Skip to main content

Kenaf (Hibiscus cannabinus L.) Seed Oil

  • Chapter
  • First Online:
Fruit Oils: Chemistry and Functionality

Abstract

Kenaf (Hibiscus cannabinus L.) has received attention worldwide for its commercial value as fiber applications. Kenaf seeds, a by-product from kenaf plant yield kenaf seed oil with no toxicity and primarily contributed by triacylglycerols (99.81%) followed by free fatty acids, diacylglycerols, and monoacylglycerols. Extensive research has related to the processing and applications of kenaf seed oil, which highlighted its potential to use as functional edible oil that advantageous in the food, nutraceutical, and pharmaceutical industry. A chemical refining process with different parameters in each stage has been studied to produce refined kenaf seed oil with removed gums, hydroperoxides, and free fatty acid, as well as no 3-monochloro-1,2-propanediol ester detected. Oleic acid (omega-9) and linoleic acid (omega-6) make up the majority of kenaf seed oil’s fatty acid composition, which is associated with cholesterol-lowering ability. Kenaf seed oil possesses significant health benefits and pharmacological activities such as antioxidant activity, anti-hypercholesterolemic, anti-cancer, anti-inflammatory, anti-ulcer, and anti-thrombotic due to the presence of bioactive compounds (tocopherols, tocotrienols, phytosterols, and phenolics). Nanoencapsulation and microencapsulation have been applied to the kenaf seed oil to improve its bioaccessibility and bioavailability in the gastrointestinal tract. Oxidative stability of kenaf seed oil has been extended through microencapsulation techniques (spray drying and co-extrusion) and suitable to apply in the functional product development. The chemistry and functionality of kenaf seed oil are reviewed in this chapter to stimulate future research and impending applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3-MCPD:

3-Monochloro-1,2-propanediol

ABTS:

2,2′-Azino-bis (3-ethylbenzothiazoline-6-sulphonic acid)

BCB:

β-carotene bleaching

DAG:

Diacylglycerol

DKSM:

Defatted kenaf seed meal

DPPH:

2,2- diphenyl-1-picrylhydrazyl

EM:

Emulsifier mixtures

FFA:

Free fatty acid

IV:

Iodine value

KSOM:

Kenaf seed oil-in-water macroemulsion

KSON :

Kenaf seed oil-in-water nanoemulsion

LDL-C:

Low-density-lipoprotein cholesterol

MAG:

Monoacylglycerol

MDA:

Malondialdehyde

MUFA:

Monounsaturated fatty acid

p-AV:

p-Anisidine value

PUFA:

Polyunsaturated fatty acid

PV:

Peroxide value

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

TAG:

Triacylglycerol

TOTOX:

Total oxidation

β-CD:

β-cyclodetxrin

References

  • Ahsan, H., Ahad, A., & Siddiqui, W. A. (2015). A review of characterization of tocotrienols from plant oils and foods. Journal of Chemical Biology, 8, 45–49.

    Article  PubMed  PubMed Central  Google Scholar 

  • Araújo, J. M. A., & Sandi, D. (2007). Extraction of coffee diterpenes and coffee oil using supercritical carbon dioxide. Food Chemistry, 101, 1087–1094.

    Article  CAS  Google Scholar 

  • Ashori, A., Harun, J., Raverty, W., & Yusoff, M. (2006). Chemical and morphological characteristics of Malaysian cultivated kenaf (Hibiscus cannabinus) fibre. Polymer-Plastics Technology and Engineering, 45(1), 131–134.

    Article  CAS  Google Scholar 

  • Awad, A. B., & Fink, C. S. (2000). Phytosterols as anticancer dietary components: Evidence and mechanism of action. Journal of Nutrition, 130, 2127–2130.

    Article  CAS  PubMed  Google Scholar 

  • Awad, A. B., Chan, K. C., Downie, A. C., & Fink, C. S. (2000). Peanuts as a source of beta-sitosterol, a sterol with anticancer properties. Nutrition Cancer, 36, 238–241.

    Article  CAS  PubMed  Google Scholar 

  • Ayadi, R., Hamrouni, L., Hanana, M., Bouzid, S., Trifi, M., & Khouja, M. L. (2011). In vitro propagation and regeneration of an industrial plant kenaf (Hibiscus cannabinus L.). Industrial Crops and Products, 33, 474–480.

    Article  CAS  Google Scholar 

  • Bachari-Saleh, Z., Ezzatpanah, H., Aminafshar, M., & Safafar, H. (2013). The effect of refining process on the conjugated dienes in soybean oil. Journal of Agricultural Science and Technology, 15, 1185–1193.

    CAS  Google Scholar 

  • Baigent, C., Keech, A., Kearney, P. M., & Blackwell, L. (2005). Efficacy and safety of cholesterol lowering treatment: Prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. The Lancet, 366, 1267–1278.

    Article  CAS  Google Scholar 

  • Balasundram, N., Sundram, K., & Samman, S. (2006). Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chemistry, 99, 191–203.

    Article  CAS  Google Scholar 

  • Bartosińska, E., Buszewska-Forajta, M., & Siluk, D. (2016). GC-MS and LC-MS approaches for determination of tocopherols and tocotrienols in biological and food matrices. Journal of Pharmaceutical and Biomedical Analysis, 127, 156–169.

    Article  PubMed  CAS  Google Scholar 

  • Borrelli, F., Mafia, P., Pinto, L., Lanaro, A., Russo, A., Capasso, F., & Ialenti, A. (2002). Phytochemical compounds involved in the anti-inflammatory effect of propolis extract. Fitoterapia, 73(1), S53–S63.

    Article  CAS  PubMed  Google Scholar 

  • Boschin, G., & Arnoldi, A. (2011). Legumes are valuable sources of tocopherols. Food Chemistry, 127, 1199–1203.

    Article  CAS  PubMed  Google Scholar 

  • Bruscatto, M. H., Zambiazi, R. C., Sganzerla, M., Pestana, V. R., Otero, D., Lima, R., & Paiva, F. (2009). Degradation of tocopherols in rice bran oil submitted to heating at different temperatures. Journal of Chromatographic Science, 47, 762–765.

    Article  CAS  PubMed  Google Scholar 

  • Burton, G. W. (1994). Vitamin E: Molecular and biological function. The Proceedings of the Nutrition Society, 53, 251–262.

    Article  CAS  PubMed  Google Scholar 

  • Chan, K. W., & Ismail, M. (2009). Supercritical carbon dioxide fluid extraction of Hibiscus cannabinus L. seed oil: A potential solvent-free and high antioxidative edible oil. Food Chemistry, 114, 970–975.

    Article  CAS  Google Scholar 

  • Chan, K. W., Khong, N. M. H., Iqbal, S., Mansor, S. M., & Ismail, M. (2013). Defatted kenaf seed meal (DKSM): Prospective edible flour from agricultural waste with high antioxidant activity. LWT-Food Science and Technology, 53, 306–313.

    Article  CAS  Google Scholar 

  • Chen, Y. Z., Kao, S. Y., Jian, H. C., Yu, Y. M., Li, J. Y., Wang, W. H., & Tsai, C. W. (2015). Determination of cholesterol and four phytosterols in foods without derivatization by gas chromatography-tandem mass spectrometry. Journal of Food and Drug Analysis, 23, 636–644.

    Article  CAS  PubMed  Google Scholar 

  • Cheng, W. Y., Akanda, J. M. H., & Nyam, K. L. (2016). Kenaf seed oil: A potential new source of edible oil. Trends in Food Science and Technology, 52, 57–65.

    Article  CAS  Google Scholar 

  • Cheong, A. M., & Nyam, K. L. (2016). Improvement of physical stability of kenaf seed oil-in-water nanoemulsions by addition of β-cyclodextrin to primary emulsion containing sodium caseinate and Tween 20. Journal of Food Engineering, 183, 24–31.

    Article  CAS  Google Scholar 

  • Cheong, A. M., Tan, K. W., Tan, C. P., & Nyam, K. L. (2016a). Improvement of physical stability properties of kenaf (Hibiscus cannabinus L.) seed oil-in-water nanoemulsions. Industrial Crops and Products, 80, 77–85.

    Article  CAS  Google Scholar 

  • Cheong, A. M., Tan, K. W., Tan, C. P., & Nyam, K. L. (2016b). Kenaf (Hibiscus cannabinus L.) seed oil-in-water Pickering nanoemulsions stabilised by mixture of sodium caseinate, Tween 20 and β-cyclodextrin. Food Hydrocolloids, 52, 934–941.

    Article  CAS  Google Scholar 

  • Cheong, A. M., Tan, C. P., & Nyam, K. L. (2016c). In-vitro gastrointestinal digestion of kenaf seed oil-in-water nanoemulsions. Industrial Crops and Products, 87, 1–8.

    Article  CAS  Google Scholar 

  • Cheong, A. M., Tan, C. P., & Nyam, K. L. (2016d). In vitro evaluation of the structural and bioaccessibility of kenaf seed oil nanoemulsions stabilised by binary emulsifiers and β-cyclodextrin complexes. Journal of Food Engineering, 189, 90–98.

    Article  CAS  Google Scholar 

  • Cheong, A. M., Tan, C. P., & Nyam, K. L. (2017). Physicochemical, oxidative and anti-oxidant stabilities of kenaf seed oil-in0water nanoemulsions under different storage temperatures. Industrial Crops and Products, 95, 374–382.

    Article  CAS  Google Scholar 

  • Cheong, A. M., Koh, J. X. J., Patrick, N. O., Tan, C. P., & Nyam, K. L. (2018a). Hypocholesterolemic effects of kenaf seed oil, macroemulsion, and nanoemulsion in high-cholesterol diet induced rats. Journal of Food Science. https://doi.org/10.1111/1750-3841.14038. (In press).

    Article  CAS  PubMed  Google Scholar 

  • Cheong, A. M., Tan, Z. W., Patrick, N. O., Tan, C. P., Lim, Y. M., & Nyam, K. L. (2018b). Improvement of gastroprotective and anti-ulcer effect of kenaf seed oil-in-water nanoemulsions in rats. Food Science and Biotechnology. https://doi.org/10.1007/s10068-018-0342-0. (In press).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chew, S. C., & Nyam, K. L. (2016a). Oxidative stability of microencapsulated kenaf seed oil using co-extrusion technology. Journal of American Oil Chemist’s Society, 93(4), 607–615.

    Article  CAS  Google Scholar 

  • Chew, S. C., & Nyam, K. L. (2016b). Microencapsulation of kenaf seed oil by co-extrusion technology. Journal of Food Engineering, 175, 43–50.

    Article  CAS  Google Scholar 

  • Chew, S. C., Tan, C. P., Long, K., & Nyam, K. L. (2015). In-vitro evaluation of kenaf seed oil in chitosan coated-high methoxyl pectin-alginate microcapsules. Industrial Crops and Products, 76, 230–236.

    Article  CAS  Google Scholar 

  • Chew, S. C., Tan, C. P., Long, K., & Nyam, K. L. (2016). Effect of chemical refining on the quality of kenaf (Hibiscus cannabinus) seed oil. Industrial Crops and Products, 89, 59–65.

    Article  CAS  Google Scholar 

  • Chew, S. C., Tan, C. P., & Nyam, K. L. (2017a). Optimization of degumming parameters in chemical refining process to reduce phosphorus contents in kenaf seed oil. Separation and Purification Technology, 188, 379–385.

    Article  CAS  Google Scholar 

  • Chew, S. C., Tan, C. P., & Nyam, K. L. (2017b). Optimization of neutralization parameters in chemical refining of kenaf seed oil by response surface methodology. Industrial Crops and Products, 95, 742–750.

    Article  CAS  Google Scholar 

  • Chew, S. C., Tan, C. P., & Nyam, K. L. (2017c). Optimization of bleaching parameters in refining process of kenaf seed oil with a central composite design model. Journal of Food Science, 82, 1622–1630.

    Article  CAS  PubMed  Google Scholar 

  • Chew, S. C., Tan, C. P., & Nyam, K. L. (2017d). Application of response surface methodology for optimizing the deodorization parameters in chemical refining of kenaf seed oil. Separation and Purification Technology, 184, 144–151.

    Article  CAS  Google Scholar 

  • Chew, S. C., Tan, C. P., Lai, O. M., & Nyam, K. L. (2017e). Changes in 3-MCPD esters, glycidyl esters, bioactive compounds and oxidation indexes during kenaf seed oil refining. Food Science and Biotechnology. https://doi.org/10.1007/s10068-017-0295-8. (In press).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chew, S. C., Tan, C. P., & Nyam, K. L. (2017f). Comparative storage of crude and refined kenaf (Hibiscus cannabinus L.) seed oil during accelerated storage. Food Science and Biotechnology, 26, 63–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chew, S. C., Tan, C. P., & Nyam, K. L. (2018). In-vitro digestion of refined kenaf seed oil microencapsulated in β-cyclodextrin/gum arabic/sodium caseinate by spray drying. Journal of Food Engineering, 225, 34–41.

    Article  CAS  Google Scholar 

  • Codex Alimentarius Commission. (1982). Recommended internal standards edible fats and oils. Rome: FAO/WHO.

    Google Scholar 

  • Coetzee, R., Labuschagne, M. T., & Hugo, A. (2008). Fatty acid and oil variation in seed from kenaf (Hibiscus cannabinus L.). Industrial Crops and Products, 27, 104–109.

    Article  CAS  Google Scholar 

  • Cunha, S. S., Fernandes, J. O., & Oliveira, M. B. (2006). Quantification of free and esterified sterols in Portuguese olive oils by solid-phase extraction and gas chromatography–mass spectrometry. Journal of Chromatography A, 1128, 220–227.

    Article  CAS  PubMed  Google Scholar 

  • Dempsey, J. M. (1975). Fiber crops. Gainesville: The University Presses of Florida.

    Google Scholar 

  • EFSA. (2016). Risks for human health related to the presence of 3- and 2-monochloropropanediol (MCPD), and their fatty acid esters, and glycidyl fatty acid esters in food. EFSA Journal, 14(5), 4426.

    Google Scholar 

  • Ergönül, P. G., & Köseoğlu, O. (2014). Changes in α-, β-, γ- and δ-tocopherol contents of mostly consumed vegetable oils during refining process. CyTA- Journal of Food, 12, 199–202.

    Article  CAS  Google Scholar 

  • Ermacora, A., & Hrnčiřík, K. (2014). Development of an analytical method for the simultaneous analysis of MCPD esters and glycidyl esters in oil-based foodstuffs. Food Additves and Contaminants: Part A, 31, 985–994.

    Article  CAS  Google Scholar 

  • Ezhilarasi, P. N., Karthik, P., Chhanwal, N., & Anandharamakrishnan, C. (2013). Nanoencapsulation techniques for food bioactive components: A review. Food and Bioprocess Technology, 6, 628–647.

    Article  CAS  Google Scholar 

  • FAO. (2017). Jute, Kenaf, sisal, abaca, coir and allied Fibres. Statistical bulletin 2016 (p. 6). Rome: Food and Agricultural Organization of the United Nations.

    Google Scholar 

  • Farhoosh, R., Einafshar, S., & Sharayei, P. (2009). The effect of commercial refining steps on the rancidity measures of soybean and canola oils. Food Chemistry, 115, 933–938.

    Article  CAS  Google Scholar 

  • Farr, W. E. (2000). Refining of fats and oils. In R. D. O’Brien, W. E. Farr, & P. I. Wan (Eds.), Introduction to fats and oils technology (pp. 136–157). Urbana: AOCS Press.

    Google Scholar 

  • Foo, J. B., Yazan, L. S., Chan, K. W., Md Tahir, P., & Ismail, M. (2011). Kenaf seed oil from supercritical carbon dioxide fluid extraction induced g1 phase cell cycle arrest and apoptosis in leukemia cells. African Journal of Biotechnology, 10(27), 5389–5397.

    Google Scholar 

  • Foo, J. B., Yazan, L. S., Mansor, S. M., Ismail, N., Md Tahir, P., & Ismail, M. (2012). Kenaf seed oil from supercritical carbon dioxide fluid extraction inhibits the proliferation of WEHI-3B leukemia cells in vivo. Journal of Medicinal Plants Research, 6, 1429–1436.

    Google Scholar 

  • Franke, K., Strijowski, U., Fleck, G., & Pudel, F. (2009). Influence of chemical refining process and oil type on bound 3-chloro-1, 2-propanediol contents in palm oil and rapeseed oil. LWT- Food Science and Technology, 42, 1751–1754.

    Article  CAS  Google Scholar 

  • Gepdiremen, A., Mshvildadze, V., Süleyman, H., & Elias, R. (2005). Acute anti-inflammatory activity of four saponins isolated from ivy: Alpha-hederin, hederasaponin-C, hederacolchiside-E and hederacolchiside-F in carrageenan-induced rat paw edema. Phytomedicine, 12, 440–444.

    Article  CAS  PubMed  Google Scholar 

  • Ghafar, S. A. A., Ismail, M., Yazan, L. S., Fakurzi, S., Ismail, N., Chan, K. W., & Tahir, P. M. (2013). Cytotoxic activity of kenaf seed oils from supercritical carbon dioxide fluid extraction towards human colorectal cancer (HT29) cell lines. Evidence-Based Complementary and Alternative Medicine, 2013, 1–8.

    Article  Google Scholar 

  • Ghazani, S. M., & Marangoni, A. G. (2013). Minor components in canola oil and effects of refining on their constituents: A review. Journal of American Oil Chemist’s Society, 90, 923–932.

    Article  CAS  Google Scholar 

  • Gliszczyńska-Świglo, A., Sikorska, E., Khmelinskii, I., & Sikorski, M. (2007). Tocopherol content in edible plant oils. Polish Journal of Food and Nutrition Sciences, 57, 157–161.

    Google Scholar 

  • Gümez-Alonso, S., Fregapane, G., Salvador, M. D., & Gordon, M. H. (2003). Changes in phenolic composition and antioxidant activity of virgin olive oil during frying. Journal of Agricultural and Food Chemistry, 51, 667–672.

    Article  CAS  Google Scholar 

  • Guner, F. S., Yusuf, Y., & Erciyes, A. T. (2006). Polymeres from triglyceride oils. Progress in Organic Coatings, 31, 633–670.

    Google Scholar 

  • Gunstone, F. D. (2004). The chemistry of oils and fat: Sources, composition, properties and uses. Boca Raton: CRC Press LLC.

    Google Scholar 

  • Hamlet, C. G., Asuncion, L., Velíšek, J., Doleţal, M., Zelinková, Z., & Crews, C. (2011). Formation and occurrence of esters of 3-chloropropane-1,2-diol (3-CPD) in foods: What we know and what we assume. European Journal of Food Science and Technology, 113, 279–303.

    CAS  Google Scholar 

  • Hubbard, N. E., Lim, D., Summers, L., & Erickson, K. L. (2000). Reduction of murine mammary tumor metastasis by conjugated linoleic acid. Cancer Letters, 150, 93–100.

    Article  CAS  PubMed  Google Scholar 

  • Joseph, S., Sabulal, B. V., George, V., Smina, T. P., & Janardhanan, K. K. (2009). Antioxidative and anti-inflammatory activites of the chloroform extract of Ganoderma lucidum found in South India. Scientia Pharmaceutica, 77, 111–121.

    Article  CAS  Google Scholar 

  • Karabulut, I., Topcu, A., Yorulmaz, A., Tekin, A., & Ozay, D. S. (2005). Effect of the industrial refining process on some properties of hazelnut oil. European Journal of Lipid Science and Technology, 107, 476–480.

    Article  CAS  Google Scholar 

  • Khanna, S., Parinandi, N. L., Kotha, S. R., Roy, S., Rink, C., Bibus, D., & Sen, C. K. (2010). Nanomolar vitamin E α-tocotrienol inhibits glutamate induced activation of phospholipase A2 and causes neuroprotection. Journal of Neurochemistry, 112, 1249–1260.

    Article  CAS  PubMed  Google Scholar 

  • Kim, C. H., Park, M. K., Kim, S. K., & Cho, Y. H. (2014). Antioxidant capacity and anti-inflammatory activity of lycopene in watermelon. International Journal of Food Science and Technology, 49, 2083–2091.

    Article  CAS  Google Scholar 

  • Knothe, G., Razon, L. F., & Bacani, F. T. (2013). Kenaf oil methyl esters. Industrial Crops and Products, 49, 568–572.

    Article  CAS  Google Scholar 

  • Kreps, F., Vrbiková, L., & Schmidt, Š. (2014). Influence of industrial physical refining on tocopherol, chlorophyll and beta-carotene content in sunflower and rapeseed oil. European Journal of Lipid Science and Technology, 116, 1572–1582.

    Article  CAS  Google Scholar 

  • Kritchevsky, D. (2000). Antimutagenic and some other effects of conjugated linoleic acid. British Journal of Nutrition, 83, 459–465.

    Article  CAS  PubMed  Google Scholar 

  • Kritchevsky, D., & Chen, S. C. (2005). Phytosterols-health benefits and potential concerns-a review. Nutrition Research, 25, 413–428.

    Article  CAS  Google Scholar 

  • Lampi, A. M., Kataja, L., Eldin, A. K., & Vieno, P. (1999). Antioxidant activities of α- and γ- tocopherols in the oxidation of rapeseed oil triacylglycerols. Journal of American Oil Chemist’s Society, 76, 749–755.

    Article  CAS  Google Scholar 

  • Lee, S. Y., Jung, M. Y., & Yoon, S. H. (2014). Optimization of the refining process of camellia seed oil for edible purposes. Food Science and Biotechnology, 23, 65–73.

    Article  CAS  Google Scholar 

  • Legal Research Board. (2013). Food Act 1983 (Act 281) & Regulations. Malaysia: International Law Book Services.

    Google Scholar 

  • LeMahieu, P. J., Oplinger, E. S., & Putnam, D. H. (2003). Kenaf. Alternative field crops manual [Online]. Available from: http://www.corn.agronomy.wisc.edu/FISC/Alternatives/Kenaf.htm. Accessed 10 Nov 2015.

  • Lewy, M. (1947). Kenaf seed oil. Journal of the American Oil Chemists’ Society, 24, 3–5.

    Article  CAS  Google Scholar 

  • Li, D., Saldeen, T., Romeo, F., & Mehta, J. L. (1999). Relative effects of alpha- and gamma-tocopherol on low-density lipoprotein oxidation and superoxide dismutase and nitric oxide synthase activity and protein expression in rats. Journal of Cardiovascular Pharmacology and Therapeutics, 4, 219–226.

    Article  CAS  PubMed  Google Scholar 

  • Li, C., Li, L., Jia, H., Wang, Y., Shen, M., Nie, S., & Xie, M. (2016). Formation and reduction of 3-monochloropropane-1,2-diol esters in peanut oil during physical refining. Food Chemistry, 199, 605–611.

    Article  CAS  PubMed  Google Scholar 

  • MacDonald, H. B. (2000). Conjugated linoleic acid and disease prevention: A review of current knowledge. Journal of the American College of Nutrition, 19, 111–118.

    Article  Google Scholar 

  • Mariod, A. A., Fathy, S. F., & Ismail, M. (2010). Preparation and characterisation of protein concentrates from defatted kenaf seed. Food Chemistry, 123, 747–752.

    Article  CAS  Google Scholar 

  • Mariod, A. A., Matthäus, B., & Ismail, M. (2011). Comparison of supercritical fluid and hexane extraction methods in extracting kenaf (Hibiscus cannabinus) seed oil lipids. Journal of Americal Oil Chemist’s Society, 88, 931–935.

    Article  CAS  Google Scholar 

  • Miguel, M. G. (2010). Antioxidant and anti-inflammatory activities of essential oils: A short review. Molecules, 15, 9252–9287.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mohamed, A., Bhardwaj, H., Hamama, A., & Webber, C. (1995). Chemical composition of kenaf (Hibiscus cannabinus L.) seed oil. Industrial Crops and Products, 4, 157–165.

    Article  CAS  Google Scholar 

  • Morello, J. R., Vuorela, S., Romero, M. P., Motilva, M. J., & Heinonen, M. (2005). Antioxidant activity of olive pulp and olive oil phenolic compounds of the arbequina cultivar. Journal of Agricultural and Food Chemistry, 53(6), 2002–2008.

    Article  CAS  PubMed  Google Scholar 

  • Natella, F., Nardini, M., Virgili, F., & Scaccini, C. (2005). Role of dietary polyphenols in the platelet aggregation network- a review of the in vitro studies. Current Topics in Nutraceutical Research, 4(1), 2–21.

    Google Scholar 

  • National Kenaf and Tobacco Board. (2014). Profile NKTB [Online]. Available from: http://www.lktn.gov.my/index.php/en/about-us/nktb-history. Accessed 2 Dec 2017.

  • Nes, W. D., Fuller, G., & Tsai, L. S. (1984). Isopentenoids in plants: Biochemistry and function (p. 325). New York: Marcel Dekker.

    Google Scholar 

  • Ng, S. K., Lau, J. L. Y., Tan, C. P., Long, K., & Nyam, K. L. (2013a). Effect of accelerated storage on microencapsulated kenaf seed oil. Journal of American Oil Chemist’s Society, 90, 1023–1029.

    Article  CAS  Google Scholar 

  • Ng, S. K., Wong, P. Y., Tan, C. P., Long, K., & Nyam, K. L. (2013b). Influence of the inlet air temperature on the microencapsulation of kenaf (Hibiscus cannabinus L.) seed oil. European Journal of Lipid Science and Technology, 115, 1309–1318.

    Article  CAS  Google Scholar 

  • Ng, S. K., Choong, Y. H., Tan, C. P., Long, K., & Nyam, K. L. (2014). Effect of total solids content in feed emulsion on the physical properties and oxidative stability of microencapsulated kenaf seed oil. LWT-Food Science and Technology, 58, 627–632.

    Article  CAS  Google Scholar 

  • Ng, S. K., Tee, A. N., Lai, E. C. L., Tan, C. P., Long, K., & Nyam, K. L. (2015). Anti-hypercholesterolemic effect of kenaf (Hibiscus cannabinus L.) seed on high-fat diet Sprague dawley rats. Asian Pacific Journal of Tropical Medicine, 8, 6–13.

    Article  Google Scholar 

  • Nyam, K. L., Tan, C. P., Lai, O. M., Long, K., & Yaakob, C. M. (2009). Physicochemical properties and bioactive compounds of selected seed oils. LWT-Food Science and Technology, 42, 1396–1403.

    Article  CAS  Google Scholar 

  • Nyam, K. L., Wong, M. M., Long, K., & Tan, C. P. (2013). Oxidative stability of sunflower oils supplemented with kenaf seeds extract, roselle seeds extract and roselle extract, respectively under accelerated storage. International Food Research Journal, 20(2), 695–701.

    CAS  Google Scholar 

  • Nyam, K. L., Sin, L. N., & Long, K. (2015). Phytochemical analysis and anti-inflammatory effect of kenaf and roselle seeds. Malaysian Journal of Nutrition, 22(2), 245–254.

    Google Scholar 

  • Nyam, K. L., Tang, J. L. K., & Long, K. (2016). Anti-ulcer activity of Hibiscus cannabinus and Hibiscus sabdariffa seeds in ulcer-induced rats. International Food Research Journal, 23(3), 1164–1172.

    CAS  Google Scholar 

  • Ortega-García, J., Gámez-Meza, N., Noriega-Rodriguez, J. A., Dennis-Quiñonez, O., García-Galindo, H. S., Angulo-Guerrero, J. O., & Medina-Juárez, L. A. (2006). Refining of high oleic safflower oil: Effect on the sterols and tocopherols content. European Food Research and Technology, 223, 775–779.

    Article  CAS  Google Scholar 

  • Pascoal, A., Quirantes-Piné, R., Fernando, A. L., Alexopoulou, E., & Segura-Carretero, A. (2015). Phenolic composition and antioxidant activity of kenaf leaves. Industrial Crops and Products, 78, 116–123.

    Article  CAS  Google Scholar 

  • Phoon, M. C., Desbordes, C., Howe, J., & Chow, V. T. K. (2001). Linoleic and linolelaidic acids differentially influence proliferation and apoptosis of MOLT-4 leukaemia cells. Cell Biology International, 25, 777–784.

    Article  CAS  PubMed  Google Scholar 

  • Player, M. E., Kim, H. J., Lee, H. O., & Min, D. B. (2006). Stability of α-, γ- or δ-tocopherol during soybean oil oxidation. Journal of Food Science, 71, 456–460.

    Article  CAS  Google Scholar 

  • Ramesh, M. (2016). Kenaf (Hibiscus cannabinus L.) fibre based bio-materials: A review on processing and properties. Progress in Materials Science, 78–79, 1–92.

    Article  CAS  Google Scholar 

  • Ravinder, T., Kaki, S. S., Kanjilal, S., Rao, B. V. S. K., Swain, S. K., & Prasad, R. B. N. (2015). Refining of castor and tapioca leaf fed eri silkworm oils. International Journal of Chemical Science and Technology, 5(2), 32–37.

    Google Scholar 

  • Razon, L. F., Bacani, F. T., Evangelista, R. L., & Knothe, G. (2013). Fatty acid profile of kenaf seed oil. Journal of Americal Oil Chemist’s Society, 90, 835–840.

    Article  CAS  Google Scholar 

  • Reiter, E., Jiang, Q., & Christen, S. (2007). Anti-inflammatory properties of α- and γ-tocopherol. Molecular Aspects of Medicine, 28, 668–691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossi, M., Gianazza, M., Alamprese, C., & Stanga, F. (2001). The effect of bleaching and physical refining on colour and minor components of palm oil. Journal of the American Oil Chemists’ Society, 78, 1051–1055.

    Article  CAS  Google Scholar 

  • Ruiz, M. L., Castillo, D., Dobson, D., Brennan, R., & Gordon, S. (2002). Genotypic variation in fatty acid content of blackcurrant seed. Journal of Agricultural and Food Chemistry, 50, 332–335.

    Article  CAS  Google Scholar 

  • Ryu, S. W., Jin, C. W., Lee, H. S., Lee, J. Y., Sapkota, K., Lee, B. G., Yu, C. Y., Lee, M. K., Kim, M. J., & Cho, D. H. (2006). Changes in total polyphenol: Total flavonoid contents andantioxidant activities of Hibiscus cannabinus L. Korean Journal of Medicinal Crop Science, 14, 307–310.

    Google Scholar 

  • Sachin, S. S., & Archana, R. J. (2009). Antiulcer activity of methanol extract of Erythrina indica Lam. Leaves in experimental animals. Pharmacognosy Research, 1, 396–401.

    Google Scholar 

  • Saldeen, T., Li, D., & Mehta, J. L. (1999). Differential effects of alpha- and gamma- tocopherol on low-density lipoprotein oxidation, superoxide activity, platelet aggregation and arterial thrombogenesis. Journal of the American College of Cardiology, 34, 1208–1215.

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Machado, D. I., López-Cervantes, J., Núñez-Gastélum, J. A., Mora- López, G. S., López-Hernández, J., & Paseiro-Losada, P. (2015). Effect of the refining process on Moringa oleifera seed oil quality. Food Chemistry, 187, 53–57.

    Article  PubMed  CAS  Google Scholar 

  • Sanguansri, P., & Augustin, M. A. (2006). Nanoscale materials development – a food industry perspective. Trends in Food Science and Technology, 17(10), 547–556.

    Article  CAS  Google Scholar 

  • Schwarz, H., Ollilainen, V., Piironen, V., & Lampi, A.-M. (2008). Tocopherol, tocotrienol and plant sterol contents of vegetable oils and industrial fats. Journal of Food Composition and Analysis, 21(2), 152–161.

    Article  CAS  Google Scholar 

  • Scott, A. W., Jr., & Taylor, C. S. (1990). Economics of kenaf production in the lower Rio Grande Valley of Texas. In J. Janick & J. E. Simon (Eds.), Advances in new crops (pp. 292–297). Portland: Timber Press.

    Google Scholar 

  • Sen, C. K., Khanna, S., & Roy, S. (2007). Tocotrienols in health and disease: The other half of the natural vitamin E family. Molecular Aspects of Medicine, 28, 692–728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith, T. J. (2000). Squalene: Potential chemopreventive agent. Expert Opinion on Investigational Drugs, 9, 1841–1848.

    Article  CAS  PubMed  Google Scholar 

  • Suliman, T. E. M. A., Jiang, J., & Liu, Y. F. (2013). Chemical refining of sunflower oil: Effect on oil stability, total tocopherol, free fatty acids and colour. International Journal of Engineering Science and Technology, 5(2), 449–454.

    Google Scholar 

  • Tan, C. P., Che Man, Y. B., Selamat, J., & Yusoff, M. S. A. (2002). Comparative studies of oxidative stability of edible oils by differential scanning calorimetry and oxidative stability index methods. Food Chemistry, 76, 385–389.

    Article  CAS  Google Scholar 

  • Tilak, K. S., Veeraiah, K., & Koteswara Rao, D. K. (2001). Restoration on tissue antioxidants by fenugreek seeds (Trigonella foenum Graecum) in alloxan-diabetic rats. Indian Journal Physiology Pharmacology, 45, 408–420.

    Google Scholar 

  • Tyagi, K., Ansari, M. A., Tyagi, S., & Tyagi, A. (2012). A novel process for physically refining rice bran oil through degumming. Advances in Applied Science Research, 3, 1435–1439.

    CAS  Google Scholar 

  • Vaquero, E. M., Beltrán, S., & Sanz, M. T. (2006). Extraction of fat from pigskin with supercritical carbon dioxide. The Journal of Supercritical Fluids, 37, 142–150.

    Article  CAS  Google Scholar 

  • Verleyen, T., Sosinska, U., Ioannidou, S., Verhé, R., Dewettinck, K., Huyghebaert, A., & De Greyt, W. (2002). Influence of the vegetable oil refining process on free and esterified sterols. Journal of American Oil Chemist’s Society, 79, 947–953.

    Article  CAS  Google Scholar 

  • Villanueva, M. J., Yokoyama, W. H., Hong, Y. J., Barttley, G. E., & Rupérez, P. (2011). Effect of high-fat diets supplemented with okara soybean by-product on lipid profiles of plasma, liver and faeces in Syrian hamsters. Food Chemistry, 124, 72–79.

    Article  CAS  Google Scholar 

  • Wang, T., & Johnson, L. A. (2001). Refining high-free fatty acid wheat germ oil. Journal of American Oil Chemist’s Society, 78(1), 71–76.

    Article  CAS  Google Scholar 

  • Webber, C. L., III, & Bledsoe, V. K. (2002). Kenaf yield components and plant components. In J. Janick & A. Whipkey (Eds.), Trends in new crops and new use (pp. 348–357). Alexandria: ASHS Press.

    Google Scholar 

  • Wei, J., Chen, L., Qiu, X. Y., Hu, W. J., Sun, H., Chen, X. L., Bai, Y. Q., Gu, X. Y., Wang, C. L., Chen, H., Hu, R. B., Zhang, H., & Shen, G. X. (2015). Optimizing refining temperature to reduce the loss of essential fatty acids and bioactive compounds in tea seed oil. Food and Bioproducts Processing, 94, 136–146.

    Article  CAS  Google Scholar 

  • Wong, Y. H., Tan, W. Y., Tan, C. P., Long, K., & Nyam, K. L. (2014a). Cytotoxic activity of kenaf (Hibiscus cannabinus L.) seed extract and oil against human cancer cell lines. Asian Pacific Journal of Tropical Biomedicine, 4(Supp 1), S510–S515.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wong, Y. H., Lau, H. W., Tan, C. P., Long, K., & Nyam, K. L. (2014b). Binary solvent extraction system and extraction time effects on phenolic antioxidants from kenaf seeds (Hibiscus cannabinus L.) extracted by a pulsed ultrasonic-assisted extraction. The Scientific World Journal, 2014, 1–7.

    Google Scholar 

  • Wong, Y. H., Muhamad, H., Abas, F., Lai, O. M., Nyam, K. L., & Tan, C. P. (2017). Effects of temperature and NaCl on the formation of 3-MCPD esters and glycidyl esters in refined, bleached and deodorized palm olein during deep-fat frying of potato chips. Food Chemistry, 219, 126–130.

    Article  CAS  PubMed  Google Scholar 

  • Yazan, L. S., Foo, J. B., Ghafar, S. A. A., Chan, K. W., Md Tahir, P., & Ismail, M. (2011a). Effect of kenaf seed oil from different ways of extraction towards ovarian cancer cells. Food and Bioproducts Processing, 89, 328–332.

    Article  Google Scholar 

  • Yazan, L. S., Foo, J. B., Chan, K. W., Md Tahir, P., & Ismail, M. (2011b). Kenaf seed oil from supercritical carbon dioxide fluid extraction shows cytotoxic effects towards various cancer cell lines. African Journal of Biotechnology, 10, 5381–5388.

    CAS  Google Scholar 

  • Zacchi, P., & Eggers, R. (2008). High-temperature pre-conditioning of rapeseed: A polyphenol-enriched oil and the effect of refining. European Journal of Lipid Science and Technology, 110, 111–119.

    Article  CAS  Google Scholar 

  • Zelinková, Z., Novotný, O., Schůrek, J., Velíšek, J., Hajslová, J., & Doleţal. (2008). Occurrence of 3-MCPD fatty acid esters in human breast milk. Food Additives and Contaminants: Part A, 25(6), 669–676.

    Article  CAS  Google Scholar 

  • Zelinková, Z., Doleţal, M., & Velíšek, J. (2009). Occurrence of 3-chloropropane-1,2-diol fatty acid esters in infant and baby foods. European Food Research and Technology, 228(4), 571–578.

    Article  CAS  Google Scholar 

  • Zufarov, O., Schmidt, S., & Sekretár, S. (2008). Degumming of rapeseed and sunflower oils. Acta Chimica Slovenica, 1, 321–328.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kar Lin Nyam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chew, S.C., Nyam, K.L. (2019). Kenaf (Hibiscus cannabinus L.) Seed Oil. In: Ramadan, M. (eds) Fruit Oils: Chemistry and Functionality. Springer, Cham. https://doi.org/10.1007/978-3-030-12473-1_23

Download citation

Publish with us

Policies and ethics