Nanotechnology and Plant Tissue Culture

  • Sandra Pérez Álvarez
  • Marco Antonio Magallanes Tapia
  • María Esther González Vega
  • Eduardo Fidel Héctor Ardisana
  • Jesús Alicia Chávez Medina
  • Gabriela Lizbeth Flores Zamora
  • Daniela Valenzuela Bustamante
Part of the Nanotechnology in the Life Sciences book series (NALIS)


Plant biotechnology is a great tool in several fields of human life such as medicine, pharmacology, agriculture, biomass, and biofuels. The use of nanotechnology represent and improvement in plant tissue culture that is a technique mostly used to produce clones of a plant in a method known as micropropagation with different stages. In this chapter tissue culture in modern agriculture and the use of nanomaterials for genetic transformation of plants; nanosilver as antimicrobial agent; nanomaterials for callus induction, organogenesis, and somatic embryogenesis; and titanium dioxide nanoparticles to remove bacterial contaminants will be discussed.


Plant tissue culture Nanosilver nanoparticles Titanium dioxide nanoparticles Contamination 


  1. Abd-elsalam KA (2013) Fungal genomics and biology nanoplatforms for plant pathogenic fungi management. Fungal Genomics Biol 2:e107Google Scholar
  2. Abd-Elsalam KA, Prasad R (2018) Nanobiotechnology applications in plant protection. Springer International Publishing. (ISBN 978-3-319-91161-8)
  3. Abdi G, Salehi H, Khosh-Khui M (2008) Nano silver: a novel nanomaterial for removal of bacterial contaminants in valerian (Valeriana officinalis L.) tissue culture. Acta Physiol Plant 30:709–714. Scholar
  4. Adel Ahmed AS, Shaimaa Mohamed M (2010) Commercial production of tissue culture date palm (Phoenix dactylifera L.) by inflorescence technique. J Genet Eng Biot 8(2):39–44Google Scholar
  5. Aghdaei M, Salehi H, Sarmast MK (2012) Effects of silver nanoparticles on Tecomella undulata (Roxb.) seem, micropropagation. Adv Hortic Sci 26:21–24Google Scholar
  6. Ahloowalia BS (1986) Limitations to the use of somaclonal variation in crop improvement. In: Semal J (ed) Somaclonal variation and crop improvement. Martinus Nijhoff Publishers, Dordrecht, pp 14–27CrossRefGoogle Scholar
  7. Akdemir H, Süzerer V, Onay A, Tilkat E, Ersali Y, Ozden Y (2014) Micropropagation of the pistachio and its rootstocks by temporary immersion system. Plant Cell Tissue Org Cult 117(1):65–76CrossRefGoogle Scholar
  8. Akhter S, Ahmad MZ, Singh A, Ahmad I, Rahman M, Anwar M, Jain GK, Ahmad FJ, Khar RK (2011) Cancer targeted metallic nanoparticle: targeting overview, recent advancement and toxicity concern. Curr Pharm Des 17:1834–1850PubMedCrossRefGoogle Scholar
  9. Akin-Idowu PE, Ibitoye DO, Ademoyegun J (2009) Tissue culture as a plant production technique for horticultural crops. Afr J Biotechnol 8:3782–3788Google Scholar
  10. Alharby HF, Metwali EMR, Fuller MP, Aldhebiani YA (2016) Impact of application of zinc oxide nanoparticles on callus induction, plant regeneration, element content and antioxidant enzyme activity in tomato (Solanum lycopersicum Mill.) under salt stress. Arch Biol Sci 68:723–735CrossRefGoogle Scholar
  11. Alister BM, Finnie J, Watt M, Blakeway F (2005) Use of the temporary immersion bioreactor system (RITA®) for production of commercial Eucalyptus clones in Mondi Forests (SA). In: Hvoslef-Eide AK, Preil W (eds) Liquid culture systems for in vitro plant propagation. Springer, Dordrecht, pp 425–442CrossRefGoogle Scholar
  12. Allahverdiyev AM, Abamor ES, Bagirova M, Rafailovich M (2011) Antimicrobial effects of TiO2 and Ag2O nanoparticles against drug-resistant bacteria and Leishmania parasites. Future Microbiol 6:933–940PubMedCrossRefGoogle Scholar
  13. Altpeter F, Springer NM, Bartley LE, Blechl AE, Brutnell TP, Citovsky V, Conrad LJ, Gelvin SB, Jackson DP, Kausch AP, Lemaux PG, Medford JI, Orozco-Cárdenas ML, Tricoli DM, Eck JV, Voytas DF, Walbot V, Wang K, Zhang J, Stewart CN (2016) Advancing crop transformation in the era of genome editing. Plant Cell 28:1510–1520PubMedPubMedCentralGoogle Scholar
  14. Alvard D, Cote F, Teisson C (1993) Comparison of methods of liquid medium culture for banana micropropagation. Effect of temporary immersion of explants. Plant Cell Tissue Org Cult 32(1):55–60CrossRefGoogle Scholar
  15. Anwaar S, Maqbool Q, Jabeen N, Nazar M, Abbas F, Nawaz B, Hussain T, Hussain SZ (2016) The effect of green synthesized Cuo nanoparticles on callogenesis and regeneration of Oryza sativa L. Front Plant Sci 7:1330PubMedPubMedCentralCrossRefGoogle Scholar
  16. Applerot G, Lellouche J, Perkas N, Nitzan Y, Gedanken A, Banin E (2012) ZnO nanoparticle-coated surfaces inhibit bacterial biofilm formation and increase antibiotic susceptibility. RSC Adv 2:2314–2321CrossRefGoogle Scholar
  17. Arab M, Yadollahi M, Hosseini-Mazinani A, Bagheri S (2014) Effects of antimicrobial activity of silver nanoparticles on in vitro establishment of Gx N15 (Hybrid of almond peach) rootstock. J Genet Eng Biotechnol 12:103–110CrossRefGoogle Scholar
  18. Arcioni S, Pezzotti M, Damiani F (1987) In vitro selection of alfalfa plants resistant to Fusarium oxysporum f. sp. medicaginis. Theor Appl Gen 74(6):700–705CrossRefGoogle Scholar
  19. Asmah NH, Hasnida NH, Nashatul Zaimah NA, Noraliza A, Nadiah Salmi N (2011) Synthetic seed technology for encapsulation and regrowth of in vitro derived Acacia hybrid shoot and axillary buds. Afr J Biotechnol 10(40):7820–7824CrossRefGoogle Scholar
  20. Aziz N, Fatma T, Varma A, Prasad R (2014) Biogenic synthesis of silver nanoparticles using Scenedesmus abundans and evaluation of their antibacterial activity. J Nanopart., Article ID 689419. Scholar
  21. Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612. Scholar
  22. Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. Scholar
  23. Aziz N, Faraz M, Sherwani MA, Fatma T, Prasad R (2019) Illuminating the anticancerous efficacy of a new fungal chassis for silver nanoparticle synthesis. Front Chem 7:65.
  24. Azlin-Hasim S, Cruz-Romero MC, Morris MA, Cummins E, Kerry JP (2015) Effects of a combination of antimicrobial silver low density polyethylene nanocomposite films and modified atmosphere packaging on the shelf life of chicken breast fillets. Food Packag Shelf Life 4:26–35CrossRefGoogle Scholar
  25. Bansod S, Bawskar M, Rai M (2015) In vitro effect of biogenic silver nanoparticles on sterilisation of tobacco leaf explants and for higher yield of protoplasts. IET Nanobiotechnol 9:239–245PubMedCrossRefGoogle Scholar
  26. Bekheet SA (2006) A synthetic seed method through encapsulation of in vitro proliferated bulblets of garlic (Allium sativum L.). Arab. Aust J Biotechnol 9:415–426Google Scholar
  27. Berthouly M, Etienne H (2005) Temporary immersion system: a new concept for use liquid medium in mass propagation. In: Hvoslef-Eide AK, Preil W (eds) Liquid culture systems for in vitro plant propagation. Springer, Dordrecht, pp 165–195CrossRefGoogle Scholar
  28. Beyth N, Houri-Haddad Y, Domb A, Khan W, Hazan R (2015) Alternative antimicrobial approach: nano-antimicrobial materials. Evid Base Compl Alternative Med 2015:246012. Scholar
  29. Bhat P, Bhat A (2016) Silver nanoparticles for the enhancement of accumulation of capsaicin in suspension culture of Capsicum sp. J Exp Sci 7(2):1–6Google Scholar
  30. Biswas BC, Kumar L (2010) High-density planting: success stories of banana farmers. Fertil Mark News 41(6):3–10Google Scholar
  31. Borlaug N (1981) Breeding methods employed and contributions of Norin 10 derivatives to the development of the high yielding broadly adapted Mexican wheat varieties. The International Maize and Wheat Improvement Center (CIMMYT), El Batan., Mexico bouturage in vitro. Comptes Rendus Acad. Sc. Paris, Série D, pp 467–470Google Scholar
  32. Boxus P (1974) The production of strawberry plants by in vitro micro-propagation. J Hort Sci 49:209–210CrossRefGoogle Scholar
  33. Bressan W (2002) Factors affecting in vitro plant development and root colonization of sweet potato by Glomus etunicatum Becker y Gerd. Braz J Microbiol 33(1):31–34CrossRefGoogle Scholar
  34. Bunders J, Haverkort B, Hiemstra W (1997) Biotechnology. Building on farmers knowledge. Macmillan Education, Basingstoke, p 256 U.K.Google Scholar
  35. Cha TS, Chen CF, Yee W, Aziz A, Loh SH (2011) Cinnamic acid, coumarin and vanillin: alternative phenolic compounds for efficient Agrobacterium-mediated transformation of the unicellular green alga, Nannochloropsis sp. J Microbiol Methods 84:430–434PubMedCrossRefGoogle Scholar
  36. Chamani E, Ghalehtaki SK, Mohebodini M, Ghanbari A (2015) The effect of zinc oxide nano particles and humic acid on morphological characters and secondary metabolite production in Lilium ledebourii Bioss. Iran J Genet Plant Breed 4:11–19Google Scholar
  37. Chawla HS, Wenzel G (1987) In vitro selection for fusaric acid resistant barley plants. Plant Breed 99:159–163CrossRefGoogle Scholar
  38. Chen ZY, Liang K, Qiu RX, Luo LP (2011) Ultrasound- and liposome microbubble-mediated targeted gene transfer to cardiomyocytes in vivo accompanied by polyethylenimine. Ultrasound Med 30:1247–1258CrossRefGoogle Scholar
  39. Chen G, Ren L, Zhang J, Reed BM, Zhang D, Shen X (2015) Cryopreservation affects ROS-induced oxidative stress and antioxidant response in Arabidopsis seedlings. Criobiology 70(1):38–47CrossRefGoogle Scholar
  40. Cheng M, Fry JE, Pang S, Zhou H, Hironaka C, Duncan DR, Conner TW, Wan Y (1997) Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol 115:971–980PubMedPubMedCentralCrossRefGoogle Scholar
  41. Coleman HMZ, Marquis CP, Scott JA, Chin SS, Amal R (2005) Bactericidal effects of titanium dioxide-based photocatalysts. Chem Eng J 113(1):55–63CrossRefGoogle Scholar
  42. Cruz- Cruz CA, González-Arnao MT, Engelmann F (2013) Biotechnology and conservation of plant biodiversity. Resources 2:73–95CrossRefGoogle Scholar
  43. Datta SK, Potrykus I (1989) Artificial seeds in barley: encapsulation of microspore-derived embryos. Theor Appl Gen 77(6):820–824CrossRefGoogle Scholar
  44. DeGregori TR (1985) A theory of technology: continuity and change in human development. The Iowa State University Press, AmesGoogle Scholar
  45. Delfani M, Firouzabadi MB, Farrokhi N, Makarian H (2014) Some physiological responses of black-eyed pea to iron and magnesium nanofertilizers. Commun Soil Sci Plant Anal 45:530–540CrossRefGoogle Scholar
  46. Deshayes A, Herrera-Estrella L, Caboche M (1985) Liposome-mediated transformation of tobacco mesophyll protoplasts by an Escherichia coli plasmid. EMBO J 4:2731–2737PubMedPubMedCentralCrossRefGoogle Scholar
  47. DiCosmo F, Misawa M (1995) Plant cell and tissue culture: alternatives for metabolite production. Biotechnol Adv 13(3):425–453PubMedCrossRefGoogle Scholar
  48. Dong J, Wan G, Liang Z (2010) Accumulation of salicylic acid-induced phenolic compounds and raised activities of secondary metabolic and antioxidative enzymes in Salvia miltiorrhiza cell culture. J Biotechnol 148(2–3):99–104PubMedCrossRefGoogle Scholar
  49. Dussert S, Chabrillange N, Vásquez N, Engelmann F, Anthony F, Guyot A, Hamon S (2000) Beneficial effect of post-thawing osmoconditioning on the recovery of cryopreserved coffee (C. arabica L.) seeds. CryoLetters 21:47–52PubMedGoogle Scholar
  50. Engelmann F (1991) In vitro conservation of tropical plant germplasm-a review. Euphytica 57:227–243CrossRefGoogle Scholar
  51. Engelmann F, Dulloo ME (2007) Introduction. In: Engelmann F, Dulloo ME, Astorga C, Dussert S, Anthony F (eds) Conserving coffee genetic resources. Bioversity International, Roma, pp 1–11Google Scholar
  52. Enriquez-Obregón GA, Vázquez-Padrón RI, Prieto-Samsónov DL, Pérez M, Selman-Housein G (1997) Genetic transformation of sugarcane by Agrobacterium tumefaciens using antioxidants compounds. Biotechnol Aplic 14:169–174Google Scholar
  53. EPA (2009) Nanomaterial case studies: nanoscale titanium dioxide in water treatment and in topical snscreen. United States Environmental Protection Agency, Accessed 15 May 2018
  54. Escalona M, Lorenzo JC, González B, Daquinta M, González JL, Desjardins Y, Borroto CG (1999) Pineapple (Ananas comosus L. Merr) micropropagation in temporary immersion systems. Plant Cell Rep 18(89):743–748CrossRefGoogle Scholar
  55. Estopá M (2005) El cultivo in vitro en la reproducción vegetativa en plantas de vivero. Hortic Int 1:50–57Google Scholar
  56. Etienne H, Anthony F, Dussert S, Fernandez D, Lashermes P, Bertrand B (2002) Biotechnological applications for the improvement of coffee (Coffea arabica L.). In Vitro Cell Dev Biol Plant 38:129–138CrossRefGoogle Scholar
  57. Ewais EA, Desouky SA, Elshazly EH (2015) Evaluation of callus responses of solanum nigrum l. exposed to biologically synthesized silver nanoparticles. Nanosci Nanotechnol 5:45–56Google Scholar
  58. Fakhrfeshani M, Bagheri A, Sharifi A (2012) Disinfecting effects of nano silver fluids in gerbera (Gerbera jamesonii) capitulum tissue culture. J Biol Environ Sci 6:121–127Google Scholar
  59. FAO (2017) Food and Agriculture Organization of the United Nations database on Biotechnologies in Developing Countries (BioDeC).
  60. Fazal H, Abbasi BH, Ahmad N, Ali M (2016) Elicitation of medicinally important antioxidant secondary metabolites with silver and gold nanoparticles in callus cultures of Prunella vulgaris L. Appl Biochem Biotechnol 180:1076–1092PubMedCrossRefGoogle Scholar
  61. Gantait S, Kundu S, Ali N, Chandra Sahu N (2015) Synthetic seed production of medicinal plants: a review on influence of explants, encapsulation agent and matrix. Acta Physiol Plant 37:98CrossRefGoogle Scholar
  62. García E, Menéndez A (1987) Somatic embryogenesis from leaf explants of coffee plants “Catimor”. Café Cacao Thé 31:15–22Google Scholar
  63. García L, Pérez J, Rodríguez M, Pérez B, Martínez Y, Sarría Z (2004) Conservación in vitro de plantas de caña de azúcar. Biotecnol Veg 4(2):101–105Google Scholar
  64. Gelvin SB (2003) Agrobacterium-mediated plant transformation: the biology behind the gene-jockeying tool. Microbiol Mol Biol Rev 67(1):16–37PubMedPubMedCentralCrossRefGoogle Scholar
  65. Genady EA, Qaid EA, Fahmy AH (2016) Copper sulfates nanoparticles in vitro applications on Verbena bipinnatifida Nutt. stimulating growth and total phenolic content increment. Int J Pharm Res Allied Sci 5:196–202Google Scholar
  66. Ghorbanpour M, Hadian J (2015) Multi-walled carbon nanotubes stimulate callus induction, secondary metabolites biosynthesis and antioxidant capacity in medicinal plant Satureja khuzestanica grown in vitro. Carbon 94:749–759CrossRefGoogle Scholar
  67. Giorgetti L, Castiglione MM, Bernabini M, Geri C (2011) Nanoparticles effects on growth and differentiation in cell culture of carrot (Daucus carota L.). Agrochimica 55:45–53Google Scholar
  68. Giraldo J, Landry MP, Faltermeier SM, McNicholas TP, Iverson NM, Boghossian AA, Reuel NF, Hilmer AJ, Sen F, Brew JA, Strano MS (2014) Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater 13(4):400–408PubMedPubMedCentralCrossRefGoogle Scholar
  69. Gómez R (1996) Selección in vitro a la enfermedad carbón (Ustilago scitaminea Syd) de la caña de azúcar (Saccharum sp híbrido). PhD Thesis (Agricultural Sciences). Universidad Central de Las Villas, CubaGoogle Scholar
  70. González ME (2003) Micropropagación de cafeto (Coffea canephora P. var. Robusta) mediante embriogénesis somática con el empleo de metabolitos bacterianos. Tesis de Doctor en Ciencias Agrícolas. INCA. La Habana. Cuba, 97pGoogle Scholar
  71. González ME, Castilla Y, Hernández MM, Hernández A (2007) Factibilidad del cultivo in vitro en la conservación de recursos fitogenéticos de cafeto. Revista Agrotecnia de Cuba 31:4–7Google Scholar
  72. González ME, Hernández M, Hernández A (2009) Effect of callus age on induction of coffee cell suspension cultures. Revista Agronomía Mesoamericana 21(2):1–8Google Scholar
  73. González ME, Castilla Y, Hernández A (2011) Obtención de suspensiones celulares y embriones somáticos de cafeto (Coffea canephora P.), con el empleo de metabolitos bacterianos. Rev Colomb Biotecnol 13(1):123–131Google Scholar
  74. González M, González M, Nápoles E, Baldoquín A (2012) Efectividad de algunos biofertilizantes en el cultivo del garbanzo (Cicer arietinum L.) en un suelo Fersialítico Pardo Rojizo Mullido. Innovación Tecnológica 18(2):23–27Google Scholar
  75. González O, Núñez M, Hernández MM, Silva JJ, Espinosa A (2003) Efecto de dos análogos de brasinoesteroides en la inducción y regeneración de callos de Ipomoea batatas. Biotecnología Vegetal 3(2):173–175Google Scholar
  76. González-Arnao T, Gámez-Pastrana R, Martínez-Ocampo Y, Valdés-Rodríguez S, Oscar-Mascorro J, Osorio-Sáenz A, Pastelín-Solana M, Guevara-Valencia M, Cruz-Cruz CA (2013) Estado actual de la crioconservación vegetal en México. In: González-Arnao MT, Engelmann F (eds) Crioconservación de Plantas en América Latina y el Caribe. Instituto Interamericano de Cooperación para la Agrícultura (IICA), pp 161–173Google Scholar
  77. Gorbunova V, Levy AA (1997) Non-homologous DNA end joining in plant cells is associated with deletions and filler DNA insertions. Nucleic Acids Res 25:4650–4657PubMedPubMedCentralCrossRefGoogle Scholar
  78. Gupta N, Upadhyaya CP, Singh A, Abd-Elsalam KA, Prasad R (2018) Applications of silver nanoparticles in plant protection. In: Abd-Elsalam K, Prasad R (eds) Nanobiotechnology applications in plant protection. Springer International Publishing AG, Cham, pp 247–266Google Scholar
  79. Gouran A, Jirani M, Mozafari AA, Saba MK, Ghaderi N, Zaheri S (2014) Effect of silver nanoparticles on grapevine leaf explants sterilization at in vitro conditions. In: 2nd national conference on nanotechnology from theory to application, Isfahan, Iran, 20 February, pp. 1–6Google Scholar
  80. Guzmán M, Dille J, Godet S (2012) Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria. Nanomedicine 8:37–45PubMedCrossRefGoogle Scholar
  81. Gwynne RN (1999) Globalisation, commodity chains and fruit exporting regions in Chile. Tijdschr Econ Soc Geogr 90(2):211–225CrossRefGoogle Scholar
  82. Haberlandt G (1902) Kulturversuche mit isolierten pflanzenzellen. SITZ-Ber Mat-Nat Kl Kais Akad Wiss (Wien) 111(1):69–92Google Scholar
  83. Hamilton CM, Frary A, Lewis C, Tanksley SD (1996) Stable transfer of intact high molecular weight DNA into plant chromosomes. Proc Natl Acad Sci U S A 93:9975–9979PubMedPubMedCentralCrossRefGoogle Scholar
  84. Hamon S, Anthony F, Barre PH, Berthaud J, Boursot M, Chabrillange N, Ky CL, Combes MC, Couturon E, Cros J, Dussert S, Engelmann F, Lashermes P, Le Pierres D, Louarn J, Noirot M, Recalt C, Trouslot P, Charrier A (1998) Coffee genetic resources and biotechnologies: their putative uses for breeding. Cahiers Agricultures 7:480–487Google Scholar
  85. Hasegawa PM, Murashige T, Takatori FH (1973) Propagation of asparagus through shoot apex culture. II. Light and temperature requirements, transplant ability of plants, and cyto-histological characteristics. J Am Soc Hortic Sci 98:143–148Google Scholar
  86. He S, Han Y, Wang Y, Zhai H, Liu Q (2009) In vitro selection and identification of sweet potato (Ipomoea batatas (L.) Lam.) plants tolerant to NaCl. Plant Cell Tissue Organ Cult 96:69–74CrossRefGoogle Scholar
  87. Héctor E (1996) La resistencia in vitro al carbón (Ustilago scitaminea Syd.) y su aplicación en el mejoramiento genético de la caña de azúcar (Saccharum spp.). PhD Thesis (Agricultural Sciences). Universidad Agraria de La Habana, CubaGoogle Scholar
  88. Héctor E, Pérez S, Moreira R, Millet B (2016) Perspectivas sociales e impacto futuro de las biotecnologías vegetales. Alternativas 17(2):44–51CrossRefGoogle Scholar
  89. Heinz DJ, Mee GWP (1969) Plant differentiation from callus tissue of Saccharum species. Crop Sci 9:346–348CrossRefGoogle Scholar
  90. Helaly MN, El-Metwally MA, El-Hoseiny H, Omar SA, El-Sheery NI (2014) Effect of nanoparticles on biological contamination of in vitro cultures and organogenic regeneration of banana. Aust J Crop Sci 8:612–624Google Scholar
  91. Hendre RR, Iyer RS, Kotwal M, Khuspe SS, Mascarenhas AF (1983) Rapid multiplication of sugarcane by tissue culture. Sugarcane 1:5–8Google Scholar
  92. Hill GP (1968) Shoot formation in tissue cultures of Chrysanthemum “bronze pride”. Physiol Plant 21:386–389CrossRefGoogle Scholar
  93. Hu G, Dong Y, Zhang Z, Fan X, Reng F, Li Z (2017) Efficacy of virus elimination from apple by thermotherapy coupled with in vivo shoot-tip grafting and in vitro meristem culture. J Phytopathol 165:701–706CrossRefGoogle Scholar
  94. Huang MH, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P (2001) Room-temperature ultraviolet nanowire nanolasers. Science 292:1897–1899PubMedCrossRefGoogle Scholar
  95. Hwan KD, Gopal J, Sivanesan I (2017) Nanomaterials in plant tissue culture: the disclosed and undisclosed. RSC Adv 7:36492–36505CrossRefGoogle Scholar
  96. Heinz DJ, Mee GWP, Nickell LG (1969) Chromosome numbers of some Saccharum species hybrids and their cell suspension cultures. Am J Bot 56:450–456CrossRefGoogle Scholar
  97. Ismail M, Prasad R, Ibrahim AIM, Ahmed ISA (2017) Modern prospects of nanotechnology in plant pathology. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology. Springer Nature Singapore Pte Ltd., Singapore, pp 305–317CrossRefGoogle Scholar
  98. Jain D, Kumar-Daima H, Kachhwaha S, Kothari SL (2009) Synthesis of plant-mediated silver nanoparticles using papaya fruit extract and evaluation of their antimicrobial activities. Dig J Nanomater Biostruct 4:557–563Google Scholar
  99. James C (2012) Global status of commercialized biotech/GM crops: 2012, Brief No. 44. ISAAA, IthacaGoogle Scholar
  100. Javed R, Usman M, Yücesan B, Zia M, Gürel E (2017) Effect of zinc oxide (ZnO) nanoparticles on physiology and steviol glycosides production in micropropagated shoots of Stevia rebaudiana Bertoni. Plant Physiol Biochem 110:94–99PubMedCrossRefGoogle Scholar
  101. Jayaprakash N, Judith Vijaya J, John Kennedy L, Priadharsini K, Palani P (2015) Antibacterial activity of silver nanoparticles synthesized from serine. Mater Sci Eng C 49:316–322CrossRefGoogle Scholar
  102. Jiménez E, Pérez N, de Feria M, Barbón R, Capote A, Chávez M, Quiala E, Pérez JC (1999) Improved production of potato microtubers using a temporary immersion system. Plant Cell Tissue Organ Cult 59(1):19–23CrossRefGoogle Scholar
  103. Jo Y-K, Kim BH (2009) Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis 93:1037–1043CrossRefGoogle Scholar
  104. Jones OP (1976) Effect of phloridzin and phloroglucinol on apple shoots. Nature 262:392–393CrossRefGoogle Scholar
  105. Juma C, Konde V (2002) Industrial applications for biotechnology: opportunities for developing countries. Environment 44:23–35Google Scholar
  106. Kalsaitkar P, Tanna J, Kumbhare A, Akre S, Warade C, Gandhare N (2014) Silver nanoparticles induced effect on in-vitro callus production in Bacopa monnieri. Asian J Biol Life Sci 3:167–172Google Scholar
  107. Kao KN, Miller RA, Gamborg OL, Harvey BL (1970) Variations in chromosome number and structure in plant cells grown in suspension cultures. Can J Genet Cytol 12:297–301CrossRefGoogle Scholar
  108. Kim DH, Gopal J, Sivanesan I (2017) Nanomaterials in plant tissue culture: the disclosed and undisclosed. R Soc Chem 7:36492–36505Google Scholar
  109. Kirti PB, Hadi S, Kumar PA, Chopra VL (1991) Production of sodium-chloride-tolerant Brassica juncea plants by in vitro selection at the somatic embryo level. Theor Appl Gen 83(2):233–237CrossRefGoogle Scholar
  110. Kitto SL (1997) Commercial micropropagation. Hortic Sci 32(6):1012–1014Google Scholar
  111. Kitto S, Janick J (1985) Production of synthetic seeds by encapsulating asexual embryos of carrot. J Am Soc Hortic Sci 110:277–282Google Scholar
  112. Klancnik K, Drobne D, Valant J, DolencKoce J (2011) Use of a modified Allium test with nanoTiO2. Ecotoxicol Environ Saf 74:85–92PubMedCrossRefGoogle Scholar
  113. Koeda S, Takisawa R, Nabeshima T, Tanaka Y, Kitajima A (2015) Production of Tomato Yellow Leaf Curl Virus-free parthenocarpic tomato plants by leaf primordia-free shoot apical meristem culture combined with in vitro grafting. Hortic J 84(4):327–333CrossRefGoogle Scholar
  114. Kokina I, Gerbreders V, Sledevskis E, Bulanovs A (2013) Penetration of nanoparticles in flax (Linum usitatissimum L.) calli and regenerants. J Biotechnol 165:127–132PubMedCrossRefGoogle Scholar
  115. Krikorian AD, Berquam DL (2003) Plant cell and tissue cultures: the role of Haberlandt. In: Laimer M, Rücker W (eds) Plant tissue culture. Springer, Vienna, pp 25–53CrossRefGoogle Scholar
  116. Krikorian AD, Cronauer SS (1984) Aseptic culture techniques for banana and plantain improvement. Econ Bot 38:322–331CrossRefGoogle Scholar
  117. Kumar PP, Loh CS (2012) Plant tissue culture for biotechnology. In: Altman A (Ed). Plant biotechnology and agriculture. Elsevier Science & Technology, Jerusalen, Israel. pp 131–138Google Scholar
  118. Kumar P, Gupta VK, Misra AK, Modi DR, Pandey BK (2009) Potential of molecular markers in plant biotechnology. Plant Omics J 2(4):141–112Google Scholar
  119. Kumar V, Guleria P, Kumar V, Yadav SK (2013) Gold nanoparticle exposure induces growth and yield enhancement in Arabidopsis thaliana. Sci Total Environ 461:462–468PubMedCrossRefGoogle Scholar
  120. Kumari M, Mukherjee A, Chandrasekaran N (2009) Genotoxicity of silver nanoparticles in Allium cepa. Sci Total Environ 407:5243–5246PubMedCrossRefGoogle Scholar
  121. Larkin P, Scowcroft W (1981) Somaclonal variation-a novel source of variability from cell cultures for plant improvement. Theor Appl Gen 60:197–214CrossRefGoogle Scholar
  122. Lee TSG (1984) Micropropagaçao de cana-de-açucar através de cultura de meristema apical. Saccharum APC 7:36–39Google Scholar
  123. Leggatt IV, Waites WM, Leifert C, Nicholas J (1994) Characterisation of microorganisms isolated from plants during micropropagation. In: Bacterial and bacteria-like contaminants of plant tissue cultures. Ishs Acta Horticulturae 225.
  124. Leunufna S, Keller ERL (2003) Investigating a new cryopreservation protocol for yam (Discorea spp.). Plant Cell Rep 21:1159–1166PubMedCrossRefGoogle Scholar
  125. Lezcano Y, Escalona M, Daquinta M (2010) Multiplicación in vitro de Paeonias sp. variedad ‘SeSu’ en sistemas de inmersión temporal. Biot Veg 10(3):169–117Google Scholar
  126. Li D, Liu ZJ, Yuan Y, Liu YW, Niu FL (2015) Green synthesis of gallic acid-coated silver nanoparticles with high antimicrobial activity and low cytotoxicity to normal cells. Process Biochem 50:357–366CrossRefGoogle Scholar
  127. Liang Z, Zhang K, Chen K, Gao C (2014) Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J Genet Genomics 41:63–68PubMedCrossRefGoogle Scholar
  128. Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150(2):243–250PubMedPubMedCentralCrossRefGoogle Scholar
  129. Lin C, Fugetsu B, Su Y, Watari F (2009) Studies on toxicity of multiwalled carbon nanotubes on Arabidopsis T87 suspension cells. J Hazard Mater 30:578–583CrossRefGoogle Scholar
  130. Liu J, Xuan-Ming L, Su-Yao X, Chuen-Yi T, Dong-Ying T, Li-Jian Z (2005) Bioconjugated nanoparticle for DNA protection from ultrasound damage. Anal Sci 21:193–197PubMedCrossRefGoogle Scholar
  131. Liu J, Feng-Hua W, Lin-Lin W, Su-Yao X, Chun-Yi T, Dong- Yig T, Xuan-Ming L, Chuen-Yi T, Dong-Ying T, Xuan-Ming L (2008) Preparation of fluorescence starch-nanoparticle and its application as plant transgenic vehicle. J Cent S Univ Technol 15:768–773CrossRefGoogle Scholar
  132. Liu Q, Chen B, Wang Q, Shi X, Xiao Z, Lin J, Fang X (2009) Carbon nanotubes as molecular transporters for walled plant cells. Nano Lett 9(3):1007–1010PubMedCrossRefGoogle Scholar
  133. Loh C, Ingram D (1982) Production of haploid plants from anther cultures and secondary embryoids of winter oilseed rape, Brassica napus ssp. oleifera. New Phytol 91:507–516CrossRefGoogle Scholar
  134. Lorenzo JC, González BL, Escalona M, Teisson C, Borroto C (1998) Sugarcane shoot formation in an improved temporary immersion system. Plant Cell Tissue Organ Cult 54(3):197–200CrossRefGoogle Scholar
  135. Ma C, Chhikara S, Xing B, Musante C, White JC, Dhankher OP (2013) Physiological and molecular response of Arabidopsis thaliana (L.) to nanoparticle cerium and indium oxide exposure. ACS Sustain Chem Eng 1:768–778CrossRefGoogle Scholar
  136. Mahato TH, Prasad GK, Singh B, Srivastava AR, Ganesan K, Acharya J, Vijayaraghavan R (2009) Reactions of sulphur mustard and sarin on V1.02O2.98 nanotubes. J Hazard Mater 166(2–3):1545–1549PubMedCrossRefGoogle Scholar
  137. Mahmoodzadeh H, Nabavi M, Kashefi H (2000) Effect of nanoscale titanium dioxide particles on the germination and growth of canola Brassica napus. J Ornam Hortic Plants 3:25–32Google Scholar
  138. Mahna N, Vahed SZ, Khani S, Nanomed J (2013) Plant in vitro culture goes nano: nanosilver-mediated decontamination of ex vitro explants. J Nanomed Nanotechnol 4:161CrossRefGoogle Scholar
  139. Mandeh M, Omidi M, Rahaie M (2012) In vitro influences of TiO2 nanoparticles on Barley (Hordeum vulgare L.) tissue culture. Biol Trace Elem Res 150:376–380PubMedCrossRefGoogle Scholar
  140. Maneerung T, Tokura S, Rujiravanit R (2008) Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr Polym 72:43–51CrossRefGoogle Scholar
  141. Martínez ME, González MT, Borroto C, Puentes C, Engelmann F (1998) Cryopreservation of sugarcane embryogenic callus using a simplified freezing process. CryoLetters 19:171–176Google Scholar
  142. Martínez ME, Lorenzo JC, Ojeda E, Quiñones J, Mora N, Sánchez M, Iglesias A, Martínez J, Castillo R (2006) Methodology for the cryopreservation of calli with embryogenic structures for the culture of sugarcane. Biotecnol Apl 23(4):360–375Google Scholar
  143. Martínez S, Gómez R, Rodríguez G, Veitía N, Saucedo O, Gil V (2016) Morph agronomic characterization of grain sorghum variety CIAP 132R-05 plants regenerated via somatic embryogenesis under field conditions. Centro Agrícola 43(3):73–79Google Scholar
  144. Mata C, Jonás R (2006) Obtención de lechosa (Carica papaya L) resistente a Papaya ringspot virus. Editorial: Anuario CDCH 2006.
  145. Matthews BF, Cress DE (1981) Liposome-mediated delivery of DNA to carrot protoplasts. Planta 153(1):90–94PubMedCrossRefGoogle Scholar
  146. McCoy E, O’Connor SE (2008) Natural products from plant cell cultures. In: Petersen F, Amstutz R (eds) Natural compounds as drugs, Progress in drug research, vol I. Birkhäuser, Basel, pp 329–370CrossRefGoogle Scholar
  147. McKersie B, Bowley S, Senaratna T, Brown D, Bewley J (1988) Application of artificial seed technology in the production of hybrid alfalfa (Medicago sativa L.). In Vitro Cell Dev Biol 24:71CrossRefGoogle Scholar
  148. Men SZ, Ming XT, Liu RW, Wei CH, Li Y (2003) Agrobacterium-mediated genetic transformation of a Dendrobium orchid. Plant Cell Tissue Organ Cult 75:63–71CrossRefGoogle Scholar
  149. Menard A, Damjana D, Jeme C (2011) Ecotoxicity of nanosized TiO2. Rev In Vivo Data Environ Pollut 159:677–684Google Scholar
  150. Min JS, Kim KS, Kim SW, Jung JH, Lamsal K, Kim SB, Jung M, Lee YS (2009) Effects of colloidal silver nanoparticles on sclerotium-forming phytopathogenic fungi. Plant Pathol J 25:376–380CrossRefGoogle Scholar
  151. Miranda A, Janssen G, Hodges L, Peralta EG, Ream W (1992) Agrobacterium tumefaciens transfers extremely long T-DNAs by a unidirectional mechanism. J Bacteriol 174:2288–2297PubMedPubMedCentralCrossRefGoogle Scholar
  152. Mohammed HK, Al-oubaidi, Kasid NM (2015) Increasing phenolic and flavonoids compounds of Cicer arietinum L. from embryo explant using titanium dioxide nanoparticle in vitro. World J Pharm Res 4:1791–1799Google Scholar
  153. Mordocco AM, Brumbley JA, Lakshmanan P (2009) Development of a temporary immersion system (RITA®) for mass production of sugarcane (Saccharum spp. interspecific hybrids). In Vitro Cell Dev Biol Plant 45:450–457CrossRefGoogle Scholar
  154. Morel GM (1960) Producing virus-free cymbidiums. Am Orchid Soc Bull 29:495–497Google Scholar
  155. Msogoya T, Kayagha H, Mutigitu J, Kulebelwa M, Mamiro M (2012) Identification and management of microbial contaminants of banana in vitro cultures. J Appl Biol 55:3987–3994Google Scholar
  156. Murashige T (1974) Plant propagation through tissue cultures. Annu Rev Plant Physiol 25:135–166CrossRefGoogle Scholar
  157. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  158. Murashige T, Serpa M, Jones JB (1974) Clonal multiplication of gerbera through tissue culture. Hortic Sci 9:175–180Google Scholar
  159. Nagata T, Okada K, Takebe R, Matsui CH (1981) Delivery of tobacco mosaic virus RNA into plant protoplasts mediated by reverse-phase evaporation vesicles (Liposomes). Mol Gen Genet 184:161–165Google Scholar
  160. Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163CrossRefGoogle Scholar
  161. Namuddu A, Kiggundu A, Mukasa SB, Kurnet K, Karamura E, Tushemereirwe W (2013) Agrobacterium mediated transformation of banana (Musa sp.) cv. Sukali Ndiizi (ABB) with a modified Carica papaya cystatin (CpCYS) gene. Afr J Biotechnol 12(15):1811–1819CrossRefGoogle Scholar
  162. Niizeki M, Grant WF (1971) Callus, plantlet formation, and polyploidy from cultured anthers of Lotus and Nicotiana. Can J Bot 49:2041–2051CrossRefGoogle Scholar
  163. Noor NM, Kean CW, Vun YL, Mohammed-Hussein ZA (2011) In vitro conservation of Malaysian biodiversity-achievements, challenges and future directions. In Vitro Cell Dev Biol Plant 47:26–36CrossRefGoogle Scholar
  164. Omamor IB, Asemota AO, Eke CR, Eziashi EI (2007) Fungal contaminants of the oil palm tissue culture in Nigerian Institute for oil palm Research (NIFOR). Afr J Agric Res 2(10):534–537Google Scholar
  165. Othmani A, Bayoudh C, Sellemi A, Drira N (2017) Temporary immersion system for date palm micropropagation. In: Al-Khayri JM, Mohan Jain S, Johnson DV (eds) Date palm biotechnology protocols, vol I. Springer Science + Business Media, New York, pp 239–249CrossRefGoogle Scholar
  166. Ödutanyo OI, Oso RT, Akinyemi BO, Amusa NA (2004) Microbial contaminants of cultured Hibiscus cannabinus and Telfairia occidentalis tissues. Afr J Biotechol 3(9):472–476Google Scholar
  167. Páez J, González R (2002) Conservación In Vitro de Dos Variedades de Papa (Solanum tuberosum L.) bajo Condiciones de Crecimiento Mínimo. Rev Latinoam de la Papa 13:125–132Google Scholar
  168. Panis B, Piette B, Swennen R (2005) Droplet vitrification of apical meristems: a cryopreservation protocol applicable to all Musaceae. Plant Sci 168:45–55CrossRefGoogle Scholar
  169. Pérez JN, Orellana P, Suárez M, Valdés C (1998) Propagación masiva en biofábricas. In: Pérez JN (ed) Propagación y mejora genética de plantas por biotecnología. Instituto de Biotecnología de las Plantas, Santa Clara, pp 241–258Google Scholar
  170. Pierik RLM (1991) Commercial aspects of micropropagation. In: Prokash J, Pierik RLM (eds) Horticulture-new technologies and application. Kluwer Academic Publishers, The Netherlands, pp 141–153CrossRefGoogle Scholar
  171. Pierik RLM, Steegmans HHM, Van der Meys JAJ (1974) Plantlet formation in callus tissues of Anthurium andraeanum Lind. Scient Hort 2(2):193–198CrossRefGoogle Scholar
  172. Poborilova Z, Opatrilova R, Babula P (2013) Toxicity of aluminum oxide nanoparticles demonstrated using a BY-2 plant cell suspension culture model. Environ Exp Bot 91:1–11CrossRefGoogle Scholar
  173. Prabha D, Kumar YN (2014) Seed treatment with salicylic acid enhance drought tolerance in Capsicum. World J Agric Res 2(2):42–46CrossRefGoogle Scholar
  174. Prasad GK, Mahato TH, Singh B, Ganesan K, Srivastava AR, Kaushik MP, Vijayraghavan R (2008) Decontamination of sulfur mustard and sarin on titania nanotubes. AICHE J 54(11):2957–2963CrossRefGoogle Scholar
  175. Prasad R, Gupta N, Kumar M, Kumar V, Wang S, Abd-Elsalam KA (2017) Nanomaterials act as plant defense mechanism. In: Prasad R, Kumar M, Kumar V (eds) Nanotechnology. Springer Nature Singapore Pte Ltd., Singapore, pp 253–269CrossRefGoogle Scholar
  176. Quak F (1977) Meristem culture and virus-free plants. In: Reinert J, Bajaj YPS (eds) Applied and fundamental aspects of plant cell, tissue and organ culture. Springer-Verlag, Berlin, pp 598–615Google Scholar
  177. Raei M, Angaji SA, Omidi M, Khodayari M (2014) Effect of abiotic elicitors on tissue culture of Aloe vera. Int J Biosci 5(1):74–78CrossRefGoogle Scholar
  178. Rahman S, Biswas N, Mehedi Hassan M, Golam Ahmed M, Mamun ANK, Rafiqul Islam M, Moniruzzaman M, Enamul Haque M (2013) Micropropagation of banana (Musa sp.) cv. Agnishwar by in vitro shoot tip culture. Int Res J Biotechnol 4(4):83–88Google Scholar
  179. Rai MK (2001) Current advances in mycorrhization in micropropagation. In Vitro Cell Dev Biol Plant 37:158–167CrossRefGoogle Scholar
  180. Redenbaugh K, Paasch B, Nichol J, Kossler M, Viss P, Walker K (1986) Somatic seeds encapsulation of asexual embryos. Biotechnology 4:797–801Google Scholar
  181. Reed BM, Gupta S, Uchendu EE (2013) In vitro gene banks for preserving tropical biodiversity. In: Normah MN, Chin HF, Reed BM (eds) Conservation of tropical plant species. Springer, New York, pp 77–106CrossRefGoogle Scholar
  182. Regueira M, Rial E, Blanco B, Bogo B, Aldrey A, Correa B, Varas E, Sánchez C, Vidal N (2018) Micropropagation of axillary shoots of Salix viminalis using a temporary immersion system. Trees 32(1):61–71CrossRefGoogle Scholar
  183. Reyes-Coronado D, Rodríguez-Gattorno G, Espinosa-Pesqueira ME, Cab C, de Coss R, Oskam G (2008) Phase-pure TiO2 nanoparticles: anatase, brookite and rutile. Nanotechnology 19(14):145605. Scholar
  184. Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59:3485–3498PubMedPubMedCentralCrossRefGoogle Scholar
  185. Ríos H, Wright J (2000) Primeros intentos para estimular los flujos de semillas en Cuba. LEISA: Rev Agroecol 15(3–4):39–41Google Scholar
  186. Rosegrant MW, Cline SA (2003) Global food security: challenges and policies. Science 302:1917–1919PubMedCrossRefGoogle Scholar
  187. Rostami AA, Shahsavar A (2009) Nano-silver particles eliminate the in vitro contaminations of Olive ‘Mission’ explants. Asian J Plant Sci 8:505–509CrossRefGoogle Scholar
  188. Rovelli P, Mettulio R, Anthony F, Anzueto F, Lashermes P, Graziosi G (2000) Microsatellites in Coffea arabica. In: Sera T, Soccol CR, Pandey A, Roussos S (eds) Coffee biotechnology and quality. Kluwer Academic Publishers, Dordrecht, pp 123–133CrossRefGoogle Scholar
  189. Ruttkay-Nedecky B, Krystofova O, Nejdl L, Adam J (2017) Nanoparticles based on essential metals and their phytotoxicity. NanoBiotechnology 15:33CrossRefGoogle Scholar
  190. Sadiq MI, Chandrasekaran N, Mukherjee A (2010) Studies on effect of TiO2 nanoparticles on growth and membrane permeability of Escherichia coli, Pseudomonas aeruginosa, and Bacillus subtilis. Curr Nanosci 6(4):381–387CrossRefGoogle Scholar
  191. Safavi K (2012) Evaluation of using nanomaterial in tissue culture media and biological activity. In: 2nd international conference on ecological, environmental and biological sciences (EEBS’2012), Bali, IndonesiaGoogle Scholar
  192. Safavi K (2014) Effect of titanium dioxide nanoparticles in plant tissue culture media for enhance resistance to bacterial activity. Bull Environ Pharmacol Life Sci 3:163–166Google Scholar
  193. Safavi K, Esfahanizadeh M, Mortazaeinezahad, Dastjerd H (2011a) The study of nano silver (NS) antimicrobial activity and evaluation of using NS in tissue culture media. International conference on life science and technology IPCBEE 3. IACSIT Press, SingaporeGoogle Scholar
  194. Safavi K, Mortazaeinezahad F, Esfahanizadeh M, Asgari MJ (2011b) In vitro antibacterial activity of nanomaterial for using in tobacco plants tissue culture. World Acad Sci Eng Technol 55:372–373Google Scholar
  195. Sarmast MK, Salehi H (2016) Silver nanoparticles: an influential element in plant nanobiotechnology. Mol Biotechnol 58:441–449PubMedCrossRefGoogle Scholar
  196. Sarmast MK, Salehi H, Khosh-Khui M (2011) Nano silver treatment is effective in reducing bacterial contaminations of Araucaria excelsa R. Br. var. glauca explants. Acta Biol Hung 2011(62):477–484CrossRefGoogle Scholar
  197. Sauvaire D, Galzy R (1978) Multiplication végétative de canne à sucre (Saccharum sp.) par Saccharum. APC 7:36–39Google Scholar
  198. Savithramma N, Ankanna S, Bhumi G (2012) Effect of nanoparticles on seed germination and seedling growth of Boswellia ovalifoliolata an endemic and endangered medicinal tree taxon. Nano Vision 2:61–68Google Scholar
  199. Sawahel WA (2002) The production of transgenic potato plants expressing human alpha-interferon using lipofectin-mediated transformation. Cell Mol Biol Lett 7:19–29PubMedGoogle Scholar
  200. Scrinis G, Lyons K (2007) The emerging nano-corporate paradigm: nanotechnology and the transformation of nature, food and agri-food systems. Int J Sociol Food Agric 15:22–24Google Scholar
  201. Senaratna T, McKersie BD, Bowley SR (1990) Artificial seeds of alfalfa (Medicago sativa L.). Induction of desiccation tolerance in somatic embryos. In Vitro Cell Dev Biol 26(1):85–90CrossRefGoogle Scholar
  202. Serageldin I (1999) Biotechnology and food security in the 21st century. Science 285:387–389PubMedCrossRefGoogle Scholar
  203. Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi JJ, Qiu J, Gao C (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31:686–688PubMedCrossRefGoogle Scholar
  204. Shanmugam K, Abhilash OU, Khan BM, Prasad B (2010) Nanogold-loaded sharp-edged carbon bullets as plant-gene carriers. Adv Funct Mater 20(15):2416–2423CrossRefGoogle Scholar
  205. Sharma H, Vashistha BD (2015) Plant tissue culture: a biological tool for solving the problem of propagation of medicinally important woody plants-a review. Int J Adv Res 3(2):402–411Google Scholar
  206. Sharma P, Bhatt D, Zaidi MGH, Saradhi PP, Khanna PK, Arora S (2012) Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Appl Biochem Biotechnol 167:2225–2233PubMedCrossRefGoogle Scholar
  207. Shen RS, Hsu ST (2018) Virus elimination through meristem culture and rapid clonal propagation using a temporary immersion system. In: Lee YI, Yeung ET (eds) Orchid propagation: from laboratories to greenhouses-methods and protocols, Springer protocols handbooks. Humana Press, New York, pp 267–282CrossRefGoogle Scholar
  208. Shiraishi K, Koseki H, Tsurumoto T, Baba K, Naito M, Nakayama K et al (2009) Antibacterial metal implant with a TiO2-conferred photocatalytic bactericidal effect against Staphylococcus aureus. Surf Interface Anal 41:17–22CrossRefGoogle Scholar
  209. Shirazi RS, Ewert KK, Leal C, Majzoub RN, Bouxsein NF, Safinya CR (2011) Synthesis and characterization of degradable multivalent cationic lipids with disulfide-bond spacers for gene delivery. Biochim Biophys Acta 1808:2156–2166PubMedPubMedCentralCrossRefGoogle Scholar
  210. Shokri S, Babaei A, Ahmadian M, Hessami S, Arab MM (2014) The effects of different concentrations of nano-silver on elimination of bacterial contaminations and phenolic exudation of Rosae (Rosa hybrida L.) in vitro culture. Intl J Farm Alli Sci 3:50–54Google Scholar
  211. Siddiqui MH, Al-Whaibi MH (2014) Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds Mill.). Saudi J Biol Sci 21(1):13–17PubMedCrossRefGoogle Scholar
  212. Singhal U, Khanuja M, Prasad R, Varma A (2017) Impact of synergistic association of ZnO-nanorods and symbiotic fungus Piriformospora indica DSM 11827 on Brassica oleracea var. botrytis (Broccoli). Front Microbiol 8:1909.
  213. Simonsen J, Hildebrandt AC (1971) In vitro growth and differentiation of Gladiolus plants from callus cultures. Can J Bot 49(10):1817–1819CrossRefGoogle Scholar
  214. Sivanesan I, Park SW (2015) Optimizing factors affecting adventitious shoot regeneration, in vitro flowering and fruiting of Withania somnifera (L.) Dunal. Ind Crop Prod 76:323–328CrossRefGoogle Scholar
  215. Smith JE (1988) Biotechnology, 5th edn. Cambridge University Press, WeinheimGoogle Scholar
  216. Solgi M, Kafi M, Taghavi TS, Naderi R (2009) Essential oils and silver nanoparticles (SNP) as novel agents to extend vase-life of gerbera (Gerbera jamesonii cv. ‘Dune’) flowers, postharvest. Biol Technol 53:155–158CrossRefGoogle Scholar
  217. Spinoso-Castillo JL, Chavez-Santoscoy RA, Bogdanchikova N, Pérez-Sato JA, Morales-Ramos V, Bello-Bello JJ (2017) Antimicrobial and hormetic effects of silver nanoparticles on in vitro regeneration of vanilla (Vanilla planifolia Jacks. ex Andrews) using a temporary immersion system. Plant Cell Tissue Organ Cult 129:195–207CrossRefGoogle Scholar
  218. Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473–9479PubMedCrossRefGoogle Scholar
  219. Steward FC, Mapes MO (1963) The totipotency of cultured carrot cells. Evidence in interpretations from successive cycles of growth from phloem cells. J Indian Bot Soc 42A:237–247Google Scholar
  220. Street HE (1974) Plant cell cultures: present and projected applications for studies in genetics. In: Ledoux L (ed) Genetic manipulations with plant material. Plenum Press, New York, pp 231–244Google Scholar
  221. Syu Y, Hung JH, Chen JC, Chuang H (2014) Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. Plant Physiol Biochem 83:57–64PubMedCrossRefGoogle Scholar
  222. Szopa A, Ekiert H (2012) In vitro cultures of Schisandra chinensis (Turcz.) Baill. (Chinese Magnolia Vine)-a potential biotechnological rich source of therapeutically important phenolic acids. Appl Biochem Biotechnol 166(8):1941–1948PubMedPubMedCentralCrossRefGoogle Scholar
  223. Taghizadeh M, Solgi M (2014) The application of essential oils and silver nanoparticles for sterilization of sermuda grass explants in in vitro culture. J Hortic Sci Technol 1:131–140Google Scholar
  224. Talankova-Sereda TE, Liapina KV, Shkopinskij EA, Ustinov AI, Kovalyova AV, Dulnev PG, Kucenko NI (2016) The influence of Cu and Co nanoparticles on growth characteristics and biochemical structure of Mentha longifolia in vitro. Nanosci Nanoeng 4:31–39Google Scholar
  225. Teixeira JA (2013) Orchids: advances in tissue culture, genetics, phytochemistry and transgenic biotechnology. Floric Ornam Biotech 7(1):1–52Google Scholar
  226. Thakur M, Sharma D, Sharma S (2002) In vitro selection and regeneration of carnation (Dianthus caryophyllus L.) plants resistant to culture filtrate of Fusarium oxysporum f. sp. dianthi. Plant Cell Rep 20(9):825–828CrossRefGoogle Scholar
  227. Thiem B, Kikowska M, Krawczyk A, Więckowska A, Sliwinska E (2013) Phenolic acid and DNA contents of micropropagated Eryngium planum L. Plant Cell Tissue Organ Cult 114(2):197–206CrossRefGoogle Scholar
  228. Torney F, Trewyn BG, Lin VS, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2:295–300PubMedCrossRefGoogle Scholar
  229. Torres KC (ed) (1989) Tissue culture techniques for horticultural crop. Van no strand. Reinhold, New York, p 285Google Scholar
  230. Tsai TM, Chang HH, Chang KC, Liua YL, Tseng CC (2010) A comparative study of the bactericidal effect of photo catalytic oxidation by TiO2 on antibiotic-resistant and antibiotic-sensitive bacteria. J Chem Technol Biotechnol. Scholar
  231. UN (United Nations Department of Economic and Social Affairs, Population Division) (2013) World population prospectsGoogle Scholar
  232. Vasquez N, Salazar K, Anthony F, Chabrillange N, Engelmann F, Dussert S (2005) Variability in response of seeds to liquid nitrogen exposure in wild coffee (Coffea arabica L.). Seed Sci Technol 33:293–301CrossRefGoogle Scholar
  233. Vayssieres L, Keis K, Hagfeldt A, Lindquist S-E (2001) Three-dimensional array of highly oriented crystalline ZnO microtubes. Chem Mater 13:4395–4398CrossRefGoogle Scholar
  234. Vdovitchenko YM, Kuzovkina IN (2011) Artificial seeds as a way to produce ecologically clean herbal remedies and to preserve endangered plant species. Mosc Univ Biol Sci Bull 66(2):48–50CrossRefGoogle Scholar
  235. Viana MM, Soares VF, Mohallem NDS (2010) Synthesis and characterization of TiO2 nanoparticles. Ceram Int 36:2047–2053CrossRefGoogle Scholar
  236. Vieira AL, Camilo CM (2011) Agrobacterium tumefaciens- mediated transformation of the aquatic fungus Blastocladiella emersonii. Fungal Genet Biol 48:806–8011PubMedCrossRefGoogle Scholar
  237. Voytas DF, Gao C (2014) Precision genome engineering and agriculture: opportunities and regulatory challenges. PLoS Biol 12(6):e1001877PubMedPubMedCentralCrossRefGoogle Scholar
  238. Vuković R, Bauer N, Ćurković-Perica M (2013) Genetic elicitation by inducible expression of ß-cryptogenic stimulates secretion of phenolics from Coleus blumei hairy roots. Plant Sci 199–200:18–28PubMedCrossRefGoogle Scholar
  239. Wang BWY, Feng WY, Wang C, Jia M, Wang C, Shi W, Zhang F, Zhao L, Chai F (2006) Acute toxicity of nano-and micro scale zinc powder on healthy adult mice. Toxicol Lett 161:115–123PubMedCrossRefGoogle Scholar
  240. Wang P, Lombi E, Zjao FJ, Kopittke PM (2016) Nanotechnology: a new opportunity in plant sciences. Trends Plant Sci 21(8):699–712PubMedCrossRefGoogle Scholar
  241. Wendt T, Holm PB, Starker CG, Christian M, Voytas DF et al (2013) TAL effector nucleases induce mutations at a pre-selected location in the genome of primary barley transformants. Plant Mol Biol 83:279–285PubMedCrossRefGoogle Scholar
  242. Withers LA (1985) Cryopreservation of cultured plant cells and protoplasts. In: Kartha KK (ed) Cryopreservation of Plant Cells and Organs. CRC Press, Boca Raton, pp 243–264Google Scholar
  243. World Bank (1997) World development report 1997: the state in a changing world. Oxford University Press, New York. © World Bank. License: CC BY 3.0 IGOCrossRefGoogle Scholar
  244. Yamakawa K (1985) Application of artificial seed and its potential. Agric Chem Today 29:68Google Scholar
  245. Yang L, Watts DJ (2005) Particle surface characteristics may play an important role in phytotoxicity of alumina nano-particles. Toxicol Leu 158:122–132CrossRefGoogle Scholar
  246. Yildirim AB, Turker AU (2014) Effects of regeneration enhancers on micropropagation of Fragaria vesca L. and phenolic content comparison of field-grown and in vitro-grown plant materials by liquid chromatography-electrospray tandem mass spectrometry (LC–ESI-MS/MS). Scient Hort 169:169–178CrossRefGoogle Scholar
  247. Zafar H, Ali A, Ali JS, Haq IU, Zia M (2016) Effect of ZnO nanoparticles on Brassica nigra seedlings and stem explants: growth dynamics and antioxidative response. Front Plant Sci 7:535PubMedPubMedCentralCrossRefGoogle Scholar
  248. Zarafshar M, Akbarinia M, Askari H, Mohsen SH, Rahaie M, Struve D, Striker GG (2014) Morphological, physiological and biochemical responses to soil water deficit in seedlings of three populations of wild pear tree (Pyrus boisseriana). Biotechnol Agron Soc Environ 18(3):3Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sandra Pérez Álvarez
    • 1
  • Marco Antonio Magallanes Tapia
    • 2
  • María Esther González Vega
    • 3
  • Eduardo Fidel Héctor Ardisana
    • 4
  • Jesús Alicia Chávez Medina
    • 2
  • Gabriela Lizbeth Flores Zamora
    • 2
  • Daniela Valenzuela Bustamante
    • 2
  1. 1.Universidad Autonóma de Chihuahua, Facultad de Ciencias Agrícolas y ForestalesDeliciasMexico
  2. 2.Instituto Politécnico Nacional, CIIDIR-IPN, Unidad Sinaloa, Departamento de Biotecnología AgrícolaGuasaveMexico
  3. 3.Instituto Nacional de Ciencias Agrícolas (INCA)San José de las LajasCuba
  4. 4.Facultad de Ingeniería AgronómicaUniversidad Técnica de ManabíPortoviejoEcuador

Personalised recommendations