Skip to main content

Dragon (Hylocereus megalanthus) Seed Oil

  • Chapter
  • First Online:
Fruit Oils: Chemistry and Functionality

Abstract

Dragon fruits or Pitaya are the lithophytes or hemiepiphytes of Cactaceae family primarily distributed among tropical regions. This fruit initially attracted the researchers looking for natural food grade dyes for its striking color pigments (betalains), however, investigations established that dragon fruit pulp, peel, and seed contain potentially beneficial carbohydrates, phytoalbumin, biopeptides, vitamins, phenolics, and minerals. The seeds of dragon fruit are exceptionally small, so could not focused for their oleoginous compounds but research up to the date indicates that seeds of this fruit are rich in essential fatty acids principally omega-3 and omega-6 fatty acids as well as tocopherols. The levels of linoleic acid attributed to dragon seed oil (500 g/Kg of oil) are comparable with flaxseed, canola and sesame oils. The keen survey of literature available regarding the phytochemistry of dragon seed recommends that this oil may become a viable source of good quality oleonutrients for food and cosmetic industries. There is a prompt need to modernize and scale up seed separation and oil extraction methods to revalorize dragon seed phytochemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DSO:

Dragon seed oil

EAE:

Enzyme-assisted Extraction

MAE:

Microwave-assisted extraction

PUFA:

Polyunsaturated fatty acids

SE:

Soxhlet extraction

SFE:

Supercritical fluid extraction

References

  • Adnan, L., Osman, A., & Abdul Hamid, A. (2011). Antioxidant activity of different extracts of red pitaya (Hylocereus polyrhizus) seed. International Journal of Food Properties, 14, 1171–1181.

    Article  CAS  Google Scholar 

  • Ariffin, A. A., Bakar, J., Tan, C. P., Rahman, R. A., Karim, R., & Loi, C. C. (2009). Essential fatty acids of pitaya (dragon fruit) seed oil. Food Chemistry, 114, 561–564.

    Article  CAS  Google Scholar 

  • Célis, C. Q., Gil, D. E., & Pino, J. A. (2012). Characterization of odor-active compounds in yellow pitaya (Hylocereus megalanthus (Haw.) Britton et Rose).

    Google Scholar 

  • Daubresse Balayer, M. (1999). Le pitahaya. Fruits oubliés. 1, 15–17.

    Google Scholar 

  • Deng, C.-J., Liu, S.-C., Tao, L.-Q., & Wu, X.-P. (2014). Optimization of extraction process of pitaya seed oil by supercritical carbon dioxide based on artificial neural network. Food Research and Development, 10, 020.

    Google Scholar 

  • Esquivel, P., Stintzing Florian, C., & Carle, R. (2007). Phenolic compound profiles and their corresponding antioxidant capacity of purple pitaya (Hylocereus sp.) genotypes. Zeitschrift für Naturforschung C, 62, 636.

    Article  CAS  Google Scholar 

  • EU. (2010). Approved additives and their E Numbers, Food Standards Agency.

    Google Scholar 

  • Gunasena, H., Pushpakumara, D., & Kariyawasam, M. (2007). Dragon fruit Hylocereus undatus (Haw.) Britton and Rose. Underutilized fruit trees in Sri Lanka (pp. 110–142). New Delhi: World Agroforestry Centre.

    Google Scholar 

  • Liaotrakoon, W. (2013). Characterization of dragon fruit (Hylocereus spp.) components with valorization potential. Ghent University.

    Google Scholar 

  • Lim, T. K. (2012). Hylocereus polyrhizus. In T. K. Lim (Ed.), Edible medicinal and non-medicinal plants: Volume 1, Fruits (pp. 643–649). Dordrecht: Springer Netherlands.

    Chapter  Google Scholar 

  • Lim, H. K., Tan, C. P., Karim, R., Ariffin, A. A., & Bakar, J. (2010). Chemical composition and DSC thermal properties of two species of Hylocereus cacti seed oil: Hylocereus undatus and Hylocereus polyrhizus. Food Chemistry, 119, 1326–1331.

    Article  CAS  Google Scholar 

  • List, G. R., Friedrich, J. P., & Pominski, J. (1984). Characterization and processing of cottonseed oil obtained by extraction with supercritical carbon dioxide. Journal of the American Oil Chemists’ Society, 61, 1847–1849.

    Article  CAS  Google Scholar 

  • Luo, H., Cai, Y., Peng, Z., Liu, T., & Yang, S. (2014). Chemical composition and in vitro evaluation of the cytotoxic and antioxidant activities of supercritical carbon dioxide extracts of pitaya (dragon fruit) peel. Chemistry Central Journal, 8(1), 1.

    Article  Google Scholar 

  • Mizrahi, Y., Nerd, A., & Nobel, P. S. (1997). Cacti as crops. Horticultural Reviews, 18, 291–319.

    Google Scholar 

  • Murugesu, S., Ariffin, A. A., Ping, T. C., & Chern, B. H. (2013). Physicochemical properties of oil extracted from the hot and cold extracted red pitaya (hylocereus polyrhizus) seeds. Journal of Food Chemistry and Nutrition, 01(02), 78–83.

    Google Scholar 

  • Mushtaq, M., Sultana, B., Anwar, F., Adnan, A., & Rizvi, S. S. (2015). Enzyme-assisted supercritical fluid extraction of phenolic antioxidants from pomegranate peel. The Journal of Supercritical Fluids, 104, 122–131.

    Article  CAS  Google Scholar 

  • Mushtaq, M., Sultana, B., Akram, S., Anwar, F., Adnan, A., & Rizvi, S. S. H. (2017). Enzyme-assisted supercritical fluid extraction: An alternative and green technology for non-extractable polyphenols. Analytical and Bioanalytical Chemistry, 409, 3645–3655.

    Article  CAS  Google Scholar 

  • Pham, T. L. (2014). Antibacterial properties of hylocereus undatus (white dragon fruit) against Opportunistic Pathogens present within the Skin, Oral Cavity and Gastrointestinal Tract. Quinnipiac University.

    Google Scholar 

  • Rui, H., Zhang, L., Li, Z., & Pan, Y. (2009). Extraction and characteristics of seed kernel oil from white pitaya. Journal of Food Engineering, 93, 482–486.

    Article  CAS  Google Scholar 

  • Soxhlet, F. (1879). Die gewichtsaiialytische Bestimmung des Milchfettes; von.

    Google Scholar 

  • Suh, D. H., Lee, S., Heo, D. Y., Kim, Y.-S., Cho, S. K., Lee, S., & Lee, C. H. (2014). Metabolite profiling of red and white pitayas (Hylocereus polyrhizus and Hylocereus undatus) for comparing Betalain biosynthesis and antioxidant activity. Journal of Agricultural and Food Chemistry, 62, 8764–8771.

    Article  CAS  Google Scholar 

  • US Food and Drug Administration. (2011). Listing of food additives status part II. Retrieved Oct.

    Google Scholar 

  • Villalobos-Gutiérrez, M. G., Schweiggert, R. M., Carle, R., & Esquivel, P. (2012). Chemical characterization of Central American pitaya (Hylocereus sp.) seeds and seed oil. CyTA – Journal of Food, 10, 78–83.

    Article  Google Scholar 

  • Wijitra, L., Nathalie, D. C., Vera, V. H., & Koen, D. (2013). Dragon fruit (Hylocereus spp.) seed oils: Their characterization and stability under storage conditions. Journal of the American Oil Chemists' Society, 90, 207–215.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akram, S., Mushtaq, M. (2019). Dragon (Hylocereus megalanthus) Seed Oil. In: Ramadan, M. (eds) Fruit Oils: Chemistry and Functionality. Springer, Cham. https://doi.org/10.1007/978-3-030-12473-1_36

Download citation

Publish with us

Policies and ethics