Skip to main content

Pumpkin (Cucurbita pepo L.) Seed Oil

  • Chapter
  • First Online:
Fruit Oils: Chemistry and Functionality

Abstract

This chapter summarizes the main knowledge of pumpkin seed oil (PSO) such as cultivation conditions, production technology, physicochemical properties, quality control parameters and effects on health. PSO is obtained from pumpkins belong to the Cucurbitaceae family, cultivated in mild and subtropical regions and widely known as palatable and tasty food. It has been produced in Slovenia, Austria, and Hungary and used as cooking oil in many parts in Africa and the Middle East. The oil content is around 50% and it can be obtained from pumpkin seeds with or without husks using solvent extraction, supercritical CO2 or cold pressed methods. PSO has the dark greenish color as well as very typical strong nutty and roasty flavor. It is a rich natural source of phytosterols, proteins, polyunsaturated fatty acids (PUFA), antioxidant vitamins, carotenoids and tocopherols and various elements and recommended to be in the human diet for health. PSO is highly unsaturated oil containing predominantly oleic and linoleic fatty acids and this feature makes PSO well suited for improving the food nutritive value. PSO also provides many benefits to health such as prevention of the growth and reduction of the size of prostate, mitigation of hypercholesterolemia and arthritis, retardation of the progression of hypertension, alleviation of diabetes by promoting hypoglycemic activity, and lowering levels of various cancer species. These properties are attributed to effective macro- and micro-constituents in the oil. All these features make the PSO a highly nutritious food and a useful source for application in therapeutics and novel foods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DAGs:

Diacylglycerols

FFAs:

Free fatty acids

MAAEE:

Microwave-assisted aqueous enzymatic extraction

NL:

Neutral lipids

PC:

Phosphatidylcholine

PE:

Phosphatidylethanolamine

PI:

Phosphatidylinositol

PL:

Phospholipid

PL:

Polar lipids

PSC:

Pumpkin seed cake

PSO:

Pumpkin seed oil

SFE-CO2:

Supercritical carbon dioxide fluid extraction

TAGs:

Triacylglycerols

References

  • Abdel-Rahman, M. K. (2006). Effect of pumpkin seed (Cucurbita pepo L.) diets on benign prostatic hyperplasia (BPH): Chemical and morphometric evaluation in rats. World Journal of Chemistry, 1(1), 33–40.

    Google Scholar 

  • Achilonu, M., Nwafor, I., Umesiobi, D., & Sedibe, M. (2018). Biochemical proximates of pumpkin (Cucurbitaceae spp.) and their beneficial effects on the general well-being of poultry species. Journal of Animal Physiology and Animal Nutrition, 102(1), 5–16.

    Article  CAS  PubMed  Google Scholar 

  • Achu, M., Fokou, E., Tchiégang, C., Fotso, M., & Tchouanguep, M. (2006). Chemical characteristics and fatty acid composition of Cucurbitaceae oils from Cameroon. 13th World Congress of Food Science & Technology, 2006, 26–26.

    Google Scholar 

  • Adeel, A., Sohail, A., & Masud, T. (2014). Characterization and antibacterial study of pumpkin seed oil (Cucurbita pepo). Life Sciences Leaflets, 49, 53–64.

    Google Scholar 

  • Al-Khalifa, A. (1996). Physicochemical characteristics, fatty acid composition, and lipoxygenase activity of crude pumpkin and melon seed oils. Journal of Agricultural and Food Chemistry, 44(4), 964–966.

    Article  CAS  Google Scholar 

  • Applequist, W. L., Avula, B., Schaneberg, B. T., Wang, Y.-H., & Khan, I. A. (2006). Comparative fatty acid content of seeds of four Cucurbita species grown in a common (shared) garden. Journal of Food Composition and Analysis, 19(6–7), 606–611.

    Article  CAS  Google Scholar 

  • Azevedo-Meleiro, C. H., & Rodriguez-Amaya, D. B. (2007). Qualitative and quantitative differences in carotenoid composition among Cucurbita moschata, Cucurbita maxima, and Cucurbita pepo. Journal of Agricultural and Food Chemistry, 55(10), 4027–4033.

    Article  CAS  PubMed  Google Scholar 

  • Bastić, M., Bastić, L., Jovanović, J., & Spiteller, G. (1977). Sterols in pumpkin seed oil. Journal of the American Oil Chemists’ Society, 54(11), 525–527.

    Article  Google Scholar 

  • Bavec, F., Grobelnik Mlakar, S., Rozman, Č., & Bavec, M. (2007). Oil pumpkins: Niche for organic producers. Alexandria: ASHS Press.

    Google Scholar 

  • Bernardo-Gil, M. G., & Lopes, L. M. C. (2004). Supercritical fluid extraction of Cucurbita ficifolia seed oil. European Food Research and Technology, 219(6), 593–597.

    Article  CAS  Google Scholar 

  • Bhattacharjee, P., Singhal, R. S., & Tiwari, S. R. (2007). Supercritical carbon dioxide extraction of cottonseed oil. Journal of Food Engineering, 79(3), 892–898.

    Article  CAS  Google Scholar 

  • Bombardelli, E., & Morazzoni, P. (1997). Cucurbita pepo L. Fitoterapia, 68, 291–302.

    CAS  Google Scholar 

  • Caili, F., Huan, S., & Quanhong, L. (2006). A review on pharmacological activities and utilization technologies of pumpkin. Plant Foods for Human Nutrition, 61(2), 70–77.

    Article  CAS  Google Scholar 

  • Davies, A. N., McIntyre, P., & Morgan, E. (2000). Study of the use of molecular spectroscopy for the authentication of extra virgin olive oils. Part I: Fourier transform Raman spectroscopy. Applied Spectroscopy, 54(12), 1864–1867.

    Article  CAS  Google Scholar 

  • Devlin, T. M. (2006). Textbook of biochemistry: With clinical correlations. Wiley-liss, Hoboken NJ.

    Google Scholar 

  • Dhiman, A. K., Sharma, K., & Attri, S. (2009). Functional constitutents and processing of pumpkin: A review. Journal of Food Science and Technology, 46(5), 411.

    CAS  Google Scholar 

  • Dimic, E. (2005). Cold-pressed oils. Novi Sad: The University of Novi Sad, Faculty of Technology.

    Google Scholar 

  • Dimic, E., Dimic, V., & Romanic, R. (2003). Process and quality of expeller oil obtained from pumpkin seed. Hungary: Olaj, szappan, kozmetika.

    Google Scholar 

  • Dulf, F. V., Bele, C., Unguresan, M., Parlog, R., & Socaciu, C. (2009). Phytosterols as markers in identification of the adulterated pumpkin seed oil with sunflower oil. Bulletin UASVM Agriculture, 66(2), 301–306.

    CAS  Google Scholar 

  • El-Adawy, T. A., & Taha, K. M. (2001). Characteristics and composition of watermelon, pumpkin, and paprika seed oils and flours. Journal of Agricultural and Food Chemistry, 49(3), 1253–1259.

    Article  CAS  PubMed  Google Scholar 

  • El-Hamdy, A. H., & El-Fizga, N. K. (1995). Detection of olive oil adulteration by measuring its authenticity factor using reversed-phase high-performance liquid chromatography. Journal of Chromatography A, 708(2), 351–355.

    Article  CAS  Google Scholar 

  • Evans, H. M., & Bishop, K. S. (1922). On the existence of a hitherto unrecognized dietary factor essential for reproduction. Science, 56(1458), 650–651.

    Article  CAS  PubMed  Google Scholar 

  • Eynard, B., & Zinn-Justin, J. (1992). The O (n) model on a random surface: Critical points and large-order behaviour. Nuclear Physics B, 386(3), 558–591.

    Article  Google Scholar 

  • Faostat, F. (2016). FAOSTAT statistical database. Publisher: FAO (Food and Agriculture Organization of the United Nations), Rome, Italy.

    Google Scholar 

  • Filbrandt Katelyn, R. (2012). Effect of pumpkin seed oil cake on the textural and sensory properties of white wheat. Menomonie: University of Wisconsin-Stout.

    Google Scholar 

  • Fokou, E., Achu, M., Kansci, G., Ponka, R., Fotso, M., Tchiegang, C., & Tchouanguep, F. (2009). Chemical properties of some Cucurbitaceae oils from Cameroon. Pakistan Journal of Nutrition, 8(9), 1325–1334.

    Google Scholar 

  • Fruhwirth, G. O., & Hermetter, A. (2007). Seeds and oil of the Styrian oil pumpkin: Components and biological activities. European Journal of Lipid Science and Technology, 109(11), 1128–1140.

    Article  CAS  Google Scholar 

  • Fruhwirth, G. O., & Hermetter, A. (2008). Production technology and characteristics of Styrian pumpkin seed oil. European Journal of Lipid Science and Technology, 110(7), 637–644.

    Article  CAS  Google Scholar 

  • Gang, D. R. (2010). The biological activity of phytochemicals. Publisher: Springer, Dordrecht Heidelberg London New York, Library of Congress Control Number: 2010937099.

    Google Scholar 

  • Garg, V. K., & Nes, W. R. (1986). Occurrence of Δ5-sterols in plants producing predominantly Δ7-sterols: Studies on the sterol compositions of six Cucurbitaceae seeds. Phytochemistry, 25(11), 2591–2597.

    Article  CAS  Google Scholar 

  • Glew, R., Glew, R., Chuang, L.-T., Huang, Y.-S., Millson, M., Constans, D., et al. (2006). Amino acid, mineral and fatty acid content of pumpkin seeds (Cucurbita spp) and Cyperus esculentus nuts in the Republic of Niger. Plant Foods for Human Nutrition, 61(2), 49–54.

    Article  CAS  Google Scholar 

  • Gohari Ardabili, A., Farhoosh, R., & Haddad Khodaparast, M. H. (2011). Chemical composition and physicochemical properties of pumpkin seeds (Cucurbita pepo Subsp. pepo Var. Styriaka) grown in Iran. Journal of Agricultural Science and Technology, 13, 1053–1063.

    Google Scholar 

  • Gorjanović, S. Ž., Rabrenović, B. B., Novaković, M. M., Dimić, E. B., Basić, Z. N., & Sužnjević, D. Ž. (2011). Cold-pressed pumpkin seed oil antioxidant activity as determined by a DC polarographic assay based on hydrogen peroxide scavenge. Journal of the American Oil Chemists’ Society, 88(12), 1875–1882.

    Article  CAS  Google Scholar 

  • Gunstone, F. D. (1967). In F. D. Gunstone (Ed.), An introduction to the chemistry and biochemistry of fatty acids and their glycerides (2nd ed.). London: Chapman and Hall Ltd.

    Google Scholar 

  • Haiyan, Z., Bedgood, D. R., Jr., Bishop, A. G., Prenzler, P. D., & Robards, K. (2007). Endogenous biophenol, fatty acid and volatile profiles of selected oils. Food Chemistry, 100(4), 1544–1551.

    Article  CAS  Google Scholar 

  • Hierro, M., & Santa-Maria, G. (1992). Supercritical fluid extraction of vegetable and animal fats with CO2-a mini review. Food Chemistry, 45, 189–192.

    Article  CAS  Google Scholar 

  • Ingram, D., Sanders, K., Kolybaba, M., & Lopez, D. (1997). Case-control study of phyto-oestrogens and breast cancer. The Lancet, 350(9083), 990–994.

    Article  CAS  Google Scholar 

  • Inocent, G., Ejoh, R. A., Issa, T. S., Schweigert, F. J., & Tchouanguep, M. (2007). Carotenoids content of some locally consumed fruits and yams in Cameroon. Pakistan Journal of Nutrition, 6(5), 497–501.

    Article  Google Scholar 

  • Jacks, T., Hensarling, T., & Yatsu, L. (1972). Cucurbit seeds: I. Characterizations and uses of oils and proteins. A review. Economic Botany, 26(2), 135–141.

    Article  CAS  Google Scholar 

  • Jakab, A., Jablonkai, I., & Forgács, E. (2003). Quantification of the ratio of positional isomer dilinoleoyl-oleoyl glycerols in vegetable oils. Rapid Communications in Mass Spectrometry, 17(20), 2295–2302.

    Article  CAS  PubMed  Google Scholar 

  • Ji, P., Zhou, J., & Liu, X. (2010). Microwave-assisted aqueous extraction of camellia oil. Modern Food Science and Technology, 26(5), 486–489.

    CAS  Google Scholar 

  • Jiao, J., Fu, Y.-J., Zu, Y.-G., Luo, M., Wang, W., Zhang, L., et al. (2012). Enzyme-assisted microwave hydro-distillation essential oil from Fructus forsythia, chemical constituents, and its antimicrobial and antioxidant activities. Food Chemistry, 134(1), 235–243.

    Article  CAS  Google Scholar 

  • Jiao, J., Li, Z.-G., Gai, Q.-Y., Li, X.-J., Wei, F.-Y., Fu, Y.-J., et al. (2014). Microwave-assisted aqueous enzymatic extraction of oil from pumpkin seeds and evaluation of its physicochemical properties, fatty acid compositions and antioxidant activities. Food Chemistry, 147, 17–24.

    Article  CAS  PubMed  Google Scholar 

  • Kalogeropoulos, N., Chiou, A., Ioannou, M. S., & Karathanos, V. T. (2013). Nutritional evaluation and health-promoting activities of nuts and seeds cultivated in Greece. International Journal of Food Sciences and Nutrition, 64(6), 757–767.

    Article  CAS  PubMed  Google Scholar 

  • Kamm, W., Dionisi, F., Hischenhuber, C., & Engel, K.-H. (2001). Authenticity assessment of fats and oils. Food Reviews International, 17(3), 249–290.

    Article  CAS  Google Scholar 

  • Kanoh, S., Maeyama, K., Tanaka, R., Takahashi, T., Aoyama, M., Watanabe, M., et al. (2004). M. Sakaguchi (Ed), Possible utilization of the pearl oyster phospholipid and glycogen as a cosmetic material. In Developments in food science (pp. 179–190). Elsevier, Amsterdam, Netherlands.

    Google Scholar 

  • Karanja, J., Mugendi, B., Khamis, F., & Muchugi, A. (2013). Nutritional composition of the pumpkin (Cucurbita spp.) seed cultivated from selected regions in Kenya. Journal of Horticulture Letters, 3(1), 17.

    Google Scholar 

  • Kim, M. Y., Kim, E. J., Kim, Y.-N., Choi, C., & Lee, B.-H. (2012). Comparison of the chemical compositions and nutritive values of various pumpkin (Cucurbitaceae) species and parts. Nutrition Research and Practice, 6(1), 21–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koike, K., Li, W., Liu, L., Hata, E., & Nikaido, T. (2005). New phenolic glycosides from the seeds of Cucurbita moschata. Chemical and Pharmaceutical Bulletin, 53(2), 225–228.

    Article  CAS  PubMed  Google Scholar 

  • Konings, E. J., & Roomans, H. H. (1997). Evaluation and validation of an LC method for the analysis of carotenoids in vegetables and fruit. Food Chemistry, 59(4), 599–603.

    Article  CAS  Google Scholar 

  • Kreft, S., & Kreft, M. (2007). Physicochemical and physiological basis of dichromatic colour. Naturwissenschaften, 94(11), 935–939.

    Article  CAS  PubMed  Google Scholar 

  • Kurz, C., Carle, R., & Schieber, A. (2008). HPLC-DAD-MSn characterisation of carotenoids from apricots and pumpkins for the evaluation of fruit product authenticity. Food Chemistry, 110(2), 522–530.

    Article  CAS  PubMed  Google Scholar 

  • Lai, Y., Kemsley, E., & Wilson, R. (1995). Quantitative analysis of potential adulterants of extra virgin olive oil using infrared spectroscopy. Food Chemistry, 53(1), 95–98.

    Article  CAS  Google Scholar 

  • Lampi, A. (2011). Analysis of tocopherols and tocotrienols by HPLC. The AOCS lipid library. URL: http://lipidlibrary.aocs.org/topics/tocopherols/index.htm. Updated August 3, 2011.

  • Lang, Q., & Wai, C. M. (2001). Supercritical fluid extraction in herbal and natural product studies-a practical review. Talanta, 53(4), 771–782.

    Article  CAS  PubMed  Google Scholar 

  • Latif, S., & Anwar, F. (2009). Effect of aqueous enzymatic processes on sunflower oil quality. Journal of the American Oil Chemists’ Society, 86(4), 393–400.

    Article  CAS  Google Scholar 

  • Latif, S., Diosady, L. L., & Anwar, F. (2008). Enzyme-assisted aqueous extraction of oil and protein from canola (Brassica napus L.) seeds. European Journal of Lipid Science and Technology, 110(10), 887–892.

    Article  CAS  Google Scholar 

  • Lazos, E. S. (1986). Nutritional, fatty acid, and oil characteristics of pumpkin and melon seeds. Journal of Food Science, 51(5), 1382–1383.

    Article  CAS  Google Scholar 

  • Lee, D.-S., Lee, E.-S., Kim, H.-J., Kim, S.-O., & Kim, K. (2001). Reversed-phase liquid chromatographic determination of triacylglycerol composition in sesame oils and the chemometric detection of adulteration. Analytica Chimica Acta, 429(2), 321–330.

    Article  CAS  Google Scholar 

  • Lelley, T., Loy, B., & Murkovic, M. (2009). Hull-less oil seed pumpkin. In Oil crops (pp. 469–492). New York: Springer.

    Chapter  Google Scholar 

  • Lerma-García, M. J., Saucedo-Hernández, Y., Herrero-Martínez, J. M., Ramis-Ramos, G., Jorge-Rodríguez, E., & Simó-Alfonso, E. F. (2015). Statistical classification of pumpkin seed oils by direct infusion mass spectrometry: Correlation with GC-FID profiles. European Journal of Lipid Science and Technology, 117(3), 331–337.

    Article  CAS  Google Scholar 

  • Libo, W., Yaqin, X., Yu, Y., & Xin, S. (2011). Aqueous enzymatic extraction of pumpkin seed oil and its physical-chemical properties [J]. Transactions of the Chinese Society of Agricultural Engineering, 10, 068.

    Google Scholar 

  • Lipkie, T. E., Morrow, A. L., Jouni, Z. E., McMahon, R. J., & Ferruzzi, M. G. (2015). Longitudinal survey of carotenoids in human milk from urban cohorts in China, Mexico, and the USA. PLoS One, 10(6), e0127729.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Long, J.-J., Fu, Y.-J., Zu, Y.-G., Li, J., Wang, W., Gu, C.-B., et al. (2011). Ultrasound-assisted extraction of flaxseed oil using immobilized enzymes. Bioresource Technology, 102(21), 9991–9996.

    Article  CAS  PubMed  Google Scholar 

  • Lovejoy, J. C. (2002). The influence of dietary fat on insulin resistance. Current Diabetes Reports, 2(5), 435–440.

    Article  PubMed  Google Scholar 

  • Mandl, A., Reich, G., & Lindner, W. (1999). Detection of adulteration of pumpkin seed oil by analysis of content and composition of specific Δ7-phytosterols. European Food Research and Technology, 209(6), 400–406.

    Article  CAS  Google Scholar 

  • Markovic, V., & Bastic, L. (1976). Characteristics of pumpkin seed oil. Journal of the American Oil Chemists’ Society, 53(1), 42–44.

    Article  CAS  Google Scholar 

  • Matus, Z., Molnár, P., & Szabó, L. G. (1993). Main carotenoids in pressed seeds (Cucurbitae semen) of oil pumpkin (Cucurbita pepo convar. pepo var. styriaca). Acta Pharmaceutica Hungarica, 63(5), 247–256.

    CAS  PubMed  Google Scholar 

  • Mazur, W. (1998). Phytoestrogen content in foods. Bailliere’s Clinical Endocrinology and Metabolism, 12(4), 729–742.

    Article  CAS  PubMed  Google Scholar 

  • Mazur, W., Wähälä, K., Rasku, S., Salakka, A., Hase, T., & Adlercreutz, H. (1998). Lignan and isoflavonoid concentrations in tea and coffee. British Journal of Nutrition, 79(1), 37–45.

    Article  CAS  PubMed  Google Scholar 

  • Mbondo, J. K. (2013). Formulation and evaluation of pumpkin seed (Cucurbita pepo) tablets. Nairobi: University of Nairobi.

    Google Scholar 

  • Medzhitov, R. (2008). Origin and physiological roles of inflammation. Nature, 454(7203), 428.

    Article  CAS  PubMed  Google Scholar 

  • Mitra, P., Ramaswamy, H. S., & Chang, K. S. (2009). Pumpkin (Cucurbita maxima) seed oil extraction using supercritical carbon dioxide and physicochemical properties of the oil. Journal of Food Engineering, 95(1), 208–213.

    Article  CAS  Google Scholar 

  • Morris, M. C., Evans, D. A., Bienias, J. L., Tangney, C. C., Bennett, D. A., Aggarwal, N., et al. (2002). Dietary intake of antioxidant nutrients and the risk of incident Alzheimer disease in a biracial community study. JAMA, 287(24), 3230–3237.

    Article  CAS  PubMed  Google Scholar 

  • Murkovic, M., & Pfannhauser, W. (2000). Stability of pumpkin seed oil. European Journal of Lipid Science and Technology, 102(10), 607–611.

    Article  CAS  Google Scholar 

  • Murkovic, M., Piironen, V., Lampi, A. M., Kraushofer, T., & Sontag, G. (2004). Changes in chemical composition of pumpkin seeds during the roasting process for production of pumpkin seed oil (part 1: Non-volatile compounds). Food Chemistry, 84(3), 359–365.

    Article  CAS  Google Scholar 

  • Nakić, S. N., Rade, D., Škevin, D., Štrucelj, D., Mokrovčak, Ž., & Bartolić, M. (2006). Chemical characteristics of oils from naked and husk seeds of Cucurbita pepo L. European Journal of Lipid Science and Technology, 108(11), 936–943.

    Article  CAS  Google Scholar 

  • Nawirska-Olszańska, A., Biesiada, A., Sokół-Łętowska, A., & Kucharska, A. Z. (2014). Characteristics of organic acids in the fruit of different pumpkin species. Food Chemistry, 148, 415–419.

    Article  PubMed  CAS  Google Scholar 

  • Neđeral, S., Petrović, M., Vincek, D., Pukec, D., Škevin, D., Kraljić, K., et al. (2014). Variance of quality parameters and fatty acid composition in pumpkin seed oil during three crop seasons. Industrial Crops and Products, 60, 15–21.

    Article  CAS  Google Scholar 

  • Nishimura, M., Ohkawara, T., Sato, H., Takeda, H., & Nishihira, J. (2014). Pumpkin seed oil extracted from Cucurbita maxima improves urinary disorder in human overactive bladder. Journal of Traditional and Complementary Medicine, 4(1), 72–74.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nordbäck, J., Lundberg, E., & Christie, W. W. (1998). Separation of lipid classes from marine particulate material by HPLC on a polyvinyl alcohol-bonded stationary phase using dual-channel evaporative light-scattering detection. Marine Chemistry, 60(3–4), 165–175.

    Article  Google Scholar 

  • Nwokolo, E., & Sim, J. S. (1987). Nutritional assessment of defatted oil meals of melon (Colocynthis citrullus L.) and fluted pumpkin (Telfaria occidentalis Hook) by chick assay. Journal of the Science of Food and Agriculture, 38(3), 237–246.

    Article  CAS  Google Scholar 

  • Nyam, K. L., Tan, C. P., Lai, O. M., Long, K., & Man, Y. B. C. (2009). Enzyme-assisted aqueous extraction of Kalahari melon seed oil: Optimization using response surface methodology. Journal of the American Oil Chemists’ Society, 86(12), 1235–1240.

    Article  CAS  Google Scholar 

  • Ozuna, C., & León-Galván, M. (2017). Cucurbitaceae seed protein hydrolysates as a potential source of bioactive peptides with functional properties. BioMed Research International, 2017(2), 1–16.

    Google Scholar 

  • Parry, J., Hao, Z., Luther, M., Su, L., Zhou, K., & Yu, L. (2006). Characterization of cold-pressed onion, parsley, cardamom, mullein, roasted pumpkin, and milk thistle seed oils. Journal of the American Oil Chemists’ Society, 83(10), 847–854.

    Article  CAS  Google Scholar 

  • Passos, C. P., Yilmaz, S., Silva, C. M., & Coimbra, M. A. (2009). Enhancement of grape seed oil extraction using a cell wall degrading enzyme cocktail. Food Chemistry, 115(1), 48–53.

    Article  CAS  Google Scholar 

  • Patel, S. (2013). Pumpkin (Cucurbita sp.) seeds as nutraceutic: A review on status quo and scopes. Mediterranean Journal of Nutrition and Metabolism, 6(3), 183–189.

    Article  Google Scholar 

  • Peričin, D., Radulović, L., Trivić, S., & Dimić, E. (2008). Evaluation of solubility of pumpkin seed globulins by response surface method. Journal of Food Engineering, 84(4), 591–594.

    Article  CAS  Google Scholar 

  • Petkova, Z. Y., & Antova, G. (2015). Changes in the composition of pumpkin seeds (Cucurbita moschata) during development and maturation. Grasas y Aceites, 66(1), 058.

    Article  CAS  Google Scholar 

  • Phillips, K. M., Ruggio, D. M., & Ashraf-Khorassani, M. (2005). Phytosterol composition of nuts and seeds commonly consumed in the United States. Journal of Agricultural and Food Chemistry, 53(24), 9436–9445.

    Article  CAS  PubMed  Google Scholar 

  • Popović, L., Peričin, D., Vaštag, Ž., Popović, S., Krimer, V., & Torbica, A. (2013). Antioxidative and functional properties of pumpkin oil cake globulin hydrolysates. Journal of the American Oil Chemists’ Society, 90(8), 1157–1165.

    Article  CAS  Google Scholar 

  • Procida, G., Stancher, B., Cateni, F., & Zacchigna, M. (2013). Chemical composition and functional characterisation of commercial pumpkin seed oil. Journal of the Science of Food and Agriculture, 93(5), 1035–1041.

    Article  CAS  PubMed  Google Scholar 

  • Quan, Q. (2012). Study on extraction of pumpkin seed oil by aqueous enzymatic method. Journal of Anhui Agricultural Sciences, 12, 157.

    Google Scholar 

  • Rabrenović, B. B., Dimić, E. B., Novaković, M. M., Tešević, V. V., & Basić, Z. N. (2014). The most important bioactive components of cold pressed oil from different pumpkin (Cucurbita pepo L.) seeds. LWT-Food Science and Technology, 55(2), 521–527.

    Article  CAS  Google Scholar 

  • Reverchon, E. (1997). Supercritical fluid extraction and fractionation of essential oils and related products. The Journal of Supercritical Fluids, 10(1), 1–37.

    Article  CAS  Google Scholar 

  • Rezig, L., Chouaibi, M., Ojeda-Amador, R. M., Gomez-Alonso, S., Salvador, M. D., Fregapane, G., et al. (2018). Cucurbita maxima pumpkin seed oil: From the chemical properties to the different extracting techniques. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 46(2), 663–669.

    Article  CAS  Google Scholar 

  • Schneider, M. (2001). Phospholipids for functional food. European Journal of Lipid Science and Technology, 103(2), 98–101.

    Article  CAS  Google Scholar 

  • Schuster, W., Zipse, W., & Marquard, R. (1983). The influence of genotype and growing location on several substances of seeds of the pumpkin (Cucurbita pepo L.). European Journal of Lipid Science and Technology, 85, 56–64.

    CAS  Google Scholar 

  • Schwartzberg, H. G. (1987). Leaching––organic materials. In R. W. Rousseau (Ed.), Handbook of separation process technology (pp. 540–577). New York: Wiley

    Google Scholar 

  • Sener, B., Orhan, I., Ozcelik, B., Kartal, M., Aslan, S., & Ozbilen, G. (2007). Antimicrobial and antiviral activities of two seed oil samples of Cucurbita pepo L. and their fatty acid analysis. Natural Product Communications, 2(4), 395–398.

    Google Scholar 

  • Shahidi, F. (2000). Antioxidants in food and food antioxidants. Food/Nahrung, 44(3), 158–163.

    Article  CAS  PubMed  Google Scholar 

  • Sicilia, T., Niemeyer, H. B., Honig, D. M., & Metzler, M. (2003). Identification and stereochemical characterization of lignans in flaxseed and pumpkin seeds. Journal of Agricultural and Food Chemistry, 51(5), 1181–1188.

    Article  CAS  PubMed  Google Scholar 

  • Siegmund, B., & Murkovic, M. (2004). Changes in chemical composition of pumpkin seeds during the roasting process for production of pumpkin seed oil (part 2: Volatile compounds). Food Chemistry, 84(3), 367–374.

    Article  CAS  Google Scholar 

  • Socaciu, C., Ranga, F., Fetea, F., Leopold, L., Dulf, F., & Parlog, R. (2009). Complementary advanced techniques applied for plant and food authentication. Czech Journal of Food Sciences, 27, S70–S75.

    Article  CAS  Google Scholar 

  • Sovilj, M. N. (2010). Critical review of supercritical carbon dioxide extraction of selected oil seeds. Acta Periodica Technologica, 41, 105–120.

    Article  CAS  Google Scholar 

  • Spanova, M., & Daum, G. (2011). Squalene-biochemistry, molecular biology, process biotechnology, and applications. European Journal of Lipid Science and Technology, 113(11), 1299–1320.

    Article  CAS  Google Scholar 

  • Srbinoska, M., Hrabovski, N., Rafajlovska, V., & Sinadinović-Fišer, S. (2012). Characterization of the seed and seed extracts of the pumpkins Cucurbita maxima D. and Cucurbita pepo L. from Macedonia. Macedonian Journal of Chemistry and Chemical Engineering, 31(1), 65–78.

    Article  CAS  Google Scholar 

  • Stevenson, D. G., Eller, F. J., Wang, L., Jane, J.-L., Wang, T., & Inglett, G. E. (2007). Oil and tocopherol content and composition of pumpkin seed oil in 12 cultivars. Journal of Agricultural and Food Chemistry, 55(10), 4005–4013.

    Article  CAS  PubMed  Google Scholar 

  • Strandberg, T., Tilvis, R., & Miettinen, T. (1990). Metabolic variables of cholesterol during squalene feeding in humans: Comparison with cholestyramine treatment. Journal of Lipid Research, 31(9), 1637–1643.

    CAS  PubMed  Google Scholar 

  • Sung, M., Lautens, M., & Thompson, L. (1998). Mammalian lignans inhibit the growth of estrogen-independent human colon tumor cells. Anticancer Research, 18(3A), 1405–1408.

    CAS  PubMed  Google Scholar 

  • Towa, L. T., Kapchie, V. N., Hauck, C., & Murphy, P. A. (2010). Enzyme-assisted aqueous extraction of oil from isolated oleosomes of soybean flour. Journal of the American Oil Chemists’ Society, 87(3), 347–354.

    Article  CAS  Google Scholar 

  • Tsaknis, J., Lalas, S., & Lazos, E. S. (1997). Characterization of crude and purified pumpkin seed oil. Grasas y Aceites, 48(5), 267–272.

    Article  CAS  Google Scholar 

  • Tuberoso, C. I., Kowalczyk, A., Sarritzu, E., & Cabras, P. (2007). Determination of antioxidant compounds and antioxidant activity in commercial oilseeds for food use. Food Chemistry, 103(4), 1494–1501.

    Article  CAS  Google Scholar 

  • Türkmen, Ö., Özcan, M., Seymen, M., Paksoy, M., Uslu, N., & Fidan, S. (2017). Physico-chemical properties and fatty acid compositions of some edible pumpkin seed genotypes and oils. Journal of Agroalimentary Processes and Technologies, 23(4), 229–235.

    Google Scholar 

  • Venkat, E., & Kothandaraman, S. (1998). Supercritical fluid methods. In Natural products isolation (pp. 91–109). Springer.

    Google Scholar 

  • Veronezi, C. M., & Jorge, N. (2012). Bioactive compounds in lipid fractions of pumpkin (Cucurbita sp) seeds for use in food. Journal of Food Science, 77(6), C653–C657.

    Article  CAS  PubMed  Google Scholar 

  • Vorobyova, O., Bolshakova, A., Pegova, R., Kol’chik, O., Klabukova, I., Krasilnikova, E., et al. (2014). Analysis of the components of pumpkin seed oil in suppositories and the possibility of its use in pharmaceuticals. Journal of Chemical and Pharmaceutical Research, 6(5), 1106–1116.

    Google Scholar 

  • Vujasinovic, V., Djilas, S., Dimic, E., Romanic, R., & Takaci, A. (2010). Shelf life of cold-pressed pumpkin (Cucurbita pepo L.) seed oil obtained with a screw press. Journal of the American Oil Chemists’ Society, 87(12), 1497–1505.

    Article  CAS  Google Scholar 

  • Vukša, V., Dimić, E., & Dimić, V. (2003) Characteristics of cold pressed pumpkin seed oil. 9th Symposium: Vitamine und Zusatzstoffe in der Ernährung von Mensch und Tier, Proceedings, Jena/Thüringen. pp. 493–496.

    Google Scholar 

  • Wang, L., & Weller, C. L. (2006). Recent advances in extraction of nutraceuticals from plants. Trends in Food Science & Technology, 17(6), 300–312.

    Article  CAS  Google Scholar 

  • Wang, Q.-I., Zhang, L., Ji, H., & Yan, H.-Y. (2011). Study on aqueous enzymatic extraction of pumpkin seed oil. Cereals & Oils, 8, 006.

    Google Scholar 

  • Wenli, Y., Yaping, Z., Jingjing, C., & Bo, S. (2004). Comparison of two kinds of pumpkin seed oils obtained by supercritical CO2 extraction. European Journal of Lipid Science and Technology, 106(6), 355–358.

    Article  CAS  Google Scholar 

  • Wenzel, C. (1987). Ernahrung. Nutrition, 11, 752–755.

    Google Scholar 

  • Wenzl, T., Prettner, E., Schweiger, K., & Wagner, F. S. (2002). An improved method to discover adulteration of Styrian pumpkin seed oil. Journal of Biochemical and Biophysical Methods, 53(1–3), 193–202.

    Article  CAS  PubMed  Google Scholar 

  • Wildman, R. E. (2002). Handbook of nutraceuticals and functional foods. Boca Raton: CRC press.

    Google Scholar 

  • Winkler-Moser, J. (2011). Gas chromatographic analysis of plant sterols. The AOCS lipidlibrary, pp. 1–18. The American Oil Chemists’ Society, Illinois, USA.

    Google Scholar 

  • Xanthopoulou, M. N., Nomikos, T., Fragopoulou, E., & Antonopoulou, S. (2009). Antioxidant and lipoxygenase inhibitory activities of pumpkin seed extracts. Food Research International, 42(5–6), 641–646.

    Article  CAS  Google Scholar 

  • Yadav, M., Jain, S., Tomar, R., Prasad, G., & Yadav, H. (2010). Medicinal and biological potential of pumpkin: An updated review. Nutrition Research Reviews, 23(2), 184–190.

    Article  CAS  PubMed  Google Scholar 

  • Yoshida, H., Shougaki, Y., Hirakawa, Y., Tomiyama, Y., & Mizushina, Y. (2004). Lipid classes, fatty acid composition and triacylglycerol molecular species in the kernels of pumpkin (Cucurbita spp) seeds. Journal of the Science of Food and Agriculture, 84(2), 158–163.

    Article  CAS  Google Scholar 

  • Yoshida, H., Tomiyama, Y., Kita, S., & Mizushina, Y. (2005). Roasting effects on fatty acid distribution of triacylglycerols and phospholipids in the kernels of pumpkin (Cucurbita spp) seeds. Journal of the Science of Food and Agriculture, 85(12), 2061–2066.

    Article  CAS  Google Scholar 

  • Zhang, Y.-I., Li, S., Yin, C.-P., Jiang, D.-H., Yan, F.-F., & Xu, T. (2012). Response surface optimisation of aqueous enzymatic oil extraction from bayberry (Myrica rubra) kernels. Food Chemistry, 135(1), 304–308.

    Article  CAS  Google Scholar 

  • Zhou, T., Kong, Q., Huang, J., Dai, R., & Li, Q. (2007). Characterization of nutritional components and utilization of pumpkin. Food, 1(2), 313–321.

    Google Scholar 

  • Zhou, C.-L., Liu, W., Zhao, J., Yuan, C., Song, Y., Chen, D., et al. (2014). The effect of high hydrostatic pressure on the microbiological quality and physical-chemical characteristics of Pumpkin (Cucurbita maxima Duch.) during refrigerated storage. Innovative Food Science & Emerging Technologies, 21, 24–34.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ayyildiz, H.F., Topkafa, M., Kara, H. (2019). Pumpkin (Cucurbita pepo L.) Seed Oil. In: Ramadan, M. (eds) Fruit Oils: Chemistry and Functionality. Springer, Cham. https://doi.org/10.1007/978-3-030-12473-1_41

Download citation

Publish with us

Policies and ethics