Skip to main content

Spectroscopy of Nanodiamond Surface: Investigation and Applications

  • Chapter
  • First Online:
Novel Aspects of Diamond

Part of the book series: Topics in Applied Physics ((TAP,volume 121))

Abstract

Nanodiamond is one of the carbon families that has attracted much attention recently for its versatile spectroscopic properties; render it promising potential in optoelectronic, quantum computation, and bio/medical applications. With sizes ranging from several hundred down to single digit nanometers, nanodiamond represents a group of nanomaterial with rich surfaces both in its physical and chemical properties. Its surface and bulk consist of carbon of bonding of different nature. The sp2/sp3 hybridization forming diamond, graphite, disorder/amorphous carbons and defects are easily detectable using infrared and Raman spectroscopy and allow both easy characterization and the surface modification or conjugation with molecules of interest. Recently nanodiamond is considered as one of the most biocompatible nanomaterials. With the newly discussed defects-originated fluorescence, renders nanodiamond suitable for bio-labeling, bio-sensing and drug delivery. In this chapter, the authors review and discuss the spectroscopic studies of nanodiamond surfaces focusing on the infrared spectroscopy, Raman spectroscopy, including SERS, photoluminescence spectroscopy and lifetime analysis. Applications of these methods to detect and analyze surface structural features, surface molecular groups and macromolecules conjugations, interactions between nanodiamond surface moieties and its environments, etc. are discussed. These open new possibilities for bio-medical applications, for multimodal imaging, sensing, and controllable drug delivery of nanodiamond.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V.N. Mochalin, O. Shenderova, D. Ho, Y. Gogotsi, The properties and applications of nanodiamonds. Nat. Nanotechnol. 7(1), 11–23 (2012)

    Article  CAS  Google Scholar 

  2. E. Perevedentseva, Y.-C. Lin, M. Jani, C.-L. Cheng, Biomedical applications of nanodiamonds in imaging and therapy. Futur. Med. 8(12), 2041–2060 (2013)

    CAS  Google Scholar 

  3. K. Turcheniuk, V.N. Mochalin, Biomedical applications of nanodiamond (Review). Nanotechnology 28, 252001 (2017)

    Article  CAS  Google Scholar 

  4. M. Chipaux, K.J. van der Laan, S.R. Hemelaar, M. Hasani, T. Zheng, R. Schirhagl, Nanodiamonds and their applications in cells. Small 14(24), e1704263 (2018). https://doi.org/10.1002/smll.201704263

  5. G. Hong, S. Diao, A.L. Antaris, H. Dai, Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chem. Rev. 115(19), 10816–10906 (2015)

    Article  CAS  Google Scholar 

  6. T. Plakhotnik, H. Aman, NV-centers in nanodiamonds: how good they are. Diam. Relat. Mater. 82, 87–95 (2018)

    Article  CAS  Google Scholar 

  7. Y. Zhang, K.Y. Rhee, D. Hui, S.-J. Park, A critical review of nanodiamond based nanocomposites: synthesis, properties and applications. Compos. B 143, 19–27 (2018)

    Article  CAS  Google Scholar 

  8. K.J. van der Laan, M. Hasani, T. Zheng, R. Schirhagl, Nanodiamonds for in vivo applications. Small 14(19), e1703838 (2018)

    Google Scholar 

  9. D.G. Lim, R.E. Prim, K.H. Kim, E. Kang, K. Park, S.H. Jeong, Combinatorial nanodiamond in pharmaceutical and biomedical applications. Int. J. Pharm. 514, 41–51 (2016)

    Article  CAS  Google Scholar 

  10. C. Bradac, I. Das Rastogi, N.M. Cordina, A. Garcia-Bennett, L.J. Brown, Influence of surface composition on the colloidal stability of ultra-small detonation nanodiamonds in biological media. Diam. Relat. Mater. 83, 38–45 (2018)

    Google Scholar 

  11. P. Reineck, D.W.M. Lau, E.R. Wilson, N. Nunn, O.A. Shenderova, B.C. Gibson, Visible to near-IR fluorescence from single-digit detonation nanodiamonds: excitation wavelength and pH dependence. Sci. Rep. 8, 2478 (2018)

    Article  CAS  Google Scholar 

  12. V. Pichot, O. Muller, A. Seve, A. Yvon, L. Merlat, D. Spitzer, Optical properties of functionalized nanodiamonds. Sci. Rep. 7, 14086 (2017)

    Article  CAS  Google Scholar 

  13. R. Tappert, M.C. Tappert, Diamond in nature; A guide to rough diamonds (Chapter-1 & 2, Springer, Berlin, Heidelberg, 2011), pp. 1–40. https://doi.org/10.1007/978-3-642-12572-0

  14. H.O. Pierson, (ed.), Structure and properties of diamond and diamond polytypes, in Handbook of Carbon, Graphite, Diamond and Fullerenes; Properties, Processing and Applications (Chapter-11, William Andrew Publishing, Oxford, 1993), pp. 244–277. doi:https://doi.org/10.1016/B978-0-8155-1339-1.50016-5

  15. R.P. Mildren, J.R. Rabeau, (eds.), Optical engineering of diamond (Chapter-5, Wiley-VCH Verlag GmbH & Co. KGaA, Boschstr.12, 69469 Weinheim, Germany, 2013), pp. 143–145 [https://doi.org/10.1002/9783527648603]

  16. C.-L. Cheng, H.-C. Chang, J.-C. Lin, K.-J. Song, J.-K. Wang, Direct observation of hydrogen etching anisotropy on diamond single crystal surfaces. Phys. Rev. Lett. 78(19), 3713–3716 (1997)

    Article  CAS  Google Scholar 

  17. A.P. Jones, L.I. D’Hendercourt, Interstellar nanodiamonds: the carriers of mid-infrared emission bands? Astron. Astrophys. 355, 1191–1200 (2000)

    CAS  Google Scholar 

  18. J.-S. Tu, E. Perevedentseva, P.-H. Chung, C.-L. Cheng, Size-dependent surface CO stretching frequency investigations on nanodiamond particles. J. Chem. Phys. 125, 174713 (2006)

    Article  CAS  Google Scholar 

  19. V. Dolmatov, T. Fujimura, Physical and chemical problems of modification of detonation nanodiamond surface properties, in Synthesis, Properties and Applications of Ultrananocrystalline Diamond, ed. by D.M. Gruen, O.A. Shenderova, A.Y. Vul’. NATO Science Series (Series II: Mathematics, Physics and Chemistry), vol. 192 (Springer, Dordrecht, 2005), pp. 217–230

    Google Scholar 

  20. C.-L. Cheng, C.-F. Chen, W.-C. Shaio, D.-S. Tsai, K.-H. Chen, The CH stretching features on diamonds of different origins. Diam. Relat. Mater. 14(9), 1455–1462 (2005)

    Article  CAS  Google Scholar 

  21. L.C.L. Huang, H.-C. Chang, Adsorption and immobilization of cytochrome c on nanodiamonds. Langmuir 20(14), 5879–5884 (2004)

    Article  CAS  Google Scholar 

  22. T. Ando, K. Yamamoto, M. Ishii, M. Kamo, Y. Sato, J. Chem, Vapour-phase oxidation of diamond surfaces in O2 studied by diffuse reflectance Fourier-transform infrared and temperture-programmed desorption spectroscopy. Soc. Faraday Trans. 89, 3635–3640 (1993)

    Google Scholar 

  23. T. Tsubota, O. Hirabayashi, S. Ida, S. Nagaoka, M. Nagata, Y. Matsumoto, Chemical modification of hydrogenated diamond surface using benzoyl peroxides. Phys. Chem. Chem. Phys. 4, 806–811 (2002)

    Article  CAS  Google Scholar 

  24. P.H. Chung, E. Perevedentseva, J.S. Tu, C.C. Chang, C.-L. Cheng, Spectroscopic study of bio-functionalized nanodiamonds. Diam. Relat. Mater. 15, 622–625 (2006)

    Article  CAS  Google Scholar 

  25. Y.-R. Chen, H.-C. Chang, C.-L. Cheng, C.-C. Wang, J. C. Jiang, Size dependence of C-H stretching features on diamond nanocrystal surfaces: infrared spectroscopy and density functional theory calculations. J. Chem. Phys. 119, 10626 (2003)

    Google Scholar 

  26. C.-D. Chu, E. Perevedentseva, V. Yeh, S.-J. Cai, J.-S. Tu, C.-L. Cheng, Temperature-dependent surface C=O stretching frequency investigation of functionalized ND particles. Diam. Relat. Mater. 19, 76–81 (2009)

    Article  CAS  Google Scholar 

  27. I.I. Kulakova, Surface chemistry of nanodiamonds. Phys. Solid State 46, 636–643 (2004)

    Article  CAS  Google Scholar 

  28. M. Jani, J.-S. Tu, T.-Y. Kang, C.-Y. Tsai, E. Perevedentseva, C.-L. Cheng, Surface modification of nanodiamond: photoluminescence and Raman studies. Diam. Relat. Mater. 24, 134–138 (2012)

    Google Scholar 

  29. A.M. Rao, E. Richter, S. Bandow, B. Chase, P.C. Eklund, K.A. Williams, S. Fang, K.R. Subbaswamy, M. Menon, A. Thess, R.E. Smalley, G. Dresselhaus, M.S. Dressehaus, Diameter-selective Raman scattering from vibrational modes in carbon nanotubes. Science 275, 187–191 (1997)

    Article  CAS  Google Scholar 

  30. A.C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon. J. Phys. Rev. B 61, 14095–14107 (2000)

    Article  CAS  Google Scholar 

  31. A.C. Ferrari, J. Robertson, Origin of the 1150 cm−1 Raman mode in nanocrystalline diamond. Phys. Rev. B 63, 121405(R) (2001)

    Article  CAS  Google Scholar 

  32. R. Pfeiffer, H. Kuzmany, N. Salk, B. Gunther, Evidence for trans-polyacetylene in nanocrystalline diamond films from H-D isotropic substitution experiments. Appl. Phys. Lett. 82, 4149–4150 (2003)

    Article  CAS  Google Scholar 

  33. S. Prawer, K.W. Nugent, D.N. Jamieson, J.O. Orwa, L.A. Bursill, J.L. Peng, The Raman spectrum of nanocrystalline diamond. Chem. Phys. Lett. 332(1–2), 93–97 (2000)

    Article  CAS  Google Scholar 

  34. V.I. Korepanov, H.O. Hamaguchi, E. Osawa, V. Ermolenkov, I.K. Lednev, B.J.M. Etzold, O. Levinson, B. Zousman, C. Prakash Epperla, H.-C. Chang, Carbon structure in nanodiamonds elucidated from Raman spectroscopy. Carbon 121, 322e329 (2017)

    Google Scholar 

  35. V. Mochalin, S. Osswald, Y. Gogotsi, Contribution of functional groups to the Raman spectrum of nanodiamond powders. Chem. Mater. 21(2), 273–279 (2009)

    Article  CAS  Google Scholar 

  36. M. Mermoux, A. Crisci, T. Petit, H.A. Girard, J.-C. Arnault, Surface modifications of detonation nanodiamonds probed by multiwavelength Raman spectroscopy. J. Phys. Chem. C 118, 23415–23425 (2014)

    Article  CAS  Google Scholar 

  37. P. Reineck, D.W.M. Lau, E.R. Wilson, K. Fox, M.R. Field, C. Deeleepojananan, V.N. Mochalin, B.C. Gibson, Effect of surface chemistry on the fluorescence of detonation nanodiamonds. ACS Nano 11, 10924–10934 (2017)

    Article  CAS  Google Scholar 

  38. V.N. Mochalin, Y. Gogotsi, Wet chemistry route to hydrophobic blue fluorescent nanodiamond. J. Am. Chem. Soc. 131(13), 4594–4595 (2009)

    Article  CAS  Google Scholar 

  39. S. Osswald, G. Yushin, V. Mochalin, S.O. Kucheyev, Y. Gogotsi, Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in Air. J. Am. Chem. Soc. 128(35), 11635–11642 (2006)

    Google Scholar 

  40. V.Y. Osipov, A.M. Panich, A.V. Baranov, Comment on “Carbon structure in nanodiamonds elucidated from Raman spectroscopy” by V.I. Korepanov et al. Carbon 127, 193–194 (2018)

    Google Scholar 

  41. T.A. Dolenko, S.A. Burikov, J.M. Rosenholm, O.A. Shenderova, I.I. Vlasov, Diamond−water coupling effects in Raman and photoluminescence spectra of nanodiamond colloidal suspensions. J. Phys. Chem. C 116, 24314–24319 (2012)

    Article  CAS  Google Scholar 

  42. T. Petit, L. Puskar, T. Dolenko, S. Choudhury, E. Ritter, S. Burikov, K. Laptinskiy, Q. Brzustowski, U. Schade, H. Yuzawa, M. Nagasaka, N. Kosugi, M. Kurzyp, A. Venerosy, H. Girard, J.-C. Arnault, E. Osawa, N. Nunn, O. Shenderova, E.F. Aziz, Unusual water hydrogen bond network around hydrogenated nanodiamonds. J. Phys. Chem. C 121, 5185–5194 (2017)

    Article  CAS  Google Scholar 

  43. J. Zheng, Y. Ding, B. Tian, Z.L. Wang, X. Zhuang, Luminescent and Raman active silver nanoparticles with polycrystalline structure. J. Am. Chem. Soc. 130, 10472–10473 (2008)

    Article  CAS  Google Scholar 

  44. M. Moskovits, Surface-enhanced spectroscopy. Rev. Mod. Phys. 57, 783–826 (1985)

    Google Scholar 

  45. S. Nie, S.R. Emory, Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102–1106 (1997)

    Article  CAS  Google Scholar 

  46. H. Xu, E.J. Bjerneld, M. Kall, L. Borjesson, Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys. Rev. Lett. 83, 4357–4360 (1999)

    Article  CAS  Google Scholar 

  47. Z.-C. Hong, E. Perevedentseva, S. Treschev, J.-B. Wang, C.-L. Cheng, Surface enhanced Raman scattering of nanodiamond using visible-light-activated TiO2 as a catalyst to photo-reduce nanostructured silver from AgNO3 as SERS-active substrate. J. Raman Spectrosc. 40(8), 1016–1022 (2009)

    Article  CAS  Google Scholar 

  48. A. Karmenyan, E. Perevedentseva, A. Chiou, C.-L. Cheng, Positioning of carbon nanostructures on metal surfaces using laser acceleration and the Raman analyses of the patterns. Eur. J. Phys. 61, 513–517 (2007)

    CAS  Google Scholar 

  49. M. Veres, E. Perevedentseva, A.V. Karmenyan, S. Tóth, S. Koós, Catalytic activity of gold on nanocrystalline diamond support. Phys. Status Solidi C 7(3–4), 1211–1214 (2010)

    CAS  Google Scholar 

  50. E. Perevedentseva, A. Karmenyan, P.H. Chung, Y.T. He, C.-L. Cheng, Surface enhanced Raman spectroscopy of carbon nanostructures. Surf. Sci. 600, 3723–3728 (2006)

    Article  CAS  Google Scholar 

  51. S.J. Chase, W.S. Bacsa, M.G. Mitch, L.J. Pilione, J.S. Lannin, Surface-enhanced Raman scattering and photoemission of C60 on noble-metal surfaces. Phys. Rev. B 46, 7873–7877 (1992)

    Article  CAS  Google Scholar 

  52. M. Roy, V.C. George, A.K. Dua, P. Raj, S. Schulze, D.A. Tenne, G. Salvan, D.R.T. Zahn, Detection of nanophase at the surface of HFCVD grown diamond films using surface enhanced Raman spectroscopic (SERS) technique. Diam. Relat. Mater. 11, 1858–1862 (2002)

    Article  CAS  Google Scholar 

  53. M. Veres, M. Fule, S. Toth, M. Koos, I. Pocsik, Surface enhanced Raman scattering (SERS) investigation of amorphous carbon. Diam. Relat. Mater. 13, 1412–1415 (2004)

    Article  CAS  Google Scholar 

  54. E.C. Le Ru, P.G. Etchegoin, Sub-wavelength localization of hot-spots in SERS. Chem. Phys. Lett. 396, 393–397 (2004)

    Article  CAS  Google Scholar 

  55. M. Veres, S. Tóth, E. Perevedentseva, A. Karmenyan, M. Koós, Detection of structural units of nanocrystalline diamond surfaces using surface-enhanced Raman scattering, in Nanotechnological Basis for Advanced Sensors (NATO Science for Peace and Security Series B: Physics and Biophysics), ed. by J.P. Reithmaier, P. Paunovic (Springer, Netherlands, 2011), pp. 111–120

    Google Scholar 

  56. A.V. Karmenyan, E. Perevedentseva, M. Veres, C.-L. Cheng, Simultaneous PL and SERS observation of ND at laser deposition on noble metals. Plasmonics 8, 325–333 (2012)

    Article  CAS  Google Scholar 

  57. H. Chacham, L. Kleinman, Instabilities in diamond under high shear stress. Phys. Rev. Lett. 85, 4904 (2000)

    Article  CAS  Google Scholar 

  58. J. Qian, C. Pantea, G. Voronin, T.W. Zerda, Partial graphitization of diamond crystals under high-pressure and high-temperature conditions. J. Appl. Phys. 90, 1632 (2001)

    Article  CAS  Google Scholar 

  59. R.M. Erasmus, R.D. Daniel, J.D. Comins, Three-dimensional mapping of stresses in plastically deformed diamond using micro-Raman and photoluminescence spectroscopy. J. Appl. Phys. 109, 013527 (2011)

    Article  CAS  Google Scholar 

  60. Y. Gogotsi, A. Kailer, K.G. Nickel, Transformation of diamond to graphite. Nature 40, 663 (1999)

    Article  Google Scholar 

  61. D.S. Knight, W.B. White, Characterization of diamond films by Raman spectroscopy. J. Mater. Res. 4, 385–393 (1989)

    Article  CAS  Google Scholar 

  62. A. Krueger, D. Lang, Functionality is key: recent progress in the surface modification of nanodiamond. Adv. Func. Mater. 22(5), 890–906 (2012)

    Article  CAS  Google Scholar 

  63. I. Kulakova, V.V. Korol’kov, R.Y. Yakovlev, G.V. Lisichkin, The structure of chemically modified detonation synthesized nanodiamond particles. Nanotechnol. Russ. 5(7–8), 474–485 (2010)

    Google Scholar 

  64. B.V. Spitsyn, J.L. Davidson, M.N. Gradoboev, T.B. Galushko, N.V. Serebryakova, T.A. Karpukhina, I.I. Kulakova, N.N. Melnik, Inroad to modification of detonation nanodiamond. Diam. Relat. Mater. 15, 296–299 (2006)

    Article  CAS  Google Scholar 

  65. I. Petrov, O. Shenderova, V. Grishko, V. Grichko, T. Tyler, G. Cunningham, G. McGuire, Detonation nanodiamonds simultaneously purified and modified by gas treatment. Diam. Relat. Mater. 16, 2098–2103 (2007)

    Article  CAS  Google Scholar 

  66. M.A. Ray, O. Shenderova, W. Hook, A. Martin, V. Grishko, T. Tyler, G.B. Cunningham, G. McGuire, Cold plasma functionalization of nanodiamond particles. Diam. Relat. Mater. 15, 1809–1812 (2006)

    Article  CAS  Google Scholar 

  67. G.A. Chiganova, Aggregation of particles in ultradispersed diamond hydrosols. Colloid J. 62(2), 238–243 (2000)

    CAS  Google Scholar 

  68. A. Krüger, F. Kataoka, M. Ozawa, T. Fujino, Y. Suzuki, A.E. Aleksenskii, A.Y. Vul’, E. Ōsawa, Unusually tight aggregation in detonation nanodiamond: identification and disintegration. Carbon 43(8), 1722–1730 (2005)

    Google Scholar 

  69. A. Krueger, Y. Liang, G. Jarre, J. Stegk, Surface functionalisation of detonation diamond suitable for biological applications. J. Mater. Chem. 16(24), 2322–2328 (2006)

    Article  CAS  Google Scholar 

  70. H.A. Girard, T. Petit, S. Perruchas, T. Gacoin, C. Gesset, J.C. Arnault, P. Bergonzo, Surface properties of hydrogenated nanodiamonds: a chemical investigation. Phys. Chem. Chem. Phys. 13(24), 11517–11523 (2011)

    Article  CAS  Google Scholar 

  71. V.V. Korolkov, I.I. Kulakova, B.N. Tarasevich, G.V. Lisichkin, Dual reaction capacity of hydrogenated nanodiamond. Diam. Relat. Mater. 16(12), 2129–2132 (2007)

    Article  CAS  Google Scholar 

  72. A.-I. Ahmed, S. Mandal, L. Gines, O.A. Williams, C.-L. Cheng, Low temperature catalytic reactivity of nanodiamond in molecular hydrogen. Carbon 110, 438–442 (2016)

    Article  CAS  Google Scholar 

  73. O.A. Williams, J. Hees, C. Dieker, W. Jager, L. Kirste, C.E. Nebel, Size-dependent reactivity of diamond nanoparticles. ACS Nano 4(8), 4824–4830 (2010)

    Article  CAS  Google Scholar 

  74. S. Osswald, G. Yushin, V. Mochalin, S.O. Kucheyev, Y. Gogotsi, Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air. J. Am. Chem. Soc. 128(35), 11635–11642 (2006)

    Article  CAS  Google Scholar 

  75. E. Neu, F. Guldner, C. Arend, Y. Liang, S. Ghodbane, H. Sternschulte, D. Steinmüller-Nethl, A. Krueger, C. Becher, Low temperature investigations and surface treatments of colloidal narrowband fluorescent nanodiamonds. J. Appl. Phys. 113, 203507 (2013)

    Article  CAS  Google Scholar 

  76. I. Aharonovich, A.D. Greentree, S. Prawer, Diamond photonics. Nat. Photonics 5, 397–405 (2011)

    Article  CAS  Google Scholar 

  77. M.W. Doherty, N.B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, L.C.L. Hollenberg, The nitrogen-vacancy colour centre in diamond. Phys. Rep. 528(1), 1–45 (2013)

    Article  CAS  Google Scholar 

  78. I. Aharonovich, S. Castelletto, D.A. Simpson, C.-H. Su, A.D. Greentree, S. Prawer, Diamond-based single-photon emitters. Rep. Prog. Phys. 74, 076501 (2011)

    Google Scholar 

  79. J. Wrachtrup, F. Jelezko, Processing quantum information in diamond J. Phys. Condens. Matter 18, S807 (2006)

    Google Scholar 

  80. H.S. Knowles, D.M. Kara, M. Atatüre, Observing bulk diamond spin coherence in high-purity nanodiamonds. Nat. Mater. 13, 21–25 (2014)

    Article  CAS  Google Scholar 

  81. A.W. Schell, G. Kewes, T. Hanke, A. Leitenstorfer, R. Bratschitsch, O. Benson, T. Aichele, Single defect centers in diamond nanocrystals as quantum probes for plasmonic nanostructures. Opt. Express 19, 7914–7920 (2011)

    Article  CAS  Google Scholar 

  82. C.C. Fu, H.-Y. Lee, K. Chen, T.-S. Lim, H.-Y. Wu, P.-K. Lin, P.-K. Wei, P.-H. Tsao, H.-C. Chang, W. Fann, Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proc. Natl. Acad. Sci. U.S.A. 104(3), 727–732 (2007)

    Article  CAS  Google Scholar 

  83. J. Narayan, A. Bhaumik, Novel synthesis and properties of pure and NV-doped nanodiamonds and other nanostructures. Mater. Res. Lett. 5(4), 242–250 (2016)

    Article  CAS  Google Scholar 

  84. C. Bradac, T. Gaebel, C.I. Pakes, J.M. Say, A.V. Zvyagin, J.R. Rabeau, Effect of the nanodiamond host on a nitrogen-vacancy color-centre emission state. Small 9, 132 (2013)

    Article  CAS  Google Scholar 

  85. G.S. Gildenblat, S.A. Grot, A. Badzian, The electrical properties and device applications of homoepitaxial and polycrystalline diamond films. Proc. IEEE 79, 647–668 (1991)

    Article  CAS  Google Scholar 

  86. I. Kratochvılova, A. Kovalenko, F. Fendrych, V. Petráková, S. Záliš, M. Nesládek, Tuning of nanodiamond particles’ optical properties by structural defects and surface modifications: DFT modelling. J. Mater. Chem. 21, 18248 (2011)

    Article  CAS  Google Scholar 

  87. A. Kovalenko, V. Petráková, P. Ashcheulov, S. Záliš, M. Nesládek, I. Kraus, I. Kratochvílová, Parameters affecting the luminescence of nanodiamond particles: quantum chemical calculations. Phys. Status Solidi A 209, 1769–1773 (2012)

    Article  CAS  Google Scholar 

  88. V. Petrakova, A. Taylor, I. Kratochvílová, F. Fendrych, J. Vacík, J. Kučka, J. Štursa, P. Cígle, M. Ledvina, A. Fišerová, P. Kneppo, M. Nesládek, Luminescence of nanodiamond driven by atomic functionalization: towards novel detection principles. Adv. Funct. Mater. 22, 812–819 (2012)

    Google Scholar 

  89. K. Yakoubovskii, Luminescence excitation spectra in diamond. Phys. Rev. B 61(15), 010174 (2000)

    Article  Google Scholar 

  90. S.Y. Lim, W. Shen, Z. Gao, Carbon quantum dots and their applications. Chem. Soc. Rev. 44, 362–381 (2015)

    Article  CAS  Google Scholar 

  91. P. Reineck, A. Francis, A. Orth, D.W.M. Lau, R.D.V. Nixon-Luke, I.D. Rastogi, W.A.W. Razali, L.M. Parker, V.K.A. Sreenivasan, L.J. Brown, B.C. Gibson, Brightness and photostability of emerging red and near-IR fluorescent nanomaterials for bioimaging. Adv. Opt. Mater. 4, 1549–1557 (2016)

    Article  CAS  Google Scholar 

  92. M. Fu, F. Ehrat, Y. Wang, K.Z. Milowska, C. Reckmeier, A.L. Rogach, J.K. Stolarczyk, A.S. Urban, J. Feldmann, Carbon dots: a unique fluorescent cocktail of polycyclic aromatic hydrocarbons. Nano Lett. 15, 6030–6035 (2015)

    Article  CAS  Google Scholar 

  93. G. Eda, Y.Y. Lin, C. Mattevi, H. Yamaguchi, H.A. Chen, I.S. Chen, C.W. Chen, M. Chhowalla, Blue photoluminescence from chemically derived graphene oxide. Adv. Mater. 22, 505–509 (2010)

    Article  CAS  Google Scholar 

  94. R.G. Ryan, A. Stacey, K.M. O’Donnell, T. Ohshima, B.C. Johnson, L.C.L. Hollenberg, P. Mulvaney, D.A. Simpson, Impact of surface functionalisation on the quantum coherence of nitrogen vacancy centres in nanodiamond. ACS Appl. Mater. Interfaces (2018). https://doi.org/10.1021/acsami.7b19238

  95. F. Maier, M. Riedel, B. Mantel, J. Ristein, L. Ley, Origin of surface conductivity in diamond. Phys. Rev. Lett. 85, 3472–3475 (2000)

    Google Scholar 

  96. C. Bradac, T. Gaebel, N. Naidoo, M.J. Sellars, J. Twamley, L.J. Brown, A.S. Barnard, T. Plakhotnik, A.V. Zvyagin, J.R. Rabeau, Observation and control of blinking nitrogen-vacancy centres in discrete nanodiamonds. Nat. Nanotechnol. 5, 345–349 (2010)

    Article  CAS  Google Scholar 

  97. A.M. Vervald, S.A. Burikov, O.A. Shenderova, N. Nunn, D.O. Podkopaev, I.I. Vlasov, T.A. Dolenko, Relationship between fluorescent and vibronic properties of detonation nanodiamonds and strength of hydrogen bonds in suspensions. J. Phys. Chem. C 120, 19375–19383 (2016)

    Article  CAS  Google Scholar 

  98. A.A. Khomich, O.S. Kudryavtsev, T.A. Dolenko, A.A. Shiryaev, A.V. Fisenko, V.I. Konov, I.I. Vlasov, Anomalous enhancement of nanodiamond luminescence upon heating. Laser Phys. Lett. 14, 025702 (2017)

    Article  Google Scholar 

  99. V. Petráková, M. Nesladek, A. Taylor, Luminescence properties of engineered nitrogen vacancy centers in a close surface proximity. Phys. Status Solidi A 208(9), 2051–2056 (2011)

    Article  CAS  Google Scholar 

  100. L. Rondin, G. Dantelle, A. Slablab, F. Grosshans, F. Treussart, P. Bergonzo, S. Perruchas, T. Gacoin, M. Chaigneau, H.-C. Chang, V. Jacques, J.-F. Roch, Surface-induced charge state conversion of nitrogen-vacancy defects in nanodiamonds. Phys. Rev. B Condens. Matter 82, 115449 (2010)

    Google Scholar 

  101. A.N. Newell, D.A. Dowdell, D.H. Santamore, Surface effects on nitrogen vacancy centers neutralization in diamond. J. Appl. Phys. 120, 185104 (2016)

    Article  CAS  Google Scholar 

  102. M.V. Hauf, B. Grotz, B. Naydenov, M. Dankerl, S. Pezzagna, J. Meijer, F. Jelezko, J. Wrachtrup, M. Stutzmann, F. Reinhard, J.A. Garrido, Chemical control of the charge state of nitrogen-vacancy centers in diamond. Phys. Rev. B Condens. Matter 83, 081304 (2011)

    Article  CAS  Google Scholar 

  103. M. Kaviani, P. Deak, B. Aradi, T. Frauenheim, J.-P. Chou, A. Gali, Proper surface termination for luminescent near-surface NV centers in diamond. Nano Lett. 14(8), 4772–4777 (2014)

    Article  CAS  Google Scholar 

  104. A. Khalid, K. Chung, R. Rajasekharan, D.W.M. Lau, T.J. Karle, B.C. Gibson, S. Tomljenovic-Hanic, Lifetime reduction and enhanced emission of single photon color centers in nanodiamond via surrounding refractive index modification. Sci. Rep. 5, 11179 (2015)

    Article  CAS  Google Scholar 

  105. J. Xiao, P. Liu, L. Li, G. Yang, Fluorescence origin of nanodiamonds. J. Phys. Chem. C 119, 2239–2248 (2015)

    Article  CAS  Google Scholar 

  106. V. Petrakova, I. Rehor, J. Stursa, M. Ledvina, M. Nesladeka, P. Cigler, Charge-sensitive fluorescent nanosensors created from nanodiamonds. Nanoscale 7, 12307 (2015)

    Article  CAS  Google Scholar 

  107. P. Galar, J. Čermák, P. Malý, A. Kromka, B. Rezek, Electrochemically grafted polypyrrole changes photoluminescence of electronic states inside nanocrystalline diamond. J Appl. Phys. 116, 223103 (2014)

    Google Scholar 

  108. M. Ohtani, P.V. Kamat, S. Fukuzumi, Supramolecular donor-acceptor assemblies composed of carbon nanodiamond and porphyrin for photoinduced electron transfer and photocurrent generation. J. Mater. Chem. 20, 582–587 (2010)

    Google Scholar 

  109. S. Zhu, J. Shao, Y. Song, X. Zhao, J. Du, L. Wang, H. Wang, K. Zhang, J. Zhang, B. Yang, Investigating the surface state of graphene quantum dots. Nanoscale 7, 7927–7933 (2015)

    Article  CAS  Google Scholar 

  110. O. Shenderova, S. Hens, I. Vlasov, S. Turner, Y.-G. Lu, G. Van Tendeloo, A. Schrand, S.A. Burikov, T.A. Dolenko, Carbon-dot-decorated nanodiamonds. Part. Part. Syst. Charact. 31, 580–590 (2014)

    Article  CAS  Google Scholar 

  111. U. Maitra, A. Jain, S.J. George, C.N.R. Rao, Tunable fluorescence in chromophore-functionalized nanodiamond induced by energy transfer. Nanoscale 3, 3192–3197 (2013)

    Article  CAS  Google Scholar 

  112. E. Perevedentseva, N. Melnik, C.-Y. Tsai, Y.-C. Lin, M. Kazaryan, C.-L. Cheng, Effect of surface adsorbed proteins on the photoluminescence of nanodiamond. J. Appl. Phys. 109, 034704 (2011)

    Article  CAS  Google Scholar 

  113. K.S. Subrahmanyam, P. Kumar, A. Nag, C.N.R. Rao, Blue light emitting graphene-based materials and their use in generating white light. Solid State Commun. 150(37–38), 1774–1777 (2010)

    Article  CAS  Google Scholar 

  114. M.-F. Weng, S.-Y. Chiang, N.-S. Wang, H. Niu, Fluorescent nanodiamonds for specifically targeted bioimaging. Diam. Relat. Mater. 18, 587–591 (2009)

    Article  CAS  Google Scholar 

  115. Z. Wang, C. Xu, C. Liu, Surface modification and intrinsic green fluorescence emission of a detonation nanodiamond. Mater. Chem. C 1, 6630 (2013)

    Article  CAS  Google Scholar 

  116. T. Zheng, F.P. Martínez, I.M. Storm, W. Rombouts, J. Sprakel, R. Schirhagl, R. de Vries, Recombinant protein polymers for colloidal stabilization and improvement of cellular uptake of diamond nanosensors. Anal. Chem. 89(23), 12812–12820 (2017)

    Article  CAS  Google Scholar 

  117. B.R. Smith, D. Gruber, T. Plakhotnik, The effects of surface oxidation on luminescence of nano diamonds. Diam. Relat. Mater. 19, 314 (2010)

    Article  CAS  Google Scholar 

  118. L.A. Stewart, C. Bradac, J. M. Dawes, M. J. Steel, J. R. Rabeau, M.J. Withford, Characterization of emission lifetime of nitrogen-vacancy centres in Nanodiamonds Conference on Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS), IEEE JWF24 (2010)

    Google Scholar 

  119. S. Pezzagna, D. Rogalla, D. Wildanger, J. Meijer, A. Zaitsev, Creation and nature of optical centres in diamond for single-photon emission-overview and critical remarks. New J. Phys. 13, 035024 (2011)

    Article  CAS  Google Scholar 

  120. J.-H. Hsu, W.-D. Su, K.-L. Yang, Y.-K. Tzeng, H.-C. Chang, Nonblinking green emission from single H3 color centers in nanodiamonds. Appl. Phys. Lett. 98, 193116 (2011)

    Article  CAS  Google Scholar 

  121. J. Mona, E. Perevedentseva, A. Karmenyan, H.-M. Liou, T.-Y. Kang, C.-L. Cheng, Tailoring of structure, surface, and luminescence properties of nanodiamonds using rapid oxidative treatment. J. Appl. Phys. 113, 114907 (2013)

    Article  CAS  Google Scholar 

  122. J. Tisler, G. Balasubramanian, B. Naydenov, R. Kolesov, B. Grotz, R. Reuter, J.-P. Boudou, P.A. Curmi, M. Sennour, A. Thorel, M. Börsch, K. Aulenbacher, R. Erdmann, P.R. Hemmer, F. Jelezko, J. Wrachtrup, Fluorescence and spin properties of defects in single digit nanodiamonds. ACS Nano 3, 1959–1965 (2009)

    Article  CAS  Google Scholar 

  123. J. Tisler, R. Reuter, A. Lämmle, F. Jelezko, G. Balasubramanian, P.R. Hemmer, F. Reinhard, J. Wrachtrup, Highly efficient FRET from a single Nitrogen-vacancy center in nanodiamonds to a single organic molecule. ACS Nano 5, 7893 (2011)

    Article  CAS  Google Scholar 

  124. R. Fudala, S. Raut, B.P. Maliwal, T.W. Zerda, I. Gryczynski, E. Simanek, J. Borejdo, R. Rich, I. Akopova, Z. Gryczynski, FRET enhanced fluorescent nanodiamonds. Curr. Pharm. Biotechnol. 14, 1127 (2013)

    Article  CAS  Google Scholar 

  125. C.D. Geddes, J.R. Lakowicz, Metal-enhanced fluorescence. J. Fluoresc. 12(2), 121–129 (2002)

    Article  Google Scholar 

  126. K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz, The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys. Chem. B 107, 668–677 (2003)

    Article  CAS  Google Scholar 

  127. J.R. Lakowicz, Plasmonics in biology and plasmon controlled fluorescence. Plasmonics 1, 5–33 (2006)

    Article  CAS  Google Scholar 

  128. P. Anger, P. Bharadwaj, L. Novotny, Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett. 96, 113002 (2006)

    Article  CAS  Google Scholar 

  129. E. Ozbay, Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311, 189–193 (2006)

    Article  CAS  Google Scholar 

  130. Y. Chi, G. Chen, F. Jelezko, E. Wu, H. Zeng, Enhanced photoluminescence of single-photon emitters in nanodiamonds on a gold film. IEEE Photonics Technol. Lett. 23(6), 374–376 (2011)

    Article  CAS  Google Scholar 

  131. T.S. Lim, C.C. Fu, K.C. Lee, H.Y. Lee, K. Chen, W.F. Cheng, W.W. Pai, H.C. Chang, W. Fann, Fluorescence enhancement and lifetime modification of single nanodiamonds near a nanocrystalline silver surface. Phys. Chem. Chem. Phys. 11, 1508–1514S (2009)

    Article  CAS  Google Scholar 

  132. S. Schietinger, M. Barth, T. Aichele, O. Benson, Plasmonenhanced single photon emission from a nanoassembled metaldiamond hybrid structure at room temperature. Nano Lett 9(4), 1694–1698 (2009)

    Google Scholar 

  133. D. Zhang, Q Zhao, J. Zang, Y.-J. Lu, L. Dong, C.-X. Shan, Luminescent hybrid materials based on nanodiamonds. Carbon 127, 170–176 (2018)

    Google Scholar 

  134. J. Gong, N. Steinsultz, M. Ouyang, Nanodiamond-based nanostructures for coupling nitrogen-vacancy centers to metal nanoparticles and semiconductor quantum dots. Nat. Comm. 7, 11820 (2016)

    Article  CAS  Google Scholar 

  135. A. Albrecht, G. Koplovitz, A. Retzker, F. Jelezko, S. Yochelis, D. Porath, Y. Nevo, O. Shoseyov, Y. Paltiel, M.B. Plenio, Self-assembling hybrid diamond–biological quantum devices. New J. Phys. 16, 093002 (2014)

    Article  CAS  Google Scholar 

  136. D.-K. Lee, T. Kee, Z. Liangd, D. Hsiou, D. Miya, B. Wu, E. Osawa, E.K.-H. Chow, E.C. Sungi, M.K. Kang, D. Ho, Clinical validation of a nanodiamond-embedded thermoplastic biomaterial. Proc. Natl. Acad. Sci. U.S.A. 114(45), E9445–E9454 (2017)

    Article  CAS  Google Scholar 

  137. T.-K. Ryu, R.-H. Kang, K.-Y. Jeong, D.-R. Jun, J.-M. Koh, D. Kim, S.K. Bae, S.-W. Choi, Bone-targeted delivery of nanodiamond-based drug carriers conjugated with alendronate for potential osteoporosis treatment. J. Control. Release 232, 152–160 (2016)

    Article  CAS  Google Scholar 

  138. G. Xi, E. Robinson, B. Mania-Farnell, E.F. Vanin, K.-W. Shim, T. Takao, E.V. Allender, C.S. Mayanil, M.B. Soares, D. Ho, T. Tomita, Convection-enhanced delivery of nanodiamond drug delivery platforms for intracranial tumor treatment. Nanomed. Nanotechnol. Biol. Med. 10, 381–391 (2014)

    Google Scholar 

  139. T.-B. Toh, D.-K. Lee, W. Hou, L.N. Abdullah, J. Nguyen, D. Ho, E.K.-H. Chow, Nanodiamond−Mitoxantrone complexes enhance drug retention in chemoresistant breast cancer cells. Mol. Pharm. 11, 2683–2691 (2014)

    Article  CAS  Google Scholar 

  140. O. Shimoni, B. Shi, P.A. Adlard, A.I. Bush, Delivery of fluorescent nanoparticles to the brain. J. Mol. Neurosci. 60(3), 405–409 (2016)

    Article  CAS  Google Scholar 

  141. J. Whitlow, S. Pacelli, P. Arghya, Multifunctional nanodiamonds in regenerative medicine: recent advances and future directions. J. Control. Release 261, 62–86 (2017)

    Article  CAS  Google Scholar 

  142. T. Meinhardt, D. Lang, H. Dill, A. Krueger, Pushing the functionality of diamond nanoparticles to new horizons: orthogonally functionalized nanodiamond using click chemistry. Adv. Funct. Mater. 21, 494–500 (2011)

    Article  CAS  Google Scholar 

  143. S. Haziz, N. Mohan, Y. Loe-Mie, A.-M. Lepagnol-Bestel, S. Massou, M.-P. Adam, X. Loc Le, J. Viard, C. Plancon, R. Daudin, P. Koebel, E. Dorard, C. Rose, F.-J. Hsieh, C.-C. Wu, B. Potier, Y. Herault, C. Sala, A. Corvin, B. Allinquant, H.-C. Chang, F. Treussart, M. Simonneau, Fluorescent nanodiamond tracking reveals intraneuronal transport abnormalities induced by brain-disease-related genetic risk factors. Nat. Nanotechnol. 12(4), 322–328 (2017)

    Google Scholar 

  144. R.A. Shimkunas, E. Robinson, R. Lam, S. Lu, X. Xu, X.-Q. Zhang, H. Huang, E. Osawa, D. Ho, Nanodiamond–insulin complexes as pH-dependent protein delivery vehicles. Biomaterials 30, 5720–5728 (2009)

    Article  CAS  Google Scholar 

  145. A.H. Smith, E.M. Robinson, X.Q. Zhang, E.K. Chow, Y. Lin, E. Osawa, J. Xi, D. Ho, Triggered release of therapeutic antibodies from nanodiamond complexes. Nanoscale 3(7), 2844–2848 (2011)

    Article  CAS  Google Scholar 

  146. V.N. Mochalin, A. Pentecost, X.-M. Li, I. Neitzel, M. Nelson, C. Wei, T. He, F. Guo, Y. Gogotsi, Adsorption of drugs on nanodiamond: toward development of a drug delivery platform. Mol. Pharm. 10, 3728–3735 (2013)

    Article  CAS  Google Scholar 

  147. G. Jarre, S. Heyer, E. Memmel, T. Meinhardt, A. Krueger, Synthesis of nanodiamond derivatives carrying amino functions and quantification by a modified Kaiser test. Beilstein J. Org. Chem. 10, 2729–2737 (2014)

    Article  CAS  Google Scholar 

  148. K.-K. Liu, W.-W. Zheng, C.-C. Wang, Y.-C. Chiu, C.-L. Cheng, Y.-S. Lo, C. Chen, J.-I. Chao, Covalent linkage of nanodiamond paclitaxel for drug delivery and cancer therapy. Nanotechnology 21, 315106 (2010)

    Google Scholar 

  149. O.A. Shenderova, G.E. McGuire, Science and engineering of nanodiamond particle surfaces for biological applications. Biointerphases 10, 030802 (2015)

    Article  Google Scholar 

  150. V. Petrakova, V. Benson, M. Buncek, A. Fiserova, M. Ledvina, J. Stursa, P. Cigler, M. Nesladek, Imaging of transfection and intracellular release of intact, non-labeled DNA using fluorescent nanodiamonds. Nanoscale 8, 12002 (2016)

    Google Scholar 

  151. Y.-C. Lin, L.-W. Tsai, E. Perevedentseva, H.-H. Chang, C.-H. Lin, D.-S. Sun, A.E. Lugovtsov, A. Priezzhev, J. Mona, C.-L. Cheng, The influence of nanodiamond on the oxygenation states and micro rheological properties of human red blood cells in vitro. J. Biomed. Optics 17(10), 101512 (2012)

    Article  Google Scholar 

  152. A. Chatterjee, E. Perevedentseva, M. Jani, C.-Y. Cheng, Y.-S. Ye, P.-H. Chung, C.-L. Cheng, Antibacterial effect of ultrafine nanodiamond against gram-negative bacteria Escherichia coli. J. Biomed. Optics 20(5), 051014 (2015)

    Google Scholar 

  153. J. Wehling, R. Dringen, R.N. Zare, M. Maas, K. Rezwan, Bactericidal activity of partially oxidized nanodiamonds. ACS Nano 8(6), 6475–6483 (2014)

    Article  CAS  Google Scholar 

  154. Z. Zhu, An overview of carbon nanotubes and graphene for biosensing applications. Nano-Micro Lett. 9, 25 (2017). https://doi.org/10.1007/s40820-017-0128-6

    Article  CAS  Google Scholar 

  155. M. Tuerhong, Y. Xu, X.-B. Yin, Review on carbon dots and their applications. Chinese J Anal. Chem. 45(1), 139–150 (2017)

    Article  Google Scholar 

  156. K.S. Novoselov, V.I. Falko, L. Colombo, P.R. Gellert, M.G. Schwab, K. Kim, A roadmap for graphene. Nature 490, 192–200 (2012)

    Article  CAS  Google Scholar 

  157. D. Fu, L.-J. Li, Label-free electrical detection of DNA hybridization using carbon nanotubes and graphene. Nano Rev. 1, 5354 (2010)

    Article  CAS  Google Scholar 

  158. Y.-P. Sun, B. Zhou, Y. Lin, W. Wang, K.A.S. Fernando, P. Pathak, M.J. Meziani, B.A. Harruff, X. Wang, H. Wang, P.G. Luo, H. Yang, M.E. Kose, B. Chen, L.M. Veca, S.-Y. Xie, Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 128, 7756–7757 (2006)

    Google Scholar 

  159. L. Wang, Y. Yin, A. Jain, H.S. Zhou, Aqueous phase synthesis of highly luminescent, nitrogen-doped carbon dots and their application as bioimaging agents. Langmuir 30, 14270 (2014)

    Google Scholar 

  160. S. Liu, N. Zhao, Z. Cheng, H. Liu, Amino-functionalized green fluorescent carbon dots as surface energy transfer biosensors for hyaluronidase. Nanoscale 7, 6836–6842 (2015)

    Article  CAS  Google Scholar 

  161. Z.S. Qian, X.Y. Shan, L.J. Chai, J.J. Ma, J.R. Chen, H. Feng, DNA nanosensor based on biocompatible graphene quantum dots and carbon nanotubes. Biosens. Bioelectron. 60, 64–70 (2014)

    Article  CAS  Google Scholar 

  162. N. Prabhakar, T. Näreoja, E. von Haartman, D.Ş. Karaman, S.A. Burikov, T.A. Dolenko, T. Deguchi, V. Mamaeva, P.E. Hänninen, I.I. Vlasov, O.A. Shenderova, J.M. Rosenholm, Functionalization of graphene oxide nanostructures improves photoluminescence and facilitates their use as optical probes in preclinical imaging. Nanoscale 7, 10410 (2015)

    Article  CAS  Google Scholar 

  163. R. Schirhagl, K. Chang, M. Loretz, C.L. Degen, Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology. Annu. Rev. Phys. Chem. 65, 83–105 (2014)

    Article  CAS  Google Scholar 

  164. A. Ermakova, G. Pramanik, J.-M. Cai, G. Algara-Siller, U. Kaiser, T. Weil, Y.-K. Tzeng, H.C. Chang, L.P. McGuinness, M.B. Plenio, B. Naydenov, F. Jelezko, Detection of a few metallo- protein molecules using color centers in nanodiamonds. Nano Lett. 13, 3305–3309 (2013)

    Article  CAS  Google Scholar 

  165. A. Albrecht, G. Koplovitz, A. Retzker, F. Jelezko, S. Yochelis, D. Porath, Y. Nevo, O. Shoseyov, Y. Paltiel, M.B. Plenio, Self-assembling hybrid diamond–biological quantum devices. New J. Phys. 16, 093002 (2014)

    Article  CAS  Google Scholar 

  166. A. Ajoy, U. Bissbort, M.D. Lukin, R.L. Walsworth, P. Cappellaro, Atomic-scale nuclear spin imaging using quantum-assisted sensors in diamond. Phys. Rev. X 5, 011001 (2015)

    Google Scholar 

  167. J.M. Cai, F. Jelezko, M.B. Plenio, Hybrid sensor based on colour centres in diamond and piezoactive layers. Nat. Commun. 5, 4065 (2014)

    Article  CAS  Google Scholar 

  168. W. Zhang, K. Patel, A. Schexnider, S. Banu, A.D. Radadia, Nanostructuring of biosensing electrodes with nanodiamonds for antibody immobilization. ASC Nano 8(2), 1419–1428 (2014)

    Article  CAS  Google Scholar 

  169. M. Börsch, R. Reuter, G. Balasubramanian, R. Erdmann, F. Jelezko, J. Wrachtrup, Fluorescent nanodiamonds for FRET-based monitoring of a single biological nanomotor FoF1-ATP synthase. Proc. SPIE 7183, 71832N (2009)

    Article  Google Scholar 

  170. M. Borsch, J. Wrachtrup, Fluorescent nanodiamonds for FRET-based monitoring of a single biological nanomotor FoF1-ATP synthase. Chem. Phys. Chem. 12(3), 542 (2011)

    Article  CAS  Google Scholar 

  171. H. Pinto, R. Jones, D.W. Palmer, J.P. Goss, P.R. Briddon, S. Öberg, Theory of the surface effects on the luminescence of the NV defect in nanodiamond. Phys. Status Solidi A 208, 2045 (2011)

    Article  CAS  Google Scholar 

  172. W.W.-W. Hsiao, Y.Y. Hui, P.-C. Tsai, H.-C. Chang, Fluorescent nanodiamond: a versatile tool for long-term cell tracking, super-resolution imaging, and nanoscale temperature sensing. Acc. Chem. Res. 49, 400–407 (2016)

    Article  CAS  Google Scholar 

  173. M.E. Robinson, J.D. Ng, H. Zhan, J.T. Buchman, O.A. Shenderova, C.L. Haynes, Z. Ma, R.H. Goldsmith, R.J. Hamers, Optically detected magnetic resonance for selective imaging of diamond nanoparticles. Anal. Chem. 90, 769–776 (2018)

    Article  CAS  Google Scholar 

  174. G. Balasubramanian, I.Y. Chan, R. Kolesov, M. Al-Hmoud, J. Tisler, C. Shin, C. Kim, A. Wojcik, P.R. Hemmer, A. Krueger, T. Hanke, A. Leitenstorfer, R. Bratschitsch, F. Jelezko, J. Wrachtrup, Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455, 648–651 (2008)

    Article  CAS  Google Scholar 

  175. F. Dolde, H. Fedder, M.W. Doherty, T. Nobauer, F. Rempp, G. Balasubramanian, T. Wolf, F. Reinhard, C.L. Hollenberg, F. Jelezko, J. Wrachtrup, Electric-field sensing using single diamond spins. Nat. Phys. 7, 459–463 (2011)

    Google Scholar 

  176. M. Alkanti, L. Jiang, R. Brick, P. Hemmer, M. Scully, Nanometer-scale luminescent thermometry in bovine embryos. Opt. Lett. 42(23), 4812–4815 (2017)

    Article  Google Scholar 

  177. G. Kucsko, P.C. Maurer, N.Y. Yao, M. Kubo, H.J. Noh, P.K. Lo, H. Park, M.D. Lukin, Nanometer scale thermometry in a living cell. Nature 500(7460), 54–58 (2013)

    Article  CAS  Google Scholar 

  178. D.A. Simpson, E. Morrisroe, J.M. McCoey, A.H. Lombard, D.C. Mendis, F. Treussart, L.T. Hall, S. Petrou, L.C.L. Hollenberg, Non-neurotoxic nanodiamond probes for intraneuronal temperature mapping. ACS Nano 11, 12077–12086 (2017)

    Article  CAS  Google Scholar 

  179. M.S. Purdey, P.K. Capon, B.J. Pullen, P. Reineck, N. Schwarz, P.J. Psaltis, S.J. Nicholls, B.C. Gibson, A.D. Abell, An organic fluorophore-nanodiamond hybrid sensor for photostable imaging and orthogonal, on-demand biosensing. Sci. Rep. 7, 15967 (2017)

    Article  CAS  Google Scholar 

  180. X. Wang, M. Gu, T.B. Toh, N.L. Binti Abdullah, E.K.-H. Chow, Stimuli-responsive nanodiamond-based biosensor for enhanced metastatic tumor site detection. SLAS Technol., 1–13 (2017)

    Google Scholar 

  181. L.P. Neukirch, J. Gieseler, R. Quidant, L. Novotny, A.N. Vamivakas, Observation of nitrogen vacancy photoluminescence from an optically levitated nanodiamond. Opt. Lett. 38(16), 2976–2979 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciate the financial support of this research by the Ministry of Science and Technology (MOST) of Taiwan, Grant No. MOST 106-2112-M-259-009-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chia-Liang Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ashek-I-Ahmed, Perevedentseva, E.V., Karmenyan, A., Cheng, CL. (2019). Spectroscopy of Nanodiamond Surface: Investigation and Applications. In: Yang, N. (eds) Novel Aspects of Diamond. Topics in Applied Physics, vol 121. Springer, Cham. https://doi.org/10.1007/978-3-030-12469-4_11

Download citation

Publish with us

Policies and ethics