vol 24, 4th edn. Springer, Cham, pp 229–245CrossRefGoogle Scholar
  97. Verma ML (2018) Critical evaluation of toxicity tests in context to engineered nanomaterials: an introductory overview. In: Kumar V, Dasgupta N, Ranjan S (eds) Nanotoxicology: toxicity evaluation, risk assessment and management. CRC Press, Boca Raton, pp 1–17Google Scholar
  98. Verma ML, Barrow CJ (2015) Recent advances in feedstocks and enzyme-immobilised technology for effective transesterification of lipids into biodiesel. In: Kalia V (ed) Microbial factories. Springer, New Delhi, pp 87–103CrossRefGoogle Scholar
  99. Verma ML, Barrow CJ, Kennedy JF, Puri M (2012) Immobilization of β-galactosidase from Kluyveromyces lactis on functionalized silicon dioxide nanoparticles: characterization and lactose hydrolysis. Int J Biol Macromol 50:432–437PubMedCrossRefGoogle Scholar
  100. Verma ML, Rajkhowa R, Barrow CJ, Wang X, Puri M (2013a) Exploring novel ultrafine Eri silk bioscaffold for enzyme stabilisation in cellobiose hydrolysis. Bioresour Technol 145:302–306PubMedCrossRefGoogle Scholar
  101. Verma ML, Naebe M, Barrow CJ, Puri M (2013b) Enzyme immobilisation on amino-functionalised multi-walled carbon nanotubes: structural and biocatalytic characterisation. PLoS One 8(9):e73642PubMedPubMedCentralCrossRefGoogle Scholar
  102. Verma ML, Chaudhary R, Tsuzuki T, Barrow CJ, Puri M (2013c) Immobilization of β-glucosidase on a magnetic nanoparticle improves thermostability: application in cellobiose hydrolysis. Bioresour Technol 135:2–6PubMedCrossRefGoogle Scholar
  103. Verma ML, Barrow CJ, Puri M (2013d) Nanobiotechnology as a novel paradigm for enzyme immobilization and stabilisation with potential applications in biofuel production. Appl Microbiol Biotechnol 97:23–39PubMedCrossRefGoogle Scholar
  104. Verma ML, Puri M, Barrow CJ (2016) Recent trends in nanomaterials immobilised enzymes for biofuel production. Crit Rev Biotechnol 36(1):108–119PubMedCrossRefGoogle Scholar
  105. Wang Q, Ebbs S, Chen Y, Ma X (2013) Trans-generational impact of cerium oxide nanoparticles on tomato plants. Metallomics 5:753–759PubMedCrossRefGoogle Scholar
  106. Wong MH, Misra RP, Giraldo JP, Kwak SY, Son Y, Landry MP, Swan JW, Blankschtein D, Strano MS (2016) Lipid exchange envelope penetration (LEEP) of nanoparticles for plant engineering: a universal localization mechanism. Nano Lett 16(2):1161–1172PubMedCrossRefGoogle Scholar
  107. Xie Y, Li B, Zhang Q, Zhang C (2012) Effects of nano-silicon dioxide on photosynthetic fluorescence characteristics of Indocalamus barbatus McClure. J Nanjing Forest Univ (Nat Sci Ed) 2:59–63Google Scholar
  108. Yang L, Watts DJ (2005) Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett 158:122–132PubMedCrossRefGoogle Scholar
  109. Yang F, Liu C, Gao F, Su M, Wu X (2007) The improvement of spinach growth by nano-anatase TiO2 treatment is related to nitrogen photoreduction. Biol Trace Elem Res 119:77–88PubMedCrossRefGoogle Scholar
  110. Yin L, Cheng Y, Espinasse B, Colman BP, Auffan M, Wiesner M, Rose J, Liu J, Bernhardt ES (2011) More than the ions: the effects of silver nanoparticles on Lolium multiflorum. Environ Sci Technol 45(6):2360–2367PubMedCrossRefGoogle Scholar
  111. Yuan J, Chen Y, Li H, Lu J, Zhao H, Liu M, Nechitaylo GS, Glushchenko NN (2018) New insights into the cellular responses to iron nanoparticles in Capsicum annuum. Sci Rep 8:3228PubMedPubMedCentralCrossRefGoogle Scholar
  112. Zhai G, Walters KS, Peate DW, Alvarez PJ, Schnoor JL (2014) Transport of gold nanoparticles through plasmodesmata and precipitation of gold ions in woody poplar. Environ Sci Technol Lett 1(2):146–151PubMedPubMedCentralCrossRefGoogle Scholar
  113. Zhang P, Ma YH, Zhang ZY, He X, Zhang J, Guo Z, Tai RZ, Zhao YL, Chai ZF (2012) Biotransformation of ceria nanoparticles in cucumber plants. ACS Nano 6:9943–9950PubMedCrossRefGoogle Scholar
  114. Zhang B, Zheng LP, Yi LW, Wen WJ (2013) Stimulation of artemisinin production in Artemisia annua hairy roots by Ag-SiO2 coreshell nanoparticles. Curr Nanosci 9:363–370CrossRefGoogle Scholar
  115. Zhao L, Peralta-Videa JR, Ren M, Varela-Ramirez A, Li C, Hernandez-Viezcas JA, Aguilera RJ, Gardea-Torresdey JL (2012) Transport of Zn in a sandy loam soil treated with ZnO NPs and uptake by corn plants: electron microprobe and confocal microscopy studies. Chem Eng J 184:1–8CrossRefGoogle Scholar
  116. Zheng L, Hong F, Lu S, Liu C (2005) Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res 104:83–92CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Madan L. Verma
    • 1
    • 2
  • Pankaj Kumar
    • 2
  • Deepka Sharma
    • 2
  • Aruna D. Verma
    • 3
  • Asim K. Jana
    • 4
  1. 1.Centre for Chemistry and BiotechnologyDeakin UniversityMelbourneAustralia
  2. 2.School of BiotechnologyDr YS Parmar University of Horticulture and ForestryHamirpurIndia
  3. 3.School of BiosciencesHimachal Pradesh UniversityShimlaIndia
  4. 4.Department of BiotechnologyNational Institute of TechnologyJalandharIndia

Personalised recommendations