Skip to main content

Trends of Organic Electrosynthesis by Using Boron-Doped Diamond Electrodes

  • Chapter
  • First Online:
Novel Aspects of Diamond

Part of the book series: Topics in Applied Physics ((TAP,volume 121))

Abstract

The electro-organic synthesis is currently experiencing a renaissance due to the tremendous contributions of various electrocatalytic materials as well as the use of electric current as an inexpensive and suitable reagent to drive the electrosynthetic transformations, avoiding conventional chemical oxidizers or reducing agents. Consequently, electrosynthesis has a significant technical impact, because these processes can be easily scaled up, benefiting from advantages such as versatility, environmental compatibility (possibility of recovering and recycling non-converted substrates), automation (switching on or off electric current), inherent safety and potential cost effectiveness among others. Although many novel electrode materials have been developed and established in electro-organic synthesis, diamond films emerge as a novel and sustainable solution in selective electrochemical transformations for value-added organic products. This chapter aims to offer an overview on the recent synthetic developments which represent hot topics in BDD electro-organic synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.R. Waldvogel, S. Möhle, M. Zirbes, E. Rodrigo, T. Gieshoff, A. Wiebe, Modern electrochemical aspects for the synthesis of value added organic products. Angew. Chem. Int. Ed. (2018) (in press). https://doi.org/10.1002/anie.201712732

  2. S.R. Waldvogel, A. Wiebe, T. Gieshoff, S. Möhle, E. Rodrigo, M. Zirbes, Electrifying organic synthesis. Angew. Chem. Int. Ed. (2018) (in press). https://doi.org/10.1002/anie.201711060

  3. M. Yan, Y. Kawamata, P.S. Baran, Synthetic organic electrochemical methods since 2000: on the verge of a renaissance. Chem. Rev. 117(21), 13230–13319 (2017). https://doi.org/10.1021/acs.chemrev.7b00397

    Article  CAS  Google Scholar 

  4. A.J. Fry, in Synthetic Organic Electrochemistry, 2nd edn. (Wiley, New York, 1989)

    Google Scholar 

  5. (a) H.-J. Schäfer, in Encyclopedia of Electrochemistry, ed. by A.J. Bard, M. Stratmann, H.-J. Schäfer (Wiley-VCH, Weinheim, 2004), pp. 125–170; (b) H.-J. Schäfer, in Organic Electrochemistry, ed. by H. Lund, O. Hammerich (Marcel Dekker, New York, 2001), pp. 207–222

    Google Scholar 

  6. S.R. Waldvogel, A. Kirste, S. Mentizi, in Synthetic Diamond Films. Preparation, Electrochemistry, Characterization, and Applications, ed. by C.A. Martínez-Huitle, E. Brillas (Wiley, Hoboken, N.J, 2011), pp. 483–510. https://doi.org/10.1002/9781118062364.ch19

  7. S. Garcia-Segura, E. Vieira dos Santos, C.A. Martínez-Huitle, Role of sp3/sp2 ratio on the electrocatalytic properties of boron-doped diamond electrodes: a mini review. Electrochem. Commun. 59, 52–55 (2015). https://doi.org/10.1016/j.elecom.2015.07.002

    Article  CAS  Google Scholar 

  8. E. Brillas, C.A. Martínez-Huitle, Synthetic Diamond Films: Preparation, Electrochemistry, Characterization, and Applications (Wiley, Hoboken, N.J, 2011). https://doi.org/10.1002/9781118062364

  9. C.A. Martínez-Huitle, M.A. Rodrigo, I. Sires, O. Scialdone, Single and coupled electrochemical processes and reactors for the abatement of organic water pollutants: a critical review. Chem. Rev. 115(24), 13362–13407 (2015). https://doi.org/10.1021/acs.chemrev.5b00361

    Article  CAS  Google Scholar 

  10. C.A. Martínez-Huitle, E. Brillas, Electrochemical alternatives for drinking water disinfection. Angew. Chem. Int. Ed. 47(11), 1998–2005 (2008). https://doi.org/10.1002/anie.200703621

    Article  CAS  Google Scholar 

  11. A. Kirste, M. Nieger, I.M. Malkowsky, F. Stecker, A. Fischer, S.R. Waldvogel, Ortho-selective phenol-coupling reaction by anodic treatment on boron-doped diamond electrode using fluorinated alcohols. Chem. Eur. J. 15(10), 2273–2277 (2009). https://doi.org/10.1002/chem.200802556

    Article  CAS  Google Scholar 

  12. A. Kirste, G. Schnakenburg, F. Stecker, A. Fischer, S.R. Waldvogel, Anodic phenol arene cross-coupling reaction on boron-doped diamond electrodes. Angew. Chem. Int. Ed. 49(5), 971–975 (2010). https://doi.org/10.1002/anie.200904763

    Article  CAS  Google Scholar 

  13. P. Sabatier, in Nobel Lectures, Chemistry (Elsevier Publishing, Amsterdam, 1966), pp. 1901−1920

    Google Scholar 

  14. N. Yang, S.R. Waldvogel, X. Jiang, Electrochemistry of carbon dioxide on carbon electrodes. ACS Appl. Mater. Interfaces. 8(42), 28357–28371 (2016). https://doi.org/10.1021/acsami.5b09825

    Article  CAS  Google Scholar 

  15. B.R. Eggins, E.M. Brown, E.A. O’Neill, J. Grimshaw, Carbon dioxide fixation by electrochemical reduction in water to oxaiate and glyoxylate. Tetrahedron Lett. 29(8), 945–948 (1988). https://doi.org/10.1016/S0040-4039(00)82489-2

    Article  CAS  Google Scholar 

  16. K. Nakata, T. Ozaki, C. Terashima, A. Fujishima, Y. Einaga, High-yield electrochemical production of formaldehyde from CO2 and seawater. Angew. Chem., Int. Ed. 53(3), 871–874 (2014). https://doi.org/10.1002/anie.201308657

  17. Y. Liu, S. Chen, X. Quan, H. Yu, Efficient electrochemical reduction of carbon dioxide to acetate on nitrogen-doped nanodiamond. J. Am. Chem. Soc. 137(36), 11631–11636 (2015). https://doi.org/10.1021/jacs.5b02975

    Article  CAS  Google Scholar 

  18. S. Zhang, P. Kang, S. Ubnoske, M.K. Brennaman, N. Song, R.L. House, J.T. Glass, T.J. Meyer, Polyethylenimine-enhanced electrocatalytic reduction of CO2 to formate at nitrogen-doped carbon nanomaterials. J. Am. Chem. Soc. 136(22), 7845–7848 (2014). https://doi.org/10.1021/ja5031529

    Article  CAS  Google Scholar 

  19. J. Wu, R.M. Yadav, M. Liu, P.P. Sharma, C.S. Tiwary, L. Ma, X. Zou, X.-D. Zhou, B.I. Yakobson, J. Lou, P.M. Ajayan, Achieving highly efficient, selective, and stable CO2 reduction on nitrogen-doped carbon nanotubes. ACS Nano 9(5), 5364–5371 (2015). https://doi.org/10.1021/acsnano.5b01079

    Article  CAS  Google Scholar 

  20. P.A. Christensen, A. Hamnett, A.V.G. Muir, N.A. Freeman, CO2 reduction at platinum, gold and glassy carbon electrodes in acetonitrile, an in-situ FTIR study. J. Electroanal. Chem. Interfacial Electrochem. 288(1–2), 197–215 (1990). https://doi.org/10.1016/0022-0728(90)80035-5

    Article  CAS  Google Scholar 

  21. K. Hara, A. Kudo, T. Sakata, Electrochemical CO2 reduction on a glassy carbon electrode under high pressure. J. Electroanal. Chem. 421(1–2), 1–4 (1997). https://doi.org/10.1016/S0022-0728(96)01028-5

    Article  CAS  Google Scholar 

  22. P.K. Jiwanti, K. Natsui, K. Nakatab, Y. Einaga, Selective production of methanol by the electrochemical reduction of CO2 on boron-doped diamond electrodes in aqueous ammonia solution. RSC Adv. 6(104), 102214–102217 (2016). https://doi.org/10.1039/C6RA20466J

    Article  CAS  Google Scholar 

  23. N. Ikemiya, K. Natsui, K. Nakata, Y. Einaga, Effect of alkali-metal cations on the electrochemical reduction of carbon dioxide to formic acid using boron-doped diamond electrodes. RSC Adv. 7(36), 22510–22514 (2017). https://doi.org/10.1039/C7RA03370B

    Article  CAS  Google Scholar 

  24. K. Natsui, H. Iwakawa, N. Ikemiya, K. Nakata, Y. Einaga, Stable and highly efficient electrochemical production of formic acid from carbon dioxide using diamond electrodes. Angew. Chem. Int. Ed. 57(10), 2639–2643 (2018). https://doi.org/10.1002/anie.201712271

    Article  CAS  Google Scholar 

  25. Y. Hori, H. Wakebe, T. Tsukamoto, O. Koga, Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochim. Acta 39(11–12), 1833–1839 (1994). https://doi.org/10.1016/0013-4686(94)85172-7

    Article  CAS  Google Scholar 

  26. N. Yang, F. Gao, C.E. Nebel, Diamond decorated with copper nanoparticles for electrochemical reduction of carbon dioxide. Anal. Chem. 85(12), 5764–5769 (2013). https://doi.org/10.1021/ac400377y

    Article  CAS  Google Scholar 

  27. H.S. Panglipur, T.A. Ivandini, R. Wibowo, Y. Einaga, Electroreduction of CO2 using copper-deposited on boron-doped diamond (BDD). AIP Conf. Proc. 1729, 020047 (2016). https://doi.org/10.1063/1.4946950

    Article  CAS  Google Scholar 

  28. P.K. Jiwanti, K. Natsui, K. Nakata, Y. Einaga, The electrochemical production of C2/C3 species from carbon dioxide on copper-modified boron-doped diamond electrodes. Electrochim. Acta 266, 414–419 (2018). https://doi.org/10.1016/j.electacta.2018.02.041

    Article  CAS  Google Scholar 

  29. N. Spataru, K. Tokuhiro, C. Terashima, T.N. Rao, A. Fujishima, Electrochemical reduction of carbon dioxide at ruthenium dioxide deposited on boron-doped diamond. J. Appl. Electrochem. 33(12), 1205–1210 (2003). https://doi.org/10.1023/B:JACH.0000003866.85015.b6

    Article  CAS  Google Scholar 

  30. S.A. Yao, R.E. Ruther, L.H. Zhang, R.A. Franking, R.J. Hamers, J.F. Berry, Covalent attachment of catalyst molecules to conductive diamond: CO2 reduction using “smart” electrodes. J. Am. Chem. Soc. 134(38), 15632–15635 (2012). https://doi.org/10.1021/ja304783j

    Article  CAS  Google Scholar 

  31. N. Roy, Y. Hirano, H. Kuriyama, P. Sudhagar, N. Suzuki, K. Katsumata, K. Nakata, T. Kondo, M. Yuasa, I. Serizawa, T. Takayama, A. Kudo, A. Fujishima, C. Terashima, Boron-doped diamond semiconductor electrodes: efficient photoelectrochemical CO2 reduction through surface modification. Sci. Rep. 6(38010), 1–9 (2016). https://doi.org/10.1038/srep38010

    Article  CAS  Google Scholar 

  32. (a) L. Bouveault, G. Blanc, Compt. Rend. 136, 1676–1678 (1903); (b) B.I. Seo, L.K. Wall, H. Lee, J.W. Buttrum, D.E. Lewis, An improved practical synthesis of isomerically pure 3-endo-(p-Methoxybenzyl)isoborneol. Synth. Commun. 23(1), 15–22 (2006). https://doi.org/10.1080/00397919308020396

  33. J. Tafel, E. Pfeffermann, Elektrolytische reduktion von oximen und phenylhydrazonen in schwefelsaurer löosung. Ber. Dtsch. Chem. Ges. 35, 1510–1518 (1902)

    Article  CAS  Google Scholar 

  34. H.B. Martin, A. Argoita, U. Landau, A.B. Anderson, J.C. Angus, Hydrogen and oxygen evolution on boron-doped diamond electrodes. J. Electrochem. Soc. 143(6), L133–L136 (1996). https://doi.org/10.1149/1.1836901

    Article  CAS  Google Scholar 

  35. U. Griesbach, D. Zollinger, H. Pütter, C. Comninellis, Evaluation of boron doped diamond electrodes for organic electrosynthesis on a preparative scale. J. Appl. Electrochem. 35(12), 1265–1270 (2005)

    Article  CAS  Google Scholar 

  36. (a) M.C. Schopohl, C. Siering, O. Kataeva, S.R. Waldvogel, Reversible enantiofacial dicrimination of a single heterocyclic substrate by supramolecular receptors—a new concept for chiral induction. Angew. Chem. Int. Ed. 42(23), 2620–2623 (2003). https://doi.org/10.1002/anie.200351102; (b) C. Siering, S. Grimme, S.R. Waldvogel, Direct assignment of enantiofacial discrimination on single heterocyclic substrates by self-induced CD (SICD). Chem. Eur. J. 11(6), 1877–1888 (2005). https://doi.org/10.1002/chem.200401002; (c) M.C. Schopohl, A. Faust, D. Mirk, R. Fröhlich, O. Kataeva, S.R. Waldvogel, Synthesis of rigid receptors based on Triphenylen Ketals. Eur. J. Org. Chem. (14), 2987–2999 (2005). https://doi.org/10.1002/ejoc.200500108; (d) M. Bomkamp, C. Siering, K. Landrock, H. Stephan, R. Fröhlich, S.R. Waldvogel, Chem. Extraction experiments of radio-labelled xanthine derivatives by artificial receptors—deep insight into the association behaviour. Eur. J. 13(13), 3724–3732 (2007). https://doi.org/10.1002/chem.200601231; (e) W. Schade, C. Bohling, K. Hohmann, C. Bauer, R. Orghici, S.R. Waldvogel, D. Scheel, Photonic sensors for security applications. Phot. Int. 1, 32–34 (2007); W. Schade, C. Bohling, K. Hohmann, C. Bauer, R. Orghici, S.R. Waldvogel, D. Scheel, Photonische Sensoren für die Sicherheitstechnik. Photonik 38, 70–73 (2006); (f) R. Orghici, U. Willer, M. Gierszewska, S.R. Waldvogel, W. Schade, Fiber optic evanescent-field-sensor for detection of explosives and CO2 dissolved in water. Appl. Phys. B 90, 355 (2008). https://doi.org/10.1007/s00340-008-2932-7; (g) S. Börner, R. Orghici, S.R. Waldvogel, U. Willer, W. Schade, Evanescent field sensors and the implementation of waveguiding nanostructures. Appl. Opt. 48(4), B183 (2009). https://doi.org/10.1364/ao.48.00b183; (h) U. Schwartz, R. Großer, K.-E. Piejko, B. Bömer, D. Arlt, Optisch aktive (Meth)-acrylamide, Polymere daraus, Verfahren zu ihrer Herstellung und ihre Verwendung zur Racematspaltung, DE3532356A1. Ger. Pat. Appl. (1987); (i) M. Grose-Bley, B. Bömer, R. Großer, D. Arlt, W. Lange, Optisch aktive schwefelhaltige aminosaeure-derivate, ihre herstellung, ihre polymerisation zu optisch aktiven polymeren und deren verwendung, DE4120695 Ger. Pat. Appl. (1992); (j) B. Bömer, R. Großer, W. Lange, U. Zweering, B. Köhler, W. Sirges, M. Grose-Bley, Chirale stationäre Phasen für die chromatographische Trennung von optischen Isomeren, DE19546136A1 Ger. Pat. Appl. (1997); (k) W. Lange, R. Grosser, B. Köhler, S. Michel, B. Bömer, U. Zweering, Chromatographic enantiomer of lactones, DE19714343A1 Ger. Pat. Appl. (1998); (l) J. Looft, T. Vössing, J. Ley, M. Backes, M. Blings, Substituted cyclopropane carbolic acid(3-methyl-cyclohexyl)amides as taste substances, EP1989944A1 Ger. Pat. Appl. (2008)

  37. M.C. Schopohl, K. Bergander, O. Kataeva, R. Fröhlich, S.R. Waldvogel, Synthesis and characterization of enantiomerically pure menthylamines and their isocyanates. Synthesis 17, 2689–2694 (2003). https://doi.org/10.1055/s-2003-42432

    Article  CAS  Google Scholar 

  38. U. Griesbach, S.R. Waldvogel, J. Kulisch, I.M. Malkowsky, Process for the preparation of pantoprazole sodium. PCT Int. Appl. WO2008003620 A2 20080110 (2008)

    Google Scholar 

  39. E. Rodrigo, S.R. Waldvogel, Very simple one-pot electrosynthesis of nitrones starting from nitro and aldehyde components. Green Chem. (2018) (in press). https://doi.org/10.1039/c8gc00474a

  40. J. Yoshida, K. Kataoka, R. Horcajada, A. Nagaki, Modern strategies in electroorganic synthesis. Chem. Rev. 108(7), 2265–2299 (2008). https://doi.org/10.1021/cr0680843

    Article  CAS  Google Scholar 

  41. (a) T. Lehmann, R. Schneider, C. Weckbecker, E. Dunach, S.Oliviero, Process for the production of 2-hydroxy-4-methylmercaptobutyric acid, WO 02/16671 (2002); (b) T. Lehmann, R. Schneider, C. Reufer, R. Sanzenbacher, in Chemie und Biochemie, ed. by J. Russow, H.J. Schäfer, GDCh-Monographie 23, 251–258 (2001)

    Google Scholar 

  42. C. Reufer, M. Hateley, T. Lehmann, C. Weckbecker, R. Sanzenbacher, J. Bilz, EP 1 631702 (2006)

    Google Scholar 

  43. T. Kojima, R. Obata, T. Saito, Y. Einaga, S. Nishiyama, Cathodic reductive coupling of methyl cinnamate on boron-doped diamond electrodes and synthesis of new neolignan-type products. Beilstein J. Org. Chem. 11, 200–203 (2015). https://doi.org/10.3762/bjoc.11.21

    Article  CAS  Google Scholar 

  44. S.R. Waldvogel, S. Möhle, Versatile electrochemical C, H-amination via Zincke intermediates. Angew. Chem. Int. Ed. 54(22), 6398–6399 (2015). https://doi.org/10.1002/anie.201502638

    Article  CAS  Google Scholar 

  45. (a) J.F. Hartwig, Discovery and understanding of transition-metal-catalyzed aromatic substitution reactions. Synlett 9, 1283–1294 (2006). https://doi.org/10.1055/s-2006-939728; (b) J.F. Hartwig, Carbon-heteroatom bond formation catalysed by organometallic complexes. Nature 455(7211), 314–322 (2008). https://doi.org/10.1038/nature07369; (c) J.F. Hartwig, Evolution of a fourth generation catalyst for the amination and thioetherification of aryl halides. Acc. Chem. Res. 41(11), 1534–1562 (2008). https://doi.org/10.1021/ar800098p; (d) D.S. Surry, S.L. Buchwald, Biaryl phosphine ligands in palladium-catalyzed amination. Angew. Chem. Int. Ed. 47(34), 6338–6361 (2008). https://doi.org/10.1002/anie.200800497; D.S. Surry, S.L. Buchwald, Biarylphosphanliganden in der palladiumkatalysierten aminierung. Angew. Chem. 120(34), 6438–6461 (2008). https://doi.org/10.1002/ange.200800497; (e) D.S. Surry, S.L. Buchwald, Diamine ligands in copper-catalyzed reactions. Chem. Sci. 1, 13–31 (2010). https://doi.org/10.1039/c0sc00107d; (f) D.S. Surry, S.L. Buchwald, Dialkylbiaryl phosphines in Pd-catalyzed amination: a user’s guide. Chem. Sci. 2, 27–50 (2011). https://doi.org/10.1039/c0sc00331j

  46. (a) T.W. Lyons, M.S. Sanford, Palladium-catalyzed ligand-directed C-H functionalization reactions. Chem. Rev. 110(2), 1147–1169 (2010). https://doi.org/10.1021/cr900184e; (b) N. Kuhl, M.N. Hopkinson, J. Wencel-Delord, F. Glorius, Beyond directing groups: transition-metal-catalyzed C-H activation of simple arenes. Angew. Chem. Int. Ed. 51(41), 10236–10254 (2012). https://doi.org/10.1002/anie.201203269; N. Kuhl, M.N. Hopkinson, J. Wencel-Delord, F. Glorius, Ohne dirigierende gruppen: übergangsmetallkatalysierte C‐H‐Aktivierung einfacher Arene. Angew. Chem. 124(41), 10382–10401 (2012). https://doi.org/10.1002/ange.201203269

  47. (a) Q. Shen, J.F. Hartwig, Palladium-Catalyzed coupling of ammonia and lithium amide with aryl halides. J. Am. Chem. Soc. 128(31), 10028–10029 (2006). https://doi.org/10.1021/ja064005t; (b) G.D. Vo, J.F. Hartwig, Palladium-Catalyzed coupling of ammonia with aryl chlorides, bromides, iodides, and sulfonates: a general method for the preparation of primary arylamines. J. Am. Chem. Soc. 131(31), 11049–11061 (2009). https://doi.org/10.1021/ja903049z

  48. T. Morofuji, A. Shimizu, J.I. Yoshida, Electrochemical C-H amination: synthesis of aromatic primary amines via N-arylpyridinium ions. J. Am. Chem. Soc. 135(13), 5000–5003 (2013). https://doi.org/10.1021/ja402083e

    Article  CAS  Google Scholar 

  49. S. Herold, S. Möhle, M. Zirbes, F. Richter, H. Nefzger, S.R. Waldvogel, Electrochemical amination of less-activated alkylated arenes using boron-doped diamond anodes. Eur. J. Org. Chem. 2016(7), 1274–1278 (2016). https://doi.org/10.1002/ejoc.201600048

    Article  CAS  Google Scholar 

  50. S. Möhle, S. Herold, F. Richter, H. Nefzger, S.R. Waldvogel, Twofold electrochemical amination of naphthalene and related arenes. ChemElectroChem 4(9), 2196–2210 (2017). https://doi.org/10.1002/celc.201700476

    Article  CAS  Google Scholar 

  51. A. Wiebe, B. Riehl, S. Lips, R. Franke, S.R. Waldvogel, Unexpected high robustness of electrochemical cross-coupling for a broad range of current density. Sci. Adv. 3(10), 1–7 (2017). https://doi.org/10.1126/sciadv.aao3920

    Article  CAS  Google Scholar 

  52. O. Holloczki, A. Berkessel, J. Mars, M. Mezger, A. Wiebe, S.R. Waldvogel, B. Kirchner, The catalytic effect of fluoroalcohol mixtures depends on domain formation. ACS Catal. 7(3), 1846–1852 (2017). https://doi.org/10.1021/acscatal.6b03090

    Article  CAS  Google Scholar 

  53. A. Kirste, B. Elsler, G. Schnakenburg, S.R. Waldvogel, Efficient anodic and direct phenol-arene C, C cross-coupling—the benign role of water or methanol. J. Am. Chem. Soc. 134(7), 3571–3576 (2012). https://doi.org/10.1021/ja211005g

    Article  CAS  Google Scholar 

  54. B. Elsler, D. Schollmeyer, K.M. Dyballa, R. Franke, S.R. Waldvogel, Metal- and reagent-free highly selective anodic cross-coupling reaction of phenols. Angew. Chem. Int. Ed. 53(20), 5210–5213 (2014). https://doi.org/10.1002/anie.201400627

    Article  CAS  Google Scholar 

  55. B. Riehl, K.M. Dyballa, R. Franke, S.R. Waldvogel, Electro-organic synthesis as sustainable alternative for dehydrogenative cross-coupling of phenols and naphthols. Synthesis 49(02), 252–259 (2017). https://doi.org/10.1055/s-0036-1588610

    Article  CAS  Google Scholar 

  56. B. Elsler, A. Wiebe, D. Schollmeyer, K.M. Dyballa, R. Franke, S.R. Waldvogel, Source of selectivity in oxidative cross-coupling of aryls by solvent effect of 1,1,1,3,3,3-Hexafluoropropan-2-ol. Chem. Eur. J. 21(35), 12321–12325 (2015). https://doi.org/10.1002/chem.201501604

    Article  CAS  Google Scholar 

  57. A. Wiebe, D. Schollmeyer, K.M. Dyballa, R. Franke, S.R. Waldvogel, Selective synthesis of partially protected non-symmetric biphenols by reagent- and metal-free anodic cross-coupling reaction. Angew. Chem. Int. Ed. 55(39), 11801–11805 (2016). https://doi.org/10.1002/anie.201604321

    Article  CAS  Google Scholar 

  58. A. Wiebe, S. Lips, D. Schollmeyer, R. Franke, S.R. Waldvogel, Single and twofold metal- and reagent-free anodic c, c cross-coupling of phenols with thiophenes. Angew. Chem. Int. Ed. 56(46), 14727–14731 (2017). https://doi.org/10.1002/anie.201708946

    Article  CAS  Google Scholar 

  59. S. Lips, B.A. Frontana-Uribe, M. Dörr, D. Schollmeyer, R. Franke, S.R. Waldvogel, Metal- and reagent-free anodic C, C cross-coupling of phenols with benzofurans leading to a furan metathesis. Chem. Eur. J. 24, 6057–6061 (2018). https://doi.org/10.1002/chem.201800919

Download references

Acknowledgements

Carlos A. Martínez-Huitle acknowledges the funding provided by the Alexander von Humboldt Foundation (Germany) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Brazil) as a fellowship for experienced researcher. The authors highly appreciate the financial support by the Center for INnovative and Emerging MAterials (CINEMA). Support by the Advanced Lab of Electrochemistry and Electrosynthesis—ELYSION (Carl Zeiss Stiftung) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Carlos A. Martínez-Huitle or Siegfried R. Waldvogel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Martínez-Huitle, C.A., Waldvogel, S.R. (2019). Trends of Organic Electrosynthesis by Using Boron-Doped Diamond Electrodes. In: Yang, N. (eds) Novel Aspects of Diamond. Topics in Applied Physics, vol 121. Springer, Cham. https://doi.org/10.1007/978-3-030-12469-4_6

Download citation

Publish with us

Policies and ethics