Skip to main content

Passion Fruit (Passiflora spp.) Seed Oil

  • Chapter
  • First Online:
Fruit Oils: Chemistry and Functionality

Abstract

The quality of passion fruit oil is determined by its main components like the lipids but also by minor compounds whose levels are influenced by several factors (i.e. genetic, environmental, etc.). Description of properties of bioactive components in passion fruit seed oil and their potential beneficial role for human health will be a focal point of this chapter. Presence of aroma compounds and their contribution to the organoleptic properties of the fruit and its industrial residues will be discussed. Suitable research strategies as well as the definition of practical possibilities for using passion fruit oils and its constituents represents another focus: conventional procedures and advanced extraction technologies, as well as analytical techniques, with particular attention to green procedures will be taken into account. An integrated and multidisciplinary system of analysis combined with statistical methods is becoming an increasingly valuable tool for analyzing and modeling agro-food systems in their totality. These new directions will be discussed, with particular regards to spectroscopy combined with advanced chemometrics. Such approaches are applied in classification, discrimination and authentication studies. Furthermore, they are used in detection and monitoring of contaminants and adulterants. The use of passion fruit oil in different fields (i.e. pharmaceutical, nutraceutical, cosmetic, bio-based applications) will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrahamczyk, S., Souto-Vilarós, D., & Renner, S. S. (2014). Escape from extreme specialization: Passionflowers, bats and the sword-billed hummingbird. Proceedings of the Royal Society B, 281, 20140888. https://doi.org/10.1098/rspb.2014.0888.

    Article  PubMed  Google Scholar 

  • Bakeev, K. A. (2010). Process analytical technology (2nd ed.). Hoboken: Wiley-Blackwell.

    Google Scholar 

  • Barbieri, J. C., & Leimann, F. V. (2014). Extração de Óleo da Semente do Maracujá e Microencapsulação em Poli(ε Caprolactona). Revista Brasileira de Pesquisa em Alimentos, 5(2), 1–9.

    Google Scholar 

  • Barrales, F. M., Rezende, C. A., & Martínez, J. (2015). Supercritical CO2 extraction of passion fruit (Passiflora edulis sp.) seed oil assisted by ultrasound. Journal of Supercritical Fluids, 104, 183–192.

    CAS  Google Scholar 

  • Belitz, H. D., Grosh, W., & Schieberle, P. (2009). Food chemistry (4th revised and extended ed. p. 840). Berlin: Springer-Verlag.

    Google Scholar 

  • Bezerra, C. V., Rodrigues, A. M. D. C., de Oliveira, P. D., da Silva, D. A., & da Silva, L. H. M. (2017). Technological properties of Amazonian oils and fats and their applications in the food industry. Food Chemistry, 221, 1466–1473.

    CAS  PubMed  Google Scholar 

  • Borges, S. V., Maia, M. C. A. M., Gomes, R. C. M., & Cavalcanti, B. (2007). Chemical composition of umbu (Spondias tuberosa Arr. Cam) seeds. Quím Nova, 30(1), 49–52.

    CAS  Google Scholar 

  • BoSio, G. (1610). La trionfante e gloriosa croce Trattato di Iacomo Bosio Lettione varia, e divota; Ad ogni buon Christiano utile, e gioconda (pp. 163–164). Roma. libro secondo, capitolo sesto.

    Google Scholar 

  • Calevo, J., Giovannini, A., De Benedetti, L., Braglia, L., della Cuna, F., & Tava, A. (2016). Chemical composition of the volatile oil from flowers and leaves of new Passiflora hybrids. International Journal of Applied Research in Natural Products, 9, 21–27.

    CAS  Google Scholar 

  • Cardoso de Oliveira, R., Davantel de Barros, S. T., & Gimenes, M. (2013). The extraction of passion fruit oil with green solvents. Journal of Food Engineering, 117, 458–463.

    Google Scholar 

  • Casierra-Posada, F., & Jarma-Orozco, A. (2016). Nutritional composition of Passiflora species. In M. S. J. Simmonds & V. R. Preedy (Eds.), Nutritional composition of fruit cultivars (1st ed., pp. 517–534). London: Academic. https://doi.org/10.1016/B978-0-12-408117-8.00022-2.

    Chapter  Google Scholar 

  • Chau, C. F., & Huang, Y. L. (2004). Characterization of passion fruit seed fibres-a potential fibre source. Food Chemistry, 85, 189–194.

    CAS  Google Scholar 

  • Chez, I., Herrera, D., Miranda, M., & Manzano, P. (2015). Chemical composition of essential oils of shells, juice and seeds of Passiflora ligularis Juss from Ecuador. Emirates Journal of Food and Agriculture, 27, 650–653. https://doi.org/10.9755/ejfa.2015.04.039.

    Article  Google Scholar 

  • Chóez-Guaranda, I., Ortega, A., Miranda, M., & Manzano, P. (2017). Chemical composition of essential oils of Passiflora edulis f. Flavicarpa agroindustrial waste. Emirates Journal of Food Agriculture, 29, 458–462. https://doi.org/10.9755/ejfa.2016-10-1542.

    Article  Google Scholar 

  • Conde-Martínez, N., Sinuco, D. C., & Osorio, C. (2014). Chemical studies on curuba (Passiflora mollissima (Kunth) L. H. Bailey) fruit flavour. Food Chemistry, 157, 356–363. https://doi.org/10.1016/j.foodchem.2014.02.056.

    Article  CAS  PubMed  Google Scholar 

  • de Santana, F. C., Shinagawa, F. B., Araujo Eda, S., Costa, A. M., & Mancini-Filho, J. (2015). Chemical composition and antioxidant capacity of Brazilian Passiflora seed oils. Food Science, 80, C2647–C2654.

    Google Scholar 

  • de Vasconcelos Viera Lopes, R., Zamian, J. R., Resck, I. S., Araujo Sales, M. J., dos Santos, M. L., & da Cunha, F. R. (2010). Physicochemical and rheological properties of passion fruit oil and its polyol. European European Journal of Lipid Science and Technology, 112, 1253–1262.

    Google Scholar 

  • Deliza, R., MacFie, H. A. L., & Hedderley, D. (2005). The consumer sensory perception of passion-fruit juice using free-choice profiling. Journal of Sensory Studies, 20, 17–27.

    Google Scholar 

  • Dhawan, K., Dhawan, S., & Sharma, A. (2004). Passiflora: A review update. Journal of Ethnopharmacology, 94, 1–23.

    CAS  PubMed  Google Scholar 

  • Engel, K. H., & Tressl, R. (1991). Identification of new sulfur-containing volatiles in yellow passionfruit (Passiflora edulis f. flavicarpa). Journal of Agricultural and Food Chemistry, 39, 2249–2252.

    CAS  Google Scholar 

  • Farias, R. M. C., Conceição, M. M., Candeia, R. A., Silva, M. C. D., Fernandes, V. J., & Souza, G. A. (2011). Evaluation of the thermal stability of biodiesel blends of castor oil and passion fruit. Journal of Thermal Analysis and Calorimetry, 106, 651. https://doi.org/10.1007/s10973-011-1566-x.

    Article  CAS  Google Scholar 

  • Ferrari, R. A., Colussi, F., & Ayub, R. A. (2004). Characterization of by-products of passion fruit industrialization utilization of seeds. Revista Brasileira de Fruticultura, 26, 101–102.

    Google Scholar 

  • Ferreira, B. S., De Almeida, A., Diniz, C. G., & Lúcia, V. (2011). Comparative properties of Amazonian oils obtained by different extraction methods. Molecules, 16, 5875–5885.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira, B. S., de Almeida, C. G., Le Hyaric, M., De Oliveira, V. E., Edwards, H. G. M., & de Oliveira, L. F. C. (2013). Raman spectroscopic investigation of carotenoids in oils from Amazonian products. Spectroscopy Letters, 46, 122–127.

    CAS  Google Scholar 

  • Feuillet, C., & Mac Dougal, J. M. (2004). A new infrageneric classification of Passiflora L. (Passifloraceae). Passiflora, 13, 34–38.

    Google Scholar 

  • Gomez-Caravaca, A. M., Maggio, R. M., & Cerretani, L. (2016). Chemometric applications to assess quality and critical parameters of virgin and extra-virgin olive oil. A review. Analytica Chimica Acta, 913, 1–21.

    CAS  PubMed  Google Scholar 

  • Griffiths, P. R., & De Haseth, J. A. (2007). Fourier transform infrared spectrometry (2nd ed.). Hoboken: Wiley.

    Google Scholar 

  • Hanmoungjai, P., Pyle, L., & Niranjan, K. (2000). Extraction of rice bran oil using aqueous media. Journal of Chemical Technology and Biotechnology, 75, 348–352.

    CAS  Google Scholar 

  • Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 24, 417.

    Google Scholar 

  • Janzantti, N. S., & Monteiro, M. (2014). Changes in the aroma of organic passion fruit (Passiflora edulis Sims f. flavicarpa Deg.) during ripeness. LWT- Food Science and Technology, 59, 612–620. https://doi.org/10.1016/j.lwt.2014.07.044.

    Article  CAS  Google Scholar 

  • Janzantti, N. S., Macoris, M. S., Garruti, D. S., & Monteiro, M. (2012). Influence of the cultivation system in the aroma of the volatile compounds and total antioxidant activity of passion fruit. LWT- Food Science and Technology, 46, 511–518. https://doi.org/10.1016/j.lwt.2011.11.016.

    Article  CAS  Google Scholar 

  • Jolliffe, I. (2002). Principal component analysis. New York: Wiley.

    Google Scholar 

  • Jordán, M., Goodner, K. L., & Shaw, P. E. (2002). Characterization of the aromatic profile in aqueous essence and fruit juice of yellow passion fruit (Passiflora edulis Sims F. Flavicarpa degner) by GC-MS and GC/O. Journal of Agricultural and Food Chemistry, 50, 1523–1528.

    PubMed  Google Scholar 

  • Jorge, A. T., Arroteia, K. F., Santos, I. A., Andres, E., Medina, S. P., Ferrari, C. R., Lourenço, C. B., Biaggio, R. M., & Moreira, P. L. (2012). Schinus terebinthifolius Raddi extract and linoleic acid from Passiflora edulis synergistically decrease melanin synthesis in B16 cells and reconstituted epidermis. International Journal of Cosmetic Science, 34(5), 435–440.

    CAS  PubMed  Google Scholar 

  • Kiefer, J., Frank, K., & Schuchmann, H. P. (2011). Attenuated total reflection infrared (ATR-IR) spectroscopy of a water-in-oil emulsion. Applied Spectroscopy, 65, 1024–1028.

    CAS  PubMed  Google Scholar 

  • Killip, E. P. (1938). The American species of Passifloraceae. Publication Field Museum of Natural History Botanical, 19, 1–613.

    Google Scholar 

  • Kitada, M., Ogura, Y., Maruki-Uchida, H., Sai, M., Suzuki, T., Kanasaki, K., Hara, Y., Seto, H., Kuroshima, Y., Monno, I., & Koya, D. (2017). The effect of piceatannol from passion fruit (Passiflora edulis) seeds on metabolic health in humans. Nutrients, 9(10), E1142.

    PubMed  Google Scholar 

  • Kobori, C. N., & Jorge, N. (2005). Characterization of some seed oils of fruits for utilization of industrial residues. Ciência e Agrotecnologia, 29(5), 1008–1014.

    CAS  Google Scholar 

  • Leão, K. M. M., Sampaio, K. L., Pagani, A. A. C., & Da Silva, M. A. A. P. (2014). Odor potency, aroma profile and volatiles composition of cold pressed oil from industrial passion fruit residues. Industrial Crops and Products, 58, 280–286. https://doi.org/10.1016/j.indcrop.2014.04.032.

    Article  CAS  Google Scholar 

  • Lee, S. Y., Fu, S. Y., & Chong, G. H. (2015). Ultrasound-assisted extraction kinetics, fatty acid profile, total phenolic content and antioxidant activity of green solvents’ extracted passion fruit oil. International Journal of Food Science and Technology, 50, 1831–1838.

    CAS  Google Scholar 

  • Liu, S., Yang, F., Zhang, C., Ji, H., Hong, P., & Deng, C. (2009). Optimization of process parameters for supercritical carbon dioxide extraction of Passiflora seed oil by response surface methodology. Journal of Supercritical Fluids, 48, 9–14.

    CAS  Google Scholar 

  • Lopes, R. V. V., Loureiro, N. P. D., Zamian, J. R., Fonseca, P. S., Macedo, J. L., dos Santos, M. L., & Sales, M. J. A. (2009). Synthesis and characterization of polymeric materials from vegetable oils. Macromolecolar Symposia, 286, 89–94.

    CAS  Google Scholar 

  • Lopes, R. M., Sevilha, A. C., Faleiro, F. G., Silva, D. B., Vieira, R. F., & Agostini-Costa, T. S. (2010a). Estudo comparativo do perfil de ácidos graxos em semente de Passifloras nativas do cerrado brasileiro. Revista Brasileira de Fruticultura, 32, 498–506. (in Portuguese). https://doi.org/10.1590/S0100-29452010005000065.

    Article  Google Scholar 

  • Lopes, R. V. V., Zamian, J. R., Sabioni Resck, I., Araújo Sales, M. J., dos Santos, M. L., & da Cunha, F. R. (2010b). Physicochemical and rheological properties of passion fruit oil and its polyol. European Journal of Lipid Science and Technology, 12, 1253–1262.

    Google Scholar 

  • Lourith, N., & Kanlayavattanakul, M. (2013). Antioxidant activities and phenolics of Passiflora edulis seed recovered from juice production residue. Journal of Oleo Science, 62, 235–240.

    CAS  PubMed  Google Scholar 

  • Machado, Y. L., Dantas Neto, A. A., Fonseca, J. L. C., & Dantas, T. N. C. (2014). Antioxidant stability in vegetable oils monitored by the ASTM D7545 method. Journal of the American Oil Chemists’ Society, 91, 1139–1145.

    CAS  Google Scholar 

  • Malacrida, C. R., & Jorge, N. (2012). Yellow passion fruit seed oil (Passiflora edulis f. flavicarpa): Physical and chemical characteristics. Brazilian Archives of Biology and Technology, 55, 127–134.

    CAS  Google Scholar 

  • Maruki-Uchida, H., Kurita, I., Sugiyama, K., Sai, M., Maeda, K., & Ito, T. (2013). The protective effects of piceatannol from passion fruit (Passiflora edulis) seeds in UVB-irradiated keratinocytes. Biological & Pharmaceutical Bulletin, 36(5), 845–849.

    CAS  Google Scholar 

  • Maruki-Uchida, H., Morita, M., Yonei, Y., & Sai, M. (2018). Effect of passion fruit seed extract rich in piceatannol on the skin of women: A randomized, placebo-controlled, double-blind trial. Journal of Nutritional Science and Vitaminology, 64(1), 75–80.

    CAS  PubMed  Google Scholar 

  • Matsui, Y., Sugiyama, K., Kamei, M., Takahashi, T., Suzuki, T., Katagata, Y., & Ito, T. (2010). Extract of passion fruit (Passiflora edulis) seed containing high amounts of piceatannol inhibits melanogenesis and promotes collagen synthesis. Journal of Agricultural and Food Chemistry, 58, 11112–11118.

    CAS  PubMed  Google Scholar 

  • Matsumoto, Y., Gotoh, N., Sano, S., Sugiyama, K., Ito, T., Abe, Y., Katano, Y., & Ishihata, A. (2014). Effects of Scirpusin B, A polyphenol in passion fruit seeds, on the coronary circulation of the isolated perfused rat heart. International Journal of Medical Research & Health Sciences, 3, 547–553.

    Google Scholar 

  • Mattos De Paula, R. C., Gomes Soares, A., & Pereira Freitas, S. (2015). Volatile compounds in passion fruit seed oil (passiflora setacea brs pérola do cerrado and passiflora alata brs doce mel). Chemical Engineering Transactions, 44, 103–108. https://doi.org/10.3303/CET1544018.

    Article  Google Scholar 

  • Morais, D. R., Rotta, E. M., Sargi, S. C., Schimidt, E. M., Bonafé, E. G., Eberlin, M. N., Sawaya, A. C. H. F., & Visentainer, J. V. (2015). Antioxidant activity, phenolics and. UPLC-ESI(-)-MS of extracts from different tropical fruits parts and processed peels. Food Research International, 77, 392.

    CAS  Google Scholar 

  • Morais, D. R., Rotta, E. M., Sargi, S. C., Bonafe, E. G., Suzuki, R. M., Souza, N. E., Matsushita, M., & Visentainer, J. V. (2017). Proximate composition, mineral contents and fatty acid composition of the different parts and dried peels of tropical fruits cultivated in Brazil. Journal of the Brazilian Chemical Society, 28, 308.

    CAS  Google Scholar 

  • Narain, N., Nigam, N., & De Sousa Galvão, M. (2010). Passion fruit. In Y. H. Hui (Ed.), Handbook of fruit and vegetable flavors (pp. 345–389). Hoboken: Wiley.

    Google Scholar 

  • Nyanzi, S. A., Carstensen, B., & Schwack, W. (2005). A comparative study of acid profiles of Passiflora seed oils from Uganda. Journal of the American Oil Chemists Society, 82(1), 41–44.

    CAS  Google Scholar 

  • Ocampo, J., Coppens d’Eeckenbrugge, G., & Jarvis, A. (2010). Distribution of the genus Passiflora L. diversity in Colombia and its potential as an indicator for biodiversity management in the coffee growing zone. Diversity, 2, 1158–1180.

    Google Scholar 

  • Oliveira, D. A., Mezzomo, N., Gomes, C., & Ferreira, S. R. S. (2017). Encapsulation of passion fruit seed oil by means of supercritical antisolvent process. The Journal of Supercritical Fluids, 129, 96–105.

    CAS  Google Scholar 

  • Pasquel-Reátegui, J. L., Machado, A. P. F., Barbero, G. F., Rezende, C. A., & Martínez, J. (2014). Extraction of antioxidant compounds from blackberry (Rubus sp.) bagasse using supercritical CO2 assisted by ultrasound. Journal of Supercritical Fluids, 94, 223–233.

    Google Scholar 

  • Patel, S. S., Soni, H., Mishra, K., & Singhai, A. K. (2011). Recent updates on the genus Passiflora: A review. International Journal of Research in Phytochemistry and Pharmacology, 1(1), 1–16.

    CAS  Google Scholar 

  • Pearson, K. (1901). Principal components analysis. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 6, 559.

    Google Scholar 

  • Pereira, T. A. (2011). Obtenção e caracterização de nanoemulsões O/A à base de óleo de framboesa, maracujá e pêssego: Avaliação de propriedades cosméticas da formulação. In Tese de Mestrado – Faculdade de Ciências Farmacêuticas de Ribeirão Preto (p. 102). Sao Paulo: University of São Paulo.

    Google Scholar 

  • Pereira, T. A., Guerreiro, C. M., Maruno, M., Ferrari, M., & Rocha-Filho, P. A. (2016). Exotic vegetable oils for cosmetic O/W nanoemulsions: In vivo evaluation. Molecules, 21(3), 248.

    PubMed  PubMed Central  Google Scholar 

  • Pereira, M. G., Hameraski, F., Andrade, E. F., Scheer, A. d P., & Corazza, M. L. (2017). Assessment of subcritical propane, ultrasound-assisted and Soxhlet extraction of oil from sweet passion fruit (Passiflora alata Curtis) seeds. Journal of Supercritical Fluids, 128, 338–348.

    CAS  Google Scholar 

  • Pereira, M. G., Maciel, G. M., Haminiuk, C. W. I., Bach, F., Hamerski, F., de Paula Scheer, A., & Corazza, M. L. (2018). Effect of extraction process on composition, antioxidant and antibacterial activity of oil from yellow passion fruit (Passiflora edulis Var. Flavicarpa) seeds. Waste and Biomass Valorization. https://doi.org/10.1007/s12649-018-0269-y.

    Google Scholar 

  • Piombo, G., Barouh, N., Barea, B., Boulanger, R., Brat, P., Pina, M., & Villeneuve, P. (2006). Characterization of the seed oils from kiwi (Actinidia chinensis), passion fruit (Passiflora eulis) and guava (Psidium guajava). Oléagineux, Corps Gras, Lipides, 13(2–3), 195–199.

    CAS  Google Scholar 

  • Pontes, M., Marques, J. C., & Câmara, J. S. (2009). Headspace solid-phase microextraction-gas chromatography-quadrupole mass spectrometric methodology for the establishment of the volatile composition of Passiflora fruit species. Microchemical Journal, 93, 1–11. https://doi.org/10.1016/j.microc.2009.03.010.

    Article  CAS  Google Scholar 

  • Porto-Figueira, P., Freitas, A., Cruz, C. J., et al. (2015). Profiling of passion fruit volatiles: An effective tool to discriminate between species and varieties. Food Research International, 77, 408–418. https://doi.org/10.1016/j.foodres.2015.09.007.

    Article  CAS  Google Scholar 

  • Ran, V. S., & Blazquez, A. M. (2008). Fatty acid composition of Passiflora edulis Sims. Seed oil. JLST, 40, 65.

    Google Scholar 

  • Regis, S. A., de Resende, E. D., & Antoniassi, A. (2015). Oil quality of passion fruit seeds subjected to a pulp-waste purification process. Ciência Rural, Santa Maria, 45(6), 977–984.

    Google Scholar 

  • Riera, E., Golás, Y., Blanco, A., Gallego, A. M., & Mulet, A. (2004). Mass transfer enhancement in supercritical fluids extraction by means of power ultrasound. Ultrasonics Sonochemistry, 11, 241–244.

    CAS  PubMed  Google Scholar 

  • Rocha-Filho, P. A., Camargo, M. F. P., Ferrari, M., & Maruno, M. (2014). Influence of lavander essential oil addition on passion fruit oil nanoemulsions: Stability and in vivo study. Journal of Nanomedicine and Nanotechnology. 2014, 5, 2. https://doi.org/10.4172/2157-7439.1000198.

    Article  CAS  Google Scholar 

  • Rodrigues, J. D. O., Murawski, A., Beckler, B., Lopes, R. V. V., Paterno, L. G., Quirino, R. L., & Sales, M. J. A. (2017). Bio-based polyurethanes and composites from passion fruit oil methyl esters and coconut husk fibers. In A. Shahzad (Ed.), Biocomposites: Properties, performance and applications (pp. 125–144). New York: Nova Science Publishers. ISBN: 978-1-53612-120-9.

    Google Scholar 

  • Rohman, A. (2017). The use of infrared spectroscopy in combination with chemometrics for quality control and authentication of edible fats and oils: A review. Applied Spectroscopy Reviews, 52, 589–604.

    CAS  Google Scholar 

  • Romani, A., Scardigli, A., & Pinelli, P. (2017). An environmentally friendly process for the production of extracts rich in phenolic antioxidants from Olea europaea L. and Cynara scolymus L. matrices. European Food Research and Technology, 243, 1229–1238.

    CAS  Google Scholar 

  • Rotta, E. M., da Silva, M. C., Maldaner, L., & Visentainer, J. V. (2017). Ultrasound-assisted saponification coupled with gas chromatography-flame ionization detection for the determination of phytosterols from passion fruit seed oil. Journal of the Brazilian Chemical Society, 29, 1–8.

    Google Scholar 

  • Sano, S., Sugiyama, K., Ito, T., Katano, Y., & Ishihata, A. (2011). Identification of the strong vasorelaxing substance scirpusin B, a dimer of piceatannol, from passion fruit (Passiflora edulis) seeds. Journal of Agricultural and Food Chemistry, 59, 6209–6213.

    CAS  PubMed  Google Scholar 

  • Santos, E. A., Souza, M. M., Abreu, P. P., da Conceicao, L. D. H. C. S., Araujo, I. S., Viana, A. P., de Almeida, A. A. F., & Freitas, J. C. O. (2012). Confirmation and characterization of interspecific hybrids of Passiflora L. (Passifloraceae) for ornamental use. Euphytica, 184(3), 389–399.

    CAS  Google Scholar 

  • Saraiva, S. A., Cabral, E. C., Eberlin, M. N., & Catharino, R. R. (2009). Amazonian vegetable oils and fats: Fast typification and quality control via triacyglycerol (TAG) profiles from dry matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry fingerprinting. Journal of Agricultural and Food Chemistry, 57, 4030–4034.

    CAS  PubMed  Google Scholar 

  • Sgaravatti, M., & Zardini, P. (1997). In E. Calderini (Ed.), Passiflore. Coll. le Gemme Verdi.

    Google Scholar 

  • Silva, M. S., Arimatéia Júnior, H., Silva, G. F., Dantas Neto, A. A., & Castro Dantas, T. N. (2015). New formulation for hydraulic biolubrificants based on epoxidized vegetable oils: Passion fruit (Passiflora edulis Sims f. flavicarpa Degener) and moringa (Moringa oleifera Lamarck). Brazilian Journal of Petroleum and Gas, 9, 27–36. ISSN 1982-0593.

    Google Scholar 

  • Vaillant, F., Jeanton, E., Dornier, M., O’Brien, G. M., Reynes, M., & Decloux, M. (2001). Concentration of passion fruit juice on an industrial pilot scale using osmotic evaporation. Journal of Food Engineering, 47, 195–202.

    Google Scholar 

  • Vecchia, M., & Giovannini, A. (2011). Le passiflore: aspetti botanici. Informatore Botanico Italiano, 43(1), 47–50.

    Google Scholar 

  • Viganó, J., & Martínez, J. (2015). Trends for the application of passion fruit industrial by-products: A review on the chemical composition and extraction technique of phytochemicals. Food Public Health, 5, 164–173.

    Google Scholar 

  • Viganó, J., da Fonseca Machado, A. P., & Martínez, J. (2015). Sub- and supercritical fluid technology applied to food waste processing. Journal of Supercritical Fluids, 96, 272.

    Google Scholar 

  • Werkhoff, P., Güntert, M., Krammer, G., et al. (1998). Vacuum headspace method in aroma research: Flavor chemistry of yellow passion fruits. Journal of Agricultural and Food Chemistry, 46, 1076–1093.

    CAS  Google Scholar 

  • Winter, M., Furrer, A., Willhalm, B., & Thommen, W. (1976). Identification and synthesis of two new organic sulfur compounds from the yellow passion fruit (Passiflora edulis f. flavicarpa). Helvetica Chimica Acta, 59, 1613–1620.

    CAS  Google Scholar 

  • Wold, S., Esbensen, K., & Geladi, P. (1987). Principal component analysis. Chemometrics and Intelligent Laboratory Systems, 2, 37–52.

    CAS  Google Scholar 

  • Yockteng, R., & Nadot, S. (2004). Phylogenetic relationships among Passiflora species based on the glutamine synthetase nuclear gene expressed in chloroplast (ncpGS). Molecular Phylogenetics and Evolution, 31, 379–396.

    CAS  PubMed  Google Scholar 

  • Zeraik, M. L., Pereira, C. A. M., Zuin, V. G., & Yariwake, J. H. (2010). Maracujá: um alimento funcional? Revista Brasileira de Farmacognosia, 20, 459–471.

    CAS  Google Scholar 

  • Zuin, V. G., & Ramin, L. Z. (2018). Green and sustainable separation of natural products from agro-industrial waste: Challenges, potentialities, and perspectives on emerging approach. Topics in Current Chemistry, 376, 3.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Lucarini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lucarini, M., Durazzo, A., Raffo, A., Giovannini, A., Kiefer, J. (2019). Passion Fruit (Passiflora spp.) Seed Oil. In: Ramadan, M. (eds) Fruit Oils: Chemistry and Functionality. Springer, Cham. https://doi.org/10.1007/978-3-030-12473-1_29

Download citation

Publish with us

Policies and ethics