Recent Advancements and New Perspectives of Nanomaterials

  • Ezgi Emul
  • Mehmet Dogan Asik
  • Ramazan Akcan
  • Kazim Kose
  • Lokman Uzun
  • Semran Saglam
  • Feza Korkusuz
  • Necdet SaglamEmail author
Part of the Nanotechnology in the Life Sciences book series (NALIS)


Nanomaterials have changed our expectancies in engineering, material science, and medicine. They are frequently used to enhance properties of electronics, energy vessels, textile, biomedical materials, and medicine. They increase surface area without losing properties and structure. Graphene quantum dots in example are used in environmental applications and biochemistry. Here we present recent nanomaterial production and characterization methods. Such nanomaterials are used for coating materials to prevent infections and allow sanitation. Carbon quantum dots are used in environment and energy deposition. They can be used in medicine when combined with organic materials. In example slow release of medicine is attained using nanotechnology. They can also construct biomedical sensors with low cytotoxicity. On the other hand, nanomaterials can be extremely toxic as they can easily pass the immune system causing inflammation and necrosis. Nanotechnology is also used in forensic toxicology analysis. In conclusion, nanoscience and nanomaterials is a growing field of research and application that has the potential to shape our near future.


Nanomaterials Nanoparticles Quantum dots Carbon-based materials Metal/alloys Forensics application 


  1. Adegoke O, Nyokong T, Forbes P (2015) Structural and optical properties of alloyed quaternary CdSeTeS core and CdSeTeS/ZnS core–shell quantum dots. J Alloys Compd 645:443–449CrossRefGoogle Scholar
  2. Adserias-Garriga J, Hernández M, Quijada NM, Rodríguez Lázaro D, Steadman D, Garcia-Gil J (2017) Daily thanatomicrobiome changes in soil as an approach of postmortem interval estimation: an ecological perspective. Forensic Sci Int 278:388–395PubMedCrossRefPubMedCentralGoogle Scholar
  3. Alaş MÖ, Genç R (2016) Floresans karbon nanoparçacıkların yeşil sentezi ve pasivasyon ajanının molekül ağırlığının nanoparçacık özellikleri üzerine etkisinin incelenmesi. Sinop Uni J Nat Sci 1(2):123–134Google Scholar
  4. Arnaldos MI, Garcia MD, Romera E, Presa JJ, Luna A (2005) Estimation of postmortem interval in real cases based on experimentally obtained entomological evidence. Forensic Sci Int 149(1):57–65PubMedCrossRefPubMedCentralGoogle Scholar
  5. Arumugam N, Kim J (2018) Synthesis of carbon quantum dots from Broccoli and their ability to detect silver ions. Mater Lett 219:37–40CrossRefGoogle Scholar
  6. Aytaç A, Malayoğlu U (2018) Fiziksel buhar biriktirme yöntemlerinden PVD ve JVD/DVD ince film kaplamaların karşılaştırılması ve DVD kaplama teknolojisinin endüstriyel uygulamaları üzerine kavramsal, akademik ve teorik bir analiz. J Def Sci 17:131–164Google Scholar
  7. Azpeitia J, Otero-Irurueta G, Palacio I, Martinez JI, Ruiz del Árbol N, Santoro G, Gutiérrez A, Aballe L, Foerster M, Kalbac M, Vales V, Mompeán FJ, García-Hernández M, Martín-Gago JA, Munuera C, López MF (2017) High-quality PVD graphene growth by fullerene decomposition on Cu foils. Carbon 119:535–543PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bailey RE, Nie S (2003) Alloyed semiconductor quantum dots: tuning the optical properties without changing the particle size. J Am Chem Soc 125:7100–7106PubMedCrossRefPubMedCentralGoogle Scholar
  9. Banaz E (2009) Sol-jel yöntemi ile katkılı ve katkısız titanyum dioksit tozlarının sentezlenmesi. M.Sc thesis in Institute of Science and Technology, Istanbul Technical University, Istanbul, Turkey.Google Scholar
  10. Basile A, Ghasemzadeh K (2017) Current trends and future developments on (bio-) membranes: silica membranes: preparation, modelling, application, and commercialization. Elsevier, Amsterdam, Netherland.Google Scholar
  11. Bello SA, Johnson OA, Bolaji Hassan S (2015) Synthesis of coconut shell nanoparticles via a top down approach: assessment of milling duration on the particle sizes and morphologies of coconut shell nanoparticles. Mater Lett 159:514–519CrossRefGoogle Scholar
  12. Benjamin JS (1970) Dispersion strengthened superalloys by mechanical alloying. Metall Trans A 1:2943–2951Google Scholar
  13. Bhunia SK, Saha A, Maity AR, Ray SC, Jana NR (2013) Carbon nanoparticle-based fluorescent bioimaging probes. Sci Rep-UK 3:1473CrossRefGoogle Scholar
  14. Bienvenue JM, Legendre LA, Ferrance JP, Landers JP (2010) An integrated microfluidic device for DNA purification and PCR amplification of STR fragments. Forensic Sci Int- Gen 4:178–186CrossRefGoogle Scholar
  15. Budaszewski D, Siarkowska A, Chychłowski M, Jankiewicz B, Bartosewicz B, Dąbrowski R, Woliński TR (2017) Nanoparticles-enhanced photonic liquid crystal fibers. J Mol Liq 267:271–278CrossRefGoogle Scholar
  16. Butler JM (2005) Forensic DNA typing: biology, technology, and genetics of STR markers. Elsevier, Amsterdam, Netherland.Google Scholar
  17. Buzaglo M, Shtein M, Regev O (2016) Graphene quantum dots produced by microfluidization. Chem Mater 28:21–24CrossRefGoogle Scholar
  18. Cai J, Sun B, Gou X, Gou Y, Li W, Hu F (2018) A novel way for analysis of calycosin via polyaniline functionalized graphene quantum dots fabricated electrochemical sensor. J Electroanal Chem 816:123–131CrossRefGoogle Scholar
  19. Cattaneo C (2007) Forensic anthropology: developments of a classical discipline in the new millennium. Forensic Sci Int 165:185–193PubMedCrossRefGoogle Scholar
  20. Cha C, Shin SR, Annabi N, Dokmeci MR, Khademhosseini A (2013) Carbon-based nanomaterials: multifunctional materials for biomedical engineering. ACS Nano 7:2891–2897PubMedPubMedCentralCrossRefGoogle Scholar
  21. Chaitanya L, Breslin K, Zuñiga S, Wirken L, Pośpiech E, Kukla-Bartoszek M, Sijen T, de Knijff P, Liu F, Branicki W (2018) The HIrisPlex-S system for eye, hair and skin colour prediction from DNA: introduction and forensic developmental validation. Forensic Sci Int-Gen 35:123–135CrossRefGoogle Scholar
  22. Chamoli P, Das MK, Kar KK (2018) Urea-assisted low temperature green synthesis of graphene nanosheets for transparent conducting film. J Phys Chem Solids 113:17–25CrossRefGoogle Scholar
  23. Chen L, Yu H, Zhong J, Wu J, Su W (2018) Graphene based hybrid/composite for electron field emission: a review. J Alloys Compd 749:60–84CrossRefGoogle Scholar
  24. Cheng MM, Cuda G, Bunimovich YL, Gaspari M, Heath JR, Hill HD, Mirkin CA, Nijdam AJ, Terracciano R, Thundat T (2006) Nanotechnologies for biomolecular detection and medical diagnostics. Curr Opin Chem Biol 10:11–19PubMedCrossRefGoogle Scholar
  25. Choi Y, Kim S, Choi MH, Ryoo SR, Park J, Min DH, Kim BS (2014) Highly biocompatible carbon nanodots for simultaneous bioimaging and targeted photodynamic therapy in vitro and in vivo. Adv Funct Mater 24:5781–5789CrossRefGoogle Scholar
  26. Choi Y, Thongsai N, Chae A, Jo S, Kang EB, Paoprasert P, Park SY, In I (2017) Microwave-assisted synthesis of luminescent and biocompatible lysine-based carbon quantum dots. J Ind Eng Chem 47:329–335CrossRefGoogle Scholar
  27. Cortés-López AJ, Muñoz-Sandoval E, López-Urías F (2018) Efficient carbon nanotube sponges production boosted by acetone in CVD-synthesis. Carbon 135:145–156CrossRefGoogle Scholar
  28. Creagh D, Cameron A (2017) Estimating the post-mortem interval of skeletonized remains: the use of infrared spectroscopy and raman spectro-microscopy. Radiat Phys Chem 137:225–229CrossRefGoogle Scholar
  29. Creighton JR, Ho P (2001) Introduction to chemical vapor deposition (CVD). Chem Vap Depos 2:1–22Google Scholar
  30. Cui B, Feng X, Zhang F, Wang Y, Liu X, Yang Y, Jia H (2017) The use of carbon quantum dots as fluorescent materials in white LEDs. New Carbon Mater 32:385–401CrossRefGoogle Scholar
  31. Dai W, Moon MW (2018) Carbon-encapsulated metal nanoparticles deposited by plasma enhanced magnetron sputtering. Vacuum 150:124–128CrossRefGoogle Scholar
  32. Das R, Bandyopadhyay R, Pramanik P (2018) Carbon quantum dots from natural resource: a review. Mater Today Chem 8:96–109CrossRefGoogle Scholar
  33. Delgado DC, Pérez Gagni DE, Catalano PN, Bellino MG (2017) Mesoporous thin film structures as metal nanoparticle reactors for electronic circuits: effects of matrix crystallinity and nanoparticle functionalization. Superlattice Microst 109:286–295CrossRefGoogle Scholar
  34. Dengyu P, Jingchun Z, Zhen L, Minghong W (2010) Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv Mater 22:734–738CrossRefGoogle Scholar
  35. Dong Y, Chen C, Zheng X, Gao L, Cui Z, Yang H, Guo C, Chi Y, Li CM (2012a) One-step and high yield simultaneous preparation of single- and multi-layer graphene quantum dots from CX-72 carbon black. J Mater Chem 22:8764–8766CrossRefGoogle Scholar
  36. Dong Y, Li G, Zhou N, Wang R, Chi Y, Chen G (2012b) Graphene quantum dot as a green and facile sensor for free chlorine in drinking water. Anal Chem 84:8378–8382PubMedCrossRefGoogle Scholar
  37. Dong Y, Shao J, Chen C, Li H, Wang R, Chi Y, Lin X, Chen G (2012c) Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon 50:4738–4743CrossRefGoogle Scholar
  38. Dong J, Wang K, Sun L, Sun B, Yang M, Chen H, Wang Y, Sun J, Dong L (2018) Application of graphene quantum dots for simultaneous fluorescence imaging and tumor-targeted drug delivery. Sensor Actuator B-Chem 256:616–623CrossRefGoogle Scholar
  39. Drbohlavova J, Adam V, Kizek R, Hubalek J (2009) Quantum dots – characterization, preparation and usage in biological systems. Int J Mol Sci 10:656–673PubMedPubMedCentralCrossRefGoogle Scholar
  40. Du F, Min Y, Zeng F, Yu C, Wu S (2014) A targeted and FRET-based ratiometric fluorescent nanoprobe for imaging mitochondrial hydrogen peroxide in living cells. Small 10:964–972PubMedCrossRefPubMedCentralGoogle Scholar
  41. El-Eskandarany MS (2015) Mechanical alloying: nanotechnology, materials science and powder metallurgy, 2nd edn. Elsevier Science.Google Scholar
  42. Ensafi AA, Sayed Afiuni SA, Rezaei B (2018) NiO nanoparticles decorated at Nile blue-modified reduced graphene oxide, new powerful electrocatalysts for water splitting. J Electroanal Chem 816:160–170CrossRefGoogle Scholar
  43. Erol K, Kose K, Avci E, Kose DA (2017) Electrostatic adsorption of asymmetric dimethyl arginine (adma) on poly (2-hydroxyethyl methacrylate-acrylic acid) nanoparticles. J Macromol Sci A 54:902–907CrossRefGoogle Scholar
  44. Faraz M, Abbasia A, Naqvia FK, Khare N, Prasad R, Barman I, Pandey R (2018) Polyindole/CdS nanocomposite based turn-on, multi-ion fluorescence sensor for detection of Cr3+, Fe3+ and Sn2+ ions. Sensors Actuators B 269:195–202. Scholar
  45. Gao X, Du C, Zhuang Z, Chen W (2016) Carbon quantum dot-based nanoprobes for metal ion detection. J Mater Chem C 4:6927–6945CrossRefGoogle Scholar
  46. Girasole M, Pompeo G, Cricenti A, Congiu-Castellano A, Andreola F, Serafino A, Frazer BH, Boumis G, Amiconi G (2007) Roughness of the plasma membrane as an independent morphological parameter to study RBCs: a quantitative atomic force microscopy investigation. BBA-Biomembranes 1768:1268–1276PubMedCrossRefPubMedCentralGoogle Scholar
  47. Gong N, Wang H, Li S, Deng Y, Chen X, Ye L, Gu W (2014) Microwave-assisted polyol synthesis of gadolinium-doped green luminescent carbon dots as a bimodal nanoprobe. Langmuir 30:10933–10939PubMedCrossRefPubMedCentralGoogle Scholar
  48. Gu S, Hsieh CT, Chiang YM, Tzou DY, Chen YF, Gandomi YA (2018) Optimization of graphene quantum dots by chemical exfoliation from graphite powders and carbon nanotubes. Mater Chem Phys 215:104–111CrossRefGoogle Scholar
  49. Guo L, Li L, Liu M, Wan Q, Tian J, Huang Q, Wen Y, Liang S, Zhang X, Wei Y (2018) Bottom-up preparation of nitrogen doped carbon quantum dots with green emission under microwave-assisted hydrothermal treatment and their biological imaging. Mater Sci Eng C 84:60–66CrossRefGoogle Scholar
  50. Hintze C, Morita K, Riedel R, Ionescu E, Mera G (2016) Facile sol–gel synthesis of reduced graphene oxide/silica nanocomposites. J Eur Ceram Soc 36:2923–2930CrossRefGoogle Scholar
  51. Ho SS, Min-Ho J, Jin C, Hawn JS, Hyun KB, Seung-Hyun H, Seunghyup Y, Yong-Hoon C, Seokwoo J (2014) Highly efficient light-emitting diode of graphene quantum dots fabricated from graphite intercalation compounds. Adv Opt Mater 2:1016–1023CrossRefGoogle Scholar
  52. Hoecker C, Smail F, Pick M, Boies A (2017) The influence of carbon source and catalyst nanoparticles on CVD synthesis of CNT aerogel. Chem Eng J 314:388–395CrossRefGoogle Scholar
  53. Hola K, Zhang Y, Wang Y, Giannelis EP, Zboril R, Rogach AL (2014) Carbon dots – emerging light emitters for bioimaging, cancer therapy and optoelectronics. Nano Today 9:590–603CrossRefGoogle Scholar
  54. Hu H, Zhao Z, Zhou Q, Gogotsi Y, Qiu J (2012) The role of microwave absorption on formation of graphene from graphite oxide. Carbon 50:3267–3273CrossRefGoogle Scholar
  55. Huang X, Li Y, Zhong X, Rider AE, Ostrikov K (2015) Fast microplasma synthesis of blue luminescent carbon quantum dots at ambient conditions. Plasma Process Polym 12:59–65CrossRefGoogle Scholar
  56. Huang Y, Chen H, Peng X, Zhang B, Chen B (2018a) Shock waves preparing cubic boron nitride nanoparticles. J Alloys Compd 741:875–877CrossRefGoogle Scholar
  57. Huang X, Yu R, Yang X, Xu X, Zhang H, Zhang D (2018b) Efficient CuInS2/ZnS based quantum dot light emitting diodes by engineering the exciton formation interface. J Lumin 202:339–344CrossRefGoogle Scholar
  58. Hussien NA, Işıklan N, Türk M (2018) Aptamer-functionalized magnetic graphene oxide nanocarrier for targeted drug delivery of paclitaxel. Mater Chem Phys 211:479–488CrossRefGoogle Scholar
  59. Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13:2638–2650CrossRefGoogle Scholar
  60. Jaiswal A, Ghsoh SS, Chattopadhyay A (2012) Quantum dot impregnated-chitosan film for heavy metal ion sensing and removal. Langmuir 28:15687–15696PubMedCrossRefPubMedCentralGoogle Scholar
  61. Javanbakht S, Namazi H (2018) Doxorubicin loaded carboxymethyl cellulose/graphene quantum dot nanocomposite hydrogel films as a potential anticancer drug delivery system. Mater Sci Eng C 87:50–59CrossRefGoogle Scholar
  62. Johnson PC (1989) Physical vapor deposition of thin films. Plat Surf Finish 76:30–33Google Scholar
  63. Jones BJ (2011) Nano fingerprints. Mater Today 14:567CrossRefGoogle Scholar
  64. Jones BJ, Downham R, Sears VG (2012) Nanoscale analysis of the interaction between cyanoacrylate and vacuum metal deposition in the development of latent fingermarks on low-density polyethylene. J Forensic Sci 57:196–200PubMedCrossRefPubMedCentralGoogle Scholar
  65. Kayser M (2015) Forensic DNA phenotyping: predicting human appearance from crime scene material for investigative purposes. Forensic Sci Int-Gen 18:33–48CrossRefGoogle Scholar
  66. Keleşoğlu E (2011) Sert Kaplamalar Üretim Teknikleri ve Özellikleri. In: İstanbul Yıldız Teknik Üniversitesi, 1–131, Istanbul, TurkeyGoogle Scholar
  67. Kervan N, Altanhan T, Chatterjee A (2003) A variational approach with squeezed-states for the polaronic effects in quantum dots. Phys Lett A 315:280–287CrossRefGoogle Scholar
  68. Khalid M, Honorato AMB (2018) Bendable tube-shaped supercapacitor based on reduced graphene oxide and Prussian blue coated carbon fiber yarns for energy storage. J Energy Chem 27:866–873CrossRefGoogle Scholar
  69. Khan I, Saeed K, Khan I (2017) Nanoparticles: properties, applications and toxicities. Arab J Chem., in press.
  70. Khenfouch M, Mimouna B, Aarab H, Maaza M (2012) Morphological, vibrational and thermal properties of confined graphene nanosheets in an individual polymeric nanochannel by electrospinning. Graphene 1:15–20CrossRefGoogle Scholar
  71. Kim DH, Kim TW (2018) Highly-efficient organic light-emitting devices based on poly(N,N′-bis-4-butylphenyl-N,N′-bisphenyl)benzidine: octadecylamine-graphene quantum dots. Org Electron 57:305–310CrossRefGoogle Scholar
  72. Kim JK, Park MJ, Kim SJ, Wang DH, Cho SP, Bae S, Park JH, Hong BH (2013) Balancing light absorptivity and carrier conductivity of graphene quantum dots for high-efficiency bulk heterojunction solar cells. ACS Nano 7:7207–7212PubMedCrossRefPubMedCentralGoogle Scholar
  73. Kim WK, Ryu WH, Han DW, Lim SJ, Eom JY, Kwon HS (2014) Fabrication of graphene embedded LiFePO4 using a catalyst assisted self-assembly method as a cathode material for high power lithium-ion batteries. ACS Appl Mater Interfaces 6:4731–4736PubMedCrossRefPubMedCentralGoogle Scholar
  74. Kim JS, Kang BH, Jeong HM, Kim SW, Xu B, Kang SW (2018) Quantum dot light emitting diodes using size-controlled ZnO NPs. Curr Appl Phys 18:681–685CrossRefGoogle Scholar
  75. Kose K, Denizli A (2013) Poly(hydroxyethyl methacrylate) based magnetic nanoparticles for lysozyme purification from chicken egg white. Artif Cell Nanomed B 41:13–20CrossRefGoogle Scholar
  76. Kozlova EK, Chernysh AM, Moroz VV, Kuzovlev AN (2013) Analysis of nanostructure of red blood cells membranes by space Fourier transform of AFM images. Micron 44:218–227PubMedCrossRefPubMedCentralGoogle Scholar
  77. Kumar V, Singh V, Umrao S, Parashar V, Abraham S, Singh AK, Nath G, Saxena PS, Srivastava A (2014) Facile, rapid and upscaled synthesis of green luminescent functional graphene quantum dots for bioimaging. RSC Adv 4:21101–21107CrossRefGoogle Scholar
  78. Kumar GR, Jayasankar K, Das SK, Dash T, Dash A, Jena BK, Mishra BK (2016) Shear-force-dominated dual-drive planetary ball milling for the scalable production of graphene and its electrocatalytic application with Pd nanostructures. RSC Adv 6:20067–20073CrossRefGoogle Scholar
  79. Kumar D, Worku ZA, Gao Y, Kamaraju VK, Glennon B, Babu RP, Healy AM (2018a) Comparison of wet milling and dry milling routes for ibuprofen pharmaceutical crystals and their impact on pharmaceutical and biopharmaceutical properties. Powder Technol 330:228–238CrossRefGoogle Scholar
  80. Kumar R, Joanni E, Singh RK, Singh DP, Moshkalev SA (2018b) Recent advances in the synthesis and modification of carbon-based 2D materials for application in energy conversion and storage. Prog Energ Combust 67:115–157CrossRefGoogle Scholar
  81. Kun H, Wanglin L, Xuegong Y, Chuanhong J, Deren Y (2016) Highly pure and luminescent graphene quantum dots on silicon directly grown by chemical vapor deposition. Part Part Syst Charact 33:8–14CrossRefGoogle Scholar
  82. Kwak JH, Kim HK, Kim K, Noh BR, Cheon HI, Yeo M, Shakya R, Shrestha SA, Kim D, Choe S (2017) Proteomic evaluation of biomarkers to determine the postmortem interval. Anal Lett 50:207–218CrossRefGoogle Scholar
  83. Lam SJ, Wong EHH, Boyer C, Qiao GG (2018) Antimicrobial polymeric nanoparticles. Prog Polym Sci 76:40–64CrossRefGoogle Scholar
  84. Lancia M, Conforti F, Aleffi M, Caccianiga M, Bacci M, Rossi R (2013) The use of Leptodyctium riparium (H edw.) Warnst in the estimation of minimum postmortem interval. J Forensic Sci 58:S239–S242PubMedCrossRefPubMedCentralGoogle Scholar
  85. Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RM (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110Google Scholar
  86. Lee YR, Kim IY, Kim TW, Lee JM, Hwang SJ (2012) Mixed colloidal suspensions of reduced graphene oxide and layered metal oxide nanosheets: useful precursors for the porous nanocomposites and hybrid films of graphene/metal oxide. Chem Eur J 18:2263–2271PubMedCrossRefPubMedCentralGoogle Scholar
  87. Li H, Kang Z, Liu Y, Lee ST (2012a) Carbon nanodots: synthesis, properties and applications. J Mater Chem 22:24230–24253CrossRefGoogle Scholar
  88. Li Y, Zhao Y, Cheng H, Hu Y, Shi G, Dai L, Qu L (2012b) Nitrogen-doped graphene quantum dots with oxygen-rich functional groups. J Am Chem Soc 134:15–18PubMedCrossRefPubMedCentralGoogle Scholar
  89. Li WC, Ma KJ, Lv YH, Zhang P, Pan H, Zhang H, Wang HJ, Ma D, Chen L (2014) Postmortem interval determination using 18S-rRNA and microRNA. Sci Justice 54:307–310PubMedCrossRefPubMedCentralGoogle Scholar
  90. Li M, Yu C, Hu C, Yang W, Zhao C, Wang S, Zhang M, Zhao J, Wang X, Qiu J (2017) Solvothermal conversion of coal into nitrogen-doped carbon dots with singlet oxygen generation and high quantum yield. Chem Eng J 320:570–575CrossRefGoogle Scholar
  91. Liang Z, Kang M, Payne GF, Wang X, Sun R (2016) Probing energy and electron transfer mechanisms in fluorescence quenching of biomass carbon quantum dots. ACS Appl Mater Interfaces 8:17478–17488PubMedCrossRefPubMedCentralGoogle Scholar
  92. Lim MB, Hu M, Manandhar S, Sakshaug A, Strong A, Riley L, Pauzauskie PJ (2015) Ultrafast sol–gel synthesis of graphene aerogel materials. Carbon 95:616–624CrossRefGoogle Scholar
  93. Lim H, Liu Y, Kim HY, Son DI (2018) Facile synthesis and characterization of carbon quantum dots and photovoltaic applications. Thin Solid Films 660:672–677CrossRefGoogle Scholar
  94. Lin L, Luo Y, Tsai P, Wang J, Chen X (2018) Metal ions doped carbon quantum dots: synthesis, physicochemical properties, and their applications. TRAC Trend Anal Chem 103:87–101CrossRefGoogle Scholar
  95. Liu R, Wu D, Liu S, Koynov K, Knoll W, Li Q (2009) An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers. Angew Chem Int Ed 48:4598–4601CrossRefGoogle Scholar
  96. Liu R, Wu D, Feng X, Müllen K (2011) Bottom-up fabrication of photoluminescent graphene quantum dots with uniform morphology. J Am Chem Soc 133:15221–15223PubMedCrossRefPubMedCentralGoogle Scholar
  97. Liu T, Li N, Dong JX, Luo HQ, Li NB (2016) Fluorescence detection of mercury ions and cysteine based on magnesium and nitrogen co-doped carbon quantum dots and IMPLICATION logic gate operation. Sensor Actuators B-Chem 231:147–153CrossRefGoogle Scholar
  98. Liu Y, Hua J, Zhang K, Zhao J, Li H (2018) Effect of MgO shell on electron transfer from Cu doped ZnInS quantum dots to FePt nanoparticles. Mater Res Bull 103:242–246CrossRefGoogle Scholar
  99. Lloyd-Hughes H, Shiatis AE, Pabari A, Mosahebi A, Seifalian A (2015) Current and future nanotechnology applications in the management of melanoma: a review. J Nanomed Nanotechnol 6:334CrossRefGoogle Scholar
  100. Loureiro A, Azoia NG, Gomes AC, Cavaco-Paulo A (2016) Albumin-based nanodevices as drug carriers. Curr Pharm Design 22:1371–1390CrossRefGoogle Scholar
  101. Ma XM, Sun M, Lin Y, Liu YJ, Luo F, Guo LH, Qiu B, Lin ZY, Chen GN (2018) Progress of visual biosensor based on gold nanoparticles. Chin J Anal Chem 46:1–10CrossRefGoogle Scholar
  102. Mahmoudi T, Wang Y, Hahn YB (2018) Graphene and its derivatives for solar cells application. Nano Energy 47:51–65CrossRefGoogle Scholar
  103. Manshian BB, Jiménez J, Himmelreich U, Soenen SJ (2017) Personalized medicine and follow-up of therapeutic delivery through exploitation of quantum dot toxicity. Biomaterials 127:1–12PubMedCrossRefGoogle Scholar
  104. Mansur AAP, Mansur HS, Caires AJ, Mansur RL, Oliveira LC (2017) Composition-tunable optical properties of Zn(x)Cd((1 − x))S quantum dot–carboxymethylcellulose conjugates: towards one-pot green synthesis of multifunctional nanoplatforms for biomedical and environmental applications. Nanoscale Res Lett 12:443PubMedPubMedCentralCrossRefGoogle Scholar
  105. Mao S, Fu G, Seese RR, Wang ZY (2013) Estimation of PMI depends on the changes in ATP and its degradation products. Legal Med 15:235–238PubMedCrossRefGoogle Scholar
  106. Martis E, Badve R, Degwekar M (2012) Nanotechnology based devices and applications in medicine: an overview. Chronicles Young Sci 3:68–73CrossRefGoogle Scholar
  107. Matsumoto M, Saito Y, Park C, Fukushima T, Aida T (2015) Ultrahigh-throughput exfoliation of graphite into pristine ‘single-layer’ graphene using microwaves and molecularly engineered ionic liquids. Nat Chem 7:730–736PubMedCrossRefGoogle Scholar
  108. McNamara K, Tofail SAM (2017) Nanoparticles in biomedical applications. Adv Phys 2:54–88Google Scholar
  109. Meng L, Ren Y, Zhou Z, Li C, Wang C, Fu S (2018) Monodisperse silica nanoparticle suspension for developing latent blood fingermarks. Forensic Sci Res 1:10Google Scholar
  110. Merle G, Grillet AC, Allemand J, Lesueur D (1999) Quantitative analysis of surface morphology: characterization of polypyrrole films aging. Polym Test 18:217–229CrossRefGoogle Scholar
  111. Mitchell B, Siobhan JB, Thomas N (2014) Graphene quantum dots. Part Part Syst Charact 31:415–428CrossRefGoogle Scholar
  112. Muro CK, Lednev IK (2017) Identification of individual red blood cells by Raman microspectroscopy for forensic purposes: in search of a limit of detection. Anal Bioanal Chem 409:287–293PubMedCrossRefGoogle Scholar
  113. Nag A, Mitra A, Mukhopadhyay SC (2018) Graphene and its sensor-based applications: a review. Sensor Actuator A-Phys 270:177–194CrossRefGoogle Scholar
  114. Namdari P, Negahdari B, Eatemadi A (2017) Synthesis, properties and biomedical applications of carbon-based quantum dots: an updated review. Biomed Pharmacother 87:209–222PubMedCrossRefGoogle Scholar
  115. Narula U, Tan CM, Lai CS (2017) Growth mechanism for low temperature PVD graphene synthesis on copper using amorphous carbon. Sci Rep-UK 7:44112CrossRefGoogle Scholar
  116. Nikalje AP (2015) Nanotechnology and its applications in medicine. Med Chem 5:185–189CrossRefGoogle Scholar
  117. Nowak M, Jurczyk M (2017) Nanotechnology for the storage of hydrogen. Nanotechnology for energy sustainability. Wiley, New YorkGoogle Scholar
  118. O’Donoghue M (1983) A guide to man-made gemstones. Van Nostrand Reinhold Company, New YorkGoogle Scholar
  119. Oldfield DT, Huynh CP, Hawkins SC, Partridge JG, McCulloch DG (2017) Synthesis of multi-layer graphene films on silica using physical vapour deposition. Carbon 123:683–687CrossRefGoogle Scholar
  120. Ouyang L, Guo L, Cai W, Ye J, Hu R, Liu J, Yang L, Zhu M (2014) Facile synthesis of Ge@FLG composites by plasma assisted ball milling for lithium ion battery anodes. J Mater Chem A 2:11280–11285CrossRefGoogle Scholar
  121. Öztürk A (2003) Comparison of fretting behavior of Mo2n and nanocomposite Mo-n-Cu coatings produced by magnetron sputtering technique, Master of Science thesis, Metallurgical and Materials Engineering. Istanbul Technical UniversityGoogle Scholar
  122. Pan D, Guo L, Zhang J, Xi C, Xue Q, Huang H, Li J, Zhang Z, Yu W, Chen Z, Li Z, Wu M (2012) Cutting sp 2 clusters in graphene sheets into colloidal graphene quantum dots with strong green fluorescence. J Mater Chem 22:3314–3318CrossRefGoogle Scholar
  123. Pan Z, Lerch SJL, Xu L, Li X, Chuang YJ, Howe JY, Mahurin SM, Dai S, Hildebrand M (2014) Electronically transparent graphene replicas of diatoms: a new technique for the investigation of frustule morphology. Sci Rep-UK 4:6117CrossRefGoogle Scholar
  124. Pandey RK, Prajapati VK (2018) Molecular and immunological toxic effects of nanoparticles. Int J Biol Macromol 107:1278–1293PubMedCrossRefGoogle Scholar
  125. Park Y, Yoo J, Lim B, Kwon W, Rhee SW (2016) Improving the functionality of carbon nanodots: doping and surface functionalization. J Mater Chem A 4:11582–11603CrossRefGoogle Scholar
  126. Peng H, Travas-Sejdic J (2009) Simple aqueous solution route to luminescent carbogenic dots from carbohydrates. Chem Mater 21:5563–5565CrossRefGoogle Scholar
  127. Peng J, Gao W, Gupta BK, Liu Z, Romero-Aburto R, Ge L, Song L, Alemany LB, Zhan X, Gao G, Vithayathil SA, Kaipparettu BA, Marti AA, Hayashi T, Zhu JJ, Ajayan PM (2012) Graphene quantum dots derived from carbon fibers. Nano Lett 12:844–849PubMedCrossRefGoogle Scholar
  128. Pittner S, Monticelli FC, Pfisterer A, Zissler A, Sänger AM, Stoiber W, Steinbacher P (2016) Postmortem degradation of skeletal muscle proteins: a novel approach to determine the time since death. Int J Legal Med 130:421–431PubMedCrossRefGoogle Scholar
  129. Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanoparticles 2014:963961(1-8). Scholar
  130. Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713CrossRefGoogle Scholar
  131. Prasad R, Pandey R, Barman I (2016a) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. Scholar
  132. Prasad V, Lukose S, Prasad L (2016b) Emerging forensic applications of nanotechnology. Int J Eng Allied Sci 2:1–8Google Scholar
  133. Prasad R, Bhattacharyya A, Nguyen QD (2017a) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. Scholar
  134. Prasad R, Pandey R, Varma A, Barman I (2017b) Polymer based nanoparticles for drug delivery systems and cancer therapeutics. In: Kharkwal H, Janaswamy S (eds) Natural polymers for drug delivery. CAB International, UK, pp 53–70Google Scholar
  135. Rajesh D, Neel PI, Pandurangan A, Mahendiran C (2018) Pd-NiO decorated multiwalled carbon nanotubes supported on reduced graphene oxide as an efficient electrocatalyst for ethanol oxidation in alkaline medium. Appl Surf Sci 442:787–796CrossRefGoogle Scholar
  136. Ramasamy V, Mohana V, Rajendran V (2018) Characterization of Ca doped CeO2 quantum dots and their applications in photocatalytic degradation. OpenNano 3:38–47CrossRefGoogle Scholar
  137. Rangel-Mendez JR, Matos J, Cházaro-Ruiz LF, González-Castillo AC, Barrios-Yáñez G (2018) Microwave-assisted synthesis of C-doped TiO2 and ZnO hybrid nanostructured materials as quantum-dots sensitized solar cells. Appl Surf Sci 434:744–755CrossRefGoogle Scholar
  138. Ray SC, Saha A, Jana NR, Sarkar R (2009) Fluorescent carbon nanoparticles: synthesis, characterization, and bioimaging application. J Phys Chem C 113:18546–18551CrossRefGoogle Scholar
  139. Redasani VK, Tamboli PS, Kalal D, Surana SJ (2016) Development and validation of spectroscopic methods for the estimation of mupirocin calcium in bulk and in ointment formulation. J Forensic Toxicol Pharmacol 4:2Google Scholar
  140. Reddy S, Xu X, He L, Ramakrishana S (2018) Allotropic carbon (graphene oxide and reduced graphene oxide) based biomaterials for neural regeneration. Curr Opin Biomed Eng 6:120–129CrossRefGoogle Scholar
  141. Regulacio MD, Han MY (2010) Composition-tunable alloyed semiconductor nanocrystals. Acc Chem Res 43:621–630PubMedCrossRefPubMedCentralGoogle Scholar
  142. Richards DA, Maruania A, Chudasama V (2017) Antibody fragments as nanoparticle targeting ligands: a step in the right direction. Chem Sci 8:63–77PubMedCrossRefGoogle Scholar
  143. Rifai A, Pirogova E, Fox K (2018) Diamond, carbon nanotubes and graphene for biomedical applications, Reference module in biomedical sciences. Elsevier, New YorkGoogle Scholar
  144. Romeika JM, Yan F (2013) Recent advances in forensic DNA analysis. J Forensic Res 12:001Google Scholar
  145. Roy P, Chen PC, Periasamy AP, Chen YN, Chang HT (2015) Photoluminescent carbon nanodots: synthesis, physicochemical properties and analytical applications. Mater Today 18:447–458CrossRefGoogle Scholar
  146. Sahu S, Behera B, Maiti TK, Mohapatra S (2012) Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents. Chem Commun 48:8835–8837CrossRefGoogle Scholar
  147. Sahub C, Tuntulani T, Nhujak T, Tomapatanaget B (2018) Effective biosensor based on graphene quantum dots via enzymatic reaction for directly photoluminescence detection of organophosphate pesticide. Sensors Actuator B-Chem 258:88–97CrossRefGoogle Scholar
  148. Salat M, Petkova P, Hoyo J, Perelshtein I, Gedanken A, Tzanov T (2018) Durable antimicrobial cotton textiles coated sonochemically with ZnO nanoparticles embedded in an in-situ enzymatically generated bioadhesive. Carbohydr Polym 189:198–203PubMedCrossRefPubMedCentralGoogle Scholar
  149. Sankar R, Rahman PKSM, Varunkumar K, Anusha C, Kalaiarasi A, Shivashangari KS, Ravikumar V (2017) Facile synthesis of Curcuma longa tuber powder engineered metal nanoparticles for bioimaging applications. J Mol Struct 1129:8–16CrossRefGoogle Scholar
  150. Satvekar RK, Tiwale BM, Pawar SH (2014) Emerging trends in medical diagnosis: a thrust on nanotechnology. Med Chem 4:407–416Google Scholar
  151. Schwenke AM, Hoeppener S, Schubert US (2015) Synthesis and modification of carbon nanomaterials utilizing microwave heating. Adv Mater 27:4113–4141PubMedCrossRefPubMedCentralGoogle Scholar
  152. Shan M, Jiang H, Guan Y, Sun D, Wang Y, Hua J, Wang J (2017) Enhanced hole injection in organic light-emitting diodes utilizing a copper iodide-doped hole injection layer. RSC Adv 7:13584–13589CrossRefGoogle Scholar
  153. Shang W, Zhang X, Zhang M, Fan Z, Sun Y, Han M, Fan L (2014) The uptake mechanism and biocompatibility of graphene quantum dots with human neural stem cells. Nanoscale 6:5799–5806PubMedCrossRefPubMedCentralGoogle Scholar
  154. Shen T, Wang Q, Guo Z, Kuang J, Cao W (2018) Hydrothermal synthesis of carbon quantum dots using different precursors and their combination with TiO2 for enhanced photocatalytic activity. Ceram Int 44:11828–11834CrossRefGoogle Scholar
  155. Shin DH, Seo SW, Kim JM, Lee HS, Choi S (2018) Graphene transparent conductive electrodes doped with graphene quantum dots-mixed silver nanowires for highly-flexible organic solar cells. J Alloys Compd 744:1–6CrossRefGoogle Scholar
  156. Shown I, Hsu HC, Chang YC, Lin CH, Roy PK, Ganguly A, Wang CH, Chang JK, Wu CI, Chen LC, Chen KH (2014) Highly efficient visible light photocatalytic reduction of CO2 to hydrocarbon fuels by Cu-nanoparticle decorated graphene oxide. Nano Lett 14:6097–6103PubMedCrossRefPubMedCentralGoogle Scholar
  157. Shyma MS, Ansar EB, Gayathri V, Varma HK, Mohanan PV (2015) Attenuation of cisplatin induced toxicity by melatonin, loaded on a dextran modified iron oxide nanoparticles: an in vitro study. J Forensic Toxicol Pharmacol 4:2Google Scholar
  158. Solomon AD, Hytinen ME, McClain AM, Miller MT, Cruz TD (2018) An optimized DNA analysis workflow for the sampling, extraction, and concentration of dna obtained from archived latent fingerprints. J Forensic Sci 63:47–57PubMedCrossRefPubMedCentralGoogle Scholar
  159. Song N, Gao X, Ma Z, Wang X, Wei Y, Gao C (2018) A review of graphene-based separation membrane: materials, characteristics, preparation and applications. Desalination 437:59–72CrossRefGoogle Scholar
  160. Sridhar V, Jeon JH, Oh IK (2010) Synthesis of graphene nano-sheets using eco-friendly chemicals and microwave radiation. Carbon 48:2953–2957CrossRefGoogle Scholar
  161. Strasser S, Zink A, Kada G, Hinterdorfer P, Peschel O, Heckl WM, Nerlich AG, Thalhammer S (2007) Age determination of blood spots in forensic medicine by force spectroscopy. Forensic Sci Int 170:8–14PubMedCrossRefPubMedCentralGoogle Scholar
  162. Sun H, Wu L, Wei W, Qu X (2013) Recent advances in graphene quantum dots for sensing. Mater Today 16:433–442CrossRefGoogle Scholar
  163. Surana K, Mehra RM, Bhattacharya B (2018) Quantum dot solar cells with size tuned CdSe QDs exhibiting 1.51V. Mater Today-Proc 5(3):9108–9113CrossRefGoogle Scholar
  164. Swamy VS, Prasad R (2012) Green synthesis of silver nanoparticles from the leaf extract of Santalum album and its antimicrobial activity. J Optoelectron Biomed Mater 4(3):53–59Google Scholar
  165. Tabaraki R, Sadeghinejad N (2018) Microwave assisted synthesis of doped carbon dots and their application as green and simple turn off-on fluorescent sensor for mercury (II) and iodide in environmental samples. Ecotox Environ Safe 153:101–106CrossRefGoogle Scholar
  166. Tang Q, Zhu W, He B, Yang P (2017) Rapid conversion from carbohydrates to large-scale carbon quantum dots for all-weather solar cells. ACS Nano 11:1540–1547PubMedCrossRefPubMedCentralGoogle Scholar
  167. Teymourinia H, Salavati-Niasari M, Amiri O, Farangi M (2018) Facile synthesis of graphene quantum dots from corn powder and their application as down conversion effect in quantum dot-dye-sensitized solar cell. J Mol Liq 251:267–272CrossRefGoogle Scholar
  168. Thambiraj S, Ravi Shankaran D (2016) Green synthesis of highly fluorescent carbon quantum dots from sugarcane bagasse pulp. Appl Surf Sci 390:435–443CrossRefGoogle Scholar
  169. Tian L, Ghosh D, Chen W, Pradhan S, Chang X, Chen S (2009) Nanosized carbon particles from natural gas soot. Chem Mater 21:2803–2809CrossRefGoogle Scholar
  170. Tian R, Zhong S, Wu J, Jiang W, Shen Y, Jiang W, Wang T (2016) Solvothermal method to prepare graphene quantum dots by hydrogen peroxide. Opt Mater 60:204–208CrossRefGoogle Scholar
  171. Toygun Ş, Köneçoğlu G, Kalpaklı Y (2013) General principles of sol-gel. J Eng Natur Sci 31:456–476Google Scholar
  172. Tu R, Liang Y, Zhang C, Li J, Zhang S, Yang M, Li Q, Goto T, Zhang L, Shi J, Li H, Ohmori H, Kosinova M, Basu B (2018) Fast synthesis of high-quality large-area graphene by laser CVD. Appl Surf Sci 445:204–210CrossRefGoogle Scholar
  173. Ürgen M (1997) Modern yüzey işlem teknolojileri ve Türkiye’deki gelişmeler. 9. Uluslararası Metalurji ve Malzeme Kongresi Bildiriler Kitabı 1: 333–348Google Scholar
  174. Vanessa H, Wenshuo W, Cornelia D, Simon W, Martin T, Wolfgang P (2018) Microwave-assisted one-step synthesis of white light-emitting carbon dot suspensions. Opt Mater 80:110–119CrossRefGoogle Scholar
  175. Voiry D, Yang J, Kupferberg J, Fullon R, Lee C, Jeong HY, Shin HS, Chhowalla M (2016) High-quality graphene via microwave reduction of solution-exfoliated graphene oxide. Science 353:1413–1416PubMedCrossRefPubMedCentralGoogle Scholar
  176. Wang J, Wang CF, Chen S (2012) Amphiphilic egg-derived carbon dots: rapid plasma fabrication, pyrolysis process, and multicolor printing patterns. Angew Chem Int Ed 51:9297–9301CrossRefGoogle Scholar
  177. Wang L, Cao L, Su G, Liu W, Xia C, Zhou H (2013) Preparation and characterization of water-soluble ZnSe:Cu/ZnS core/shell quantum dots. Appl Surf Sci 280:673–678CrossRefGoogle Scholar
  178. Wang Z, Zeng H, Sun L (2015) Graphene quantum dots: versatile photoluminescence for energy, biomedical, and environmental applications. J Mater Chem C 3:1157–1165CrossRefGoogle Scholar
  179. Wang K, Dong J, Sun L, Chen H, Wang Y, Wang C, Dong L (2016) Effects of elemental doping on the photoluminescence properties of graphene quantum dots. RSC Adv 6:91225–91232CrossRefGoogle Scholar
  180. Wang Q, Vasilescu A, Wang Q, Coffinier Y, Li M, Boukherroub R, Szunerits S (2017a) Electrophoretic approach for the simultaneous deposition and functionalization of reduced graphene oxide nanosheets with diazonium compounds: application for lysozyme sensing in serum. ACS Appl Mater Interfaces 9:12823–12831PubMedCrossRefPubMedCentralGoogle Scholar
  181. Wang Q, Zhang Y, Lin H, Zha S, Fang R, Wei X, Fan S, Wang Z (2017b) Estimation of the late postmortem interval using FTIR spectroscopy and chemometrics in human skeletal remains. Forensic Sci Int 281:113–120PubMedCrossRefPubMedCentralGoogle Scholar
  182. Wang C, Zhang Z, Chen B, Gu L, Li Y, Yu S (2018a) Design and evaluation of galactosylated chitosan/graphene oxide nanoparticles as a drug delivery system. J Colloid Interface Sci 516:332–341PubMedCrossRefPubMedCentralGoogle Scholar
  183. Wang Y, Barhoumi A, Tong R, Wang W, Ji T, Deng X, Li L, Lyon SA, Reznor G, Zurakowski D, Kohane DS (2018b) BaTiO3-core Au-shell nanoparticles for photothermal therapy and bimodal imaging. Acta Biomater 72:287–294PubMedCrossRefPubMedCentralGoogle Scholar
  184. Wei T, Fan Z, Luo G, Zheng C, Xie D (2009) A rapid and efficient method to prepare exfoliated graphite by microwave irradiation. Carbon 47:337–339CrossRefGoogle Scholar
  185. Wu Y, Hu Y, Cai J, Ma S, Wang X, Chen Y, Pan Y (2009) Time-dependent surface adhesive force and morphology of RBC measured by AFM. Micron 40:359–364PubMedCrossRefPubMedCentralGoogle Scholar
  186. Wu X, Tian F, Wang W, Chen J, Wu M, Zhao JX (2013) Fabrication of highly fluorescent graphene quantum dots using l-glutamic acid for in vitro/in vivo imaging and sensing. J Mater Chem C 1:4676–4684CrossRefGoogle Scholar
  187. Xie J, Huang K, Yu X, Yang Z, Xiao K, Qiang Y, Zhu X, Xu L, Wang P, Cui C (2017) Enhanced electronic properties of SnO2 via electron transfer from graphene quantum dots for efficient perovskite solar cells. ACS Nano 11:9176–9182PubMedCrossRefGoogle Scholar
  188. Xu Y, Wu M, Liu Y, Feng XZ, Yin XB, He XW, Zhang YK (2013) Nitrogen-doped carbon dots: a facile and general preparation method, photoluminescence investigation, and imaging applications. Chem-Eur J 19:2276–2283PubMedCrossRefPubMedCentralGoogle Scholar
  189. Xu Q, Kuang T, Liu Y, Cai L, Peng X, Sreeprasad TS, Zhao P, Yu Z, Li N (2016) Heteroatom-doped carbon dots: synthesis, characterization, properties, photoluminescence mechanism and biological applications. J Mater Chem B 4:7204–7219CrossRefGoogle Scholar
  190. Xu Z, Long Q, Deng Y, Liao L (2018) In situ synthesis and catalytic application of reduced graphene oxide supported cobalt nanowires. Appl Surf Sci 441:955–964CrossRefGoogle Scholar
  191. Yadav T, Yadav RM, Singh D (2012) Mechanical milling: a top down approach for the synthesis of nanomaterials and nanocomposites. Nanosci Nanotechnol 2:22–48CrossRefGoogle Scholar
  192. Yan L, Yue H, Yang Z, Gaoquan S, Lier D, Yanbing H, Liangti Q (2011) An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics. Adv Mater 23:776–780CrossRefGoogle Scholar
  193. Yang P, Zhao J, Zhang L, Li L, Zhu Z (2015) Intramolecular hydrogen bonds quench photoluminescence and enhance photocatalytic activity of carbon nanodots. Chem-Eur J 21:8561–8568PubMedCrossRefPubMedCentralGoogle Scholar
  194. Yang Y, Huang J, Zeng J, Xiong J, Zhao J (2017) Direct electrophoretic deposition of binder-free co3o4/graphene sandwich-like hybrid electrode as remarkable lithium ion battery anode. ACS Appl Mater Interfaces 9:32801–32811PubMedCrossRefPubMedCentralGoogle Scholar
  195. Yao Q, Lin L, Zhao T, Chen X (2015) Advances in preparation, physicochemical properties and applications of heteroatom-doped graphene quantum dots. Prog Chem 27:1523–1530Google Scholar
  196. Yao J, Li P, Li L, Yang M (2018) Biochemistry and biomedicine of quantum dots: from biodetection to bioimaging, drug discovery, diagnosis, and therapy. Acta Biomater 74:36–55PubMedCrossRefPubMedCentralGoogle Scholar
  197. Yazici MS, Azder MA, Salihoglu O (2018) CVD grown graphene as catalyst for acid electrolytes. Int J Hydrogen Energ 43:10710–10716CrossRefGoogle Scholar
  198. Yenice E (2015) Plazma destekli kimyasal buhar biriktirme yöntemi ile su itici nano kaplama sentezi ve karakterizasyonu. Selçuk Üniversitesi Fen Bilimleri EnstitüsüGoogle Scholar
  199. Yi M, Shen Z (2015) A review on mechanical exfoliation for the scalable production of graphene. J Mater Chem A 3:11700–11715CrossRefGoogle Scholar
  200. Yousef S, Mohamed A, Tatariants M (2018) Mass production of graphene nanosheets by multi-roll milling technique. Tribol Int 121:54–63CrossRefGoogle Scholar
  201. Yu D, Du K, Zhang J, Wang F, Chen L, Zhao M, Bian J, Feng Y, Jiao Y (2014) Composition-tunable nonlinear optical properties of ternary CdSexS1-x (x = 0-1) alloy quantum dots. New J Chem 38:5081–5086CrossRefGoogle Scholar
  202. Yuan F, Li S, Fan Z, Meng X, Fan L, Yang S (2016) Shining carbon dots: synthesis and biomedical and optoelectronic applications. Nano Today 11:565–586CrossRefGoogle Scholar
  203. Yung-fou C (2011) Forensic applications of nanotechnology. J Chin Chem Soc 58:828–835CrossRefGoogle Scholar
  204. Yusuf A, Garlisi C, Palmisano G (2018) Overview on microfluidic reactors in photocatalysis: applications of graphene derivatives. Catal Today 315:79–92CrossRefGoogle Scholar
  205. Zan M, Rao L, Huang H, Xie W, Zhu D, Li L, Qie X, Guo SS, Zhao XZ, Liu W, Dong WF (2018) A strong green fluorescent nanoprobe for highly sensitive and selective detection of nitrite ions based on phosphorus and nitrogen co-doped carbon quantum dots. Sensor Actuat B-Chem 262:555–561CrossRefGoogle Scholar
  206. Zeng Z, Yu D, He Z, Liu J, Xiao FX, Zhang Y, Wang R, Bhattacharyya D, Tan TTY (2016) Graphene oxide quantum dots covalently functionalized PVDF membrane with significantly-enhanced bactericidal and antibiofouling performances. Sci Rep 6:20142PubMedPubMedCentralCrossRefGoogle Scholar
  207. Zeng Z, Chen S, Tan TTY, Xiao FX (2018) Graphene quantum dots (GQDs) and its derivatives for multifarious photocatalysis and photoelectrocatalysis. Catal Today 315:171–183CrossRefGoogle Scholar
  208. Zhang C, Wei K, Zhang W, Bai Y, Sun Y, Gu J (2017a) Graphene oxide quantum dots incorporated into a thin film nanocomposite membrane with high flux and antifouling properties for low-pressure nanofiltration. ACS Appl Mater Interfaces 9:11082–11094PubMedCrossRefPubMedCentralGoogle Scholar
  209. Zhang HY, Wang Y, Xiao S, Wang H, Wang JH, Feng L (2017b) Rapid detection of Cr(VI) ions based on cobalt(II)-doped carbon dots. Biosens Bioelectron 87:46–52PubMedCrossRefPubMedCentralGoogle Scholar
  210. Zhang J, Yang S, Chen Z, Yan Y, Zhao J, Li J, Jiang Z (2018a) In situ synthesis of SiC-graphene core-shell nanoparticles using wet ball milling. Ceram Int 44:8283–8289CrossRefGoogle Scholar
  211. Zhang R, Wang Y, Jia M, Xu J, Pan E (2018b) One-pot hydrothermal synthesis of ZnS quantum dots/graphene hybrids as a dual anode for sodium ion and lithium ion batteries. Appl Surf Sci 437:375–383CrossRefGoogle Scholar
  212. Zhao HX, Liu LQ, Liu ZD, Wang Y, Zhao XJ, Huang CZ (2011) Highly selective detection of phosphate in very complicated matrixes with an off-on fluorescent probe of europium-adjusted carbon dots. Chem Commun 47:2604–2606CrossRefGoogle Scholar
  213. Zhong X, Feng Y, Knoll W, Han M (2003) Alloyed ZnxCd1-xS nanocrystals with highly narrow luminescence spectral width. J Am Chem Soc 125:13559–13563PubMedCrossRefGoogle Scholar
  214. Zhong J, Zhao H, Zhang C, Ma X, Pei L, Liang X, Xiang W (2014) Sol–gel synthesis and optical properties of CuGaS2 quantum dots embedded in sodium borosilicate glass. J Alloys Compd 610:392–398CrossRefGoogle Scholar
  215. Zhong L, Liu H, Samal M, Yun K (2018) Synthesis of ZnO nanoparticles-decorated spindle-shaped graphene oxide for application in synergistic antibacterial activity. Journal Photoch Photobio B 183:293–301CrossRefGoogle Scholar
  216. Zhou Y, Quan G, Wu Q, Zhang X, Niu B, Wu B, Huang Y, Pan X, Wu C (2018) Mesoporous silica nanoparticles for drug and gene delivery. Acta Pharm Sin B 8:165–177PubMedPubMedCentralCrossRefGoogle Scholar
  217. Zhu SJ, Zhang JH, Qiao CY, Tang SJ, Li YF, Yuan WJ, Li B, Tian L, Liu F, Hu R, Gao HN, Wei HT, Zhang H, Sun HC, Yang B (2011) Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chem Commun 47:6858–6860CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ezgi Emul
    • 1
  • Mehmet Dogan Asik
    • 2
  • Ramazan Akcan
    • 3
  • Kazim Kose
    • 4
  • Lokman Uzun
    • 5
  • Semran Saglam
    • 6
  • Feza Korkusuz
    • 3
  • Necdet Saglam
    • 1
    Email author
  1. 1.Nanotechnology and Nanomedicine DivisionHacettepe UniversityAnkaraTurkey
  2. 2.Ankara Yıldırım Beyazıt University, School of MedicineAnkaraTurkey
  3. 3.School of MedicineHacettepe UniversityAnkaraTurkey
  4. 4.Alaca Avni Celik Vocational School, Food Processing DepartmentHitit UniversityÇorumTurkey
  5. 5.Department of Chemistry, Biochemistry DivisionHacettepe UniversityAnkaraTurkey
  6. 6.Department of PhysicsGazi UniversityAnkaraTurkey

Personalised recommendations