Skip to main content

Diamond Nanowires: Theoretical Simulation and Experiments

  • Chapter
  • First Online:

Part of the book series: Topics in Applied Physics ((TAP,volume 121))

Abstract

The unique physicochemical properties of diamond nanowires, such as negative electron affinity, chemical inertness, high Young’s modulus, the highest hardness and room-temperature thermal conductivity, etc., have generated wide interest for their use as fillers in nanocomposites, as light detectors and emitters, as substrates for nanoelectronic devices, as tips for scanning probe microscopy as well as for sensing applications. Although theoretical comparisons with carbon nanotubes have shown that diamond nanowires are energetically and mechanically viable structures, reproducibly synthesizing the crystalline diamond nanowires has remained challenging, due to its high hardness and chemical inertness. However, many efforts have been made to realize various structures of DNWs both theoretically and experimentally. Ab initio modeling of DNW structures including dodecahedral, cubic and cylindrical shapes were theoretically studied. The density functional theory (DFT) study of the surface structure of diamond nanowires with different morphology and cross-sections were also carried out. A number of experimental results have also been reported in fabrication of DNWs with different shapes. In this chapter, we present a comprehensive, up-to-date review for the diamond nanowires, wherein we will give a discussing for their synthesis along with their structures, properties and applications both from theoretical simulation and experiments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. V.V. Brazhkin, Interparticle interaction in condensed media: some elements are ‘more equal than others’. Phys.-Usp. 52, 369–376 (2009)

    Article  CAS  Google Scholar 

  2. R.F. Davis, Diamond Films and Coatings (Noyes Publications, New Jersey, 1992)

    Google Scholar 

  3. R.L. McCreery, Advanced carbon electrode materials for molecular electrochemistry. Chem. Rev. 108, 2646–2687 (2008)

    Article  CAS  Google Scholar 

  4. W. Yang, O. Auciello, J.E. Butler, W. Cai, J.A. Carlisle, J.E. Gerbi, D.M. Gruen, T. Knickerbocker, T.L. Lasseter, J.N. Russell, J. Smith, R.J. Hamers, DNA-modified nanocrystalline diamond thin-films as stable, biologically active substrates. Nature Mater. 1, 253–257 (2002)

    Article  CAS  Google Scholar 

  5. Y. Zhou, J. Zhi, Y. Zou, W. Zhang, S.T. Lee, Direct electrochemistry and electrocatalytic activity of cytochrome c covalently immobilized on a boron-doped nanocrystalline diamond electrode. Anal. Chem. 80, 4141–4146 (2008)

    Article  CAS  Google Scholar 

  6. T. Watanabe, T.A. Ivandini, Y. Makide, A. Fujishima, Y. Einaga, Selective detection method derived from a controlled diffusion process at metal-modified diamond electrodes. Anal. Chem. 78, 7857–7860 (2006)

    Article  CAS  Google Scholar 

  7. A. Suzuki, T.A. Ivandini, K. Yoshimi, A. Fujishima, G. Oyama, T. Nakazato, N. Hattori, S. Kitazawa, Y. Einaga, Fabrication, characterization, and application of boron-doped diamond microelectrodes for in vivo dopamine detection. Anal. Chem. 79, 8608–8615 (2007)

    Article  CAS  Google Scholar 

  8. H. Gu, X.D. Su, K.P. Loh, Electrochemical impedance sensing of DNA hybridization on conducting polymer film-modiried diamond. J. Phys. Chem. B 109, 13611–13618 (2005)

    Article  CAS  Google Scholar 

  9. W. Yang, J.E. Butler, J.N. Russell, R.J. Hamers, Interfacial electrical properties of DNA-modified diamond thin films: Intrinsic response and hybridization-induced field effects. Langmuir 20, 6778–6787 (2004)

    Article  CAS  Google Scholar 

  10. B. Rezek, D. Shin, C.E. Nebel, Properties of hybridized DNA arrays on single-crystalline undoped and boron-doped (100) diamonds studied by atomic force microscopy in electrolytes. Langmuir 23, 7626–7633 (2007)

    Article  CAS  Google Scholar 

  11. J.L. Davidson, R. Ramesham, C. Ellis, J. Electrochem. Soc. 137, 3206 (1990)

    Article  CAS  Google Scholar 

  12. B.J.M. Hausmann, M. Khan, Y. Zhang, T.M. Babinec, K. Martinick, M. McCutcheon, P.R. Hemmer, M. Loncar, Diam. Relat. Mater. 19, 621 (2010)

    Article  CAS  Google Scholar 

  13. C.E. Nebel, N. Yang, H. Uetsuka, E. Osawa, N. Tokuda, O. Williams, Diam. Relat. Mater. 18, 910 (2009)

    Article  CAS  Google Scholar 

  14. T.M. Babinec, B.J.M. Hausmann, M. Khan, Y. Zhang, J.R. Maze, P.R. Hemmer, M. Loncar, Nat. Nanotechnol. 5, 195 (2010)

    Article  CAS  Google Scholar 

  15. I. Friedler, C. Sauvan, J.P. Hugonin, P. Lalanne, J. Claudon, J.M. Gérard, Opt. Express 17, 2095 (2009)

    Article  CAS  Google Scholar 

  16. Y. Tao, C.L. Degen, Single-crystal diamond nanowire tips for ultrasensitive force microscopy. Nano Lett. 15, 7893−7897 (2015)

    Google Scholar 

  17. A.S. Barnard, S.P. Russo, I.K. Snook, Nano Lett. 3, 1323 (2003)

    Article  CAS  Google Scholar 

  18. A.S. Barnard, S.P. Russo, I.K. Snook, Surf. Sci. 538, 204 (2003)

    Article  CAS  Google Scholar 

  19. G.A. Denu, Z.C. Liu, J. Fu, H. Wang, X: A finite element analysis of the effects of geometrical shape on the elastic properties of chemical vapor deposited diamond nanowire. AIP Adv. 7, 015025 (2017)

    Article  CAS  Google Scholar 

  20. H. Shiomi, Reactive ion etching of diamond in O-2 and CF4 plasma, and fabrication of porous diamond for field emitter cathodes. Jpn. J. Appl. Phys. 36, 7745–7748 (1997)

    Article  CAS  Google Scholar 

  21. H. Masuda, M. Watanabe, K. Yasui, D. Tryk, T. Rao, A. Fujishima, Fabrication of a Nanostructured Diamond Honeycomb Film. Adv. Mater. 12, 444–447 (2000)

    Article  CAS  Google Scholar 

  22. R. Arenal, P. Bruno, D.J. Miller, M. Bleuel, J. Lal, D.M. Gruen, Diamond nanowires and the insulator-metal transition in ultrananocrystalline diamond films. Phys. Rev. B 75, 195431 (2007)

    Article  CAS  Google Scholar 

  23. R. Arenal, G. Montagnac, P. Bruno, D.M. Gruen, Multiwavelength Raman spectroscopy of diamond nanowires present in n-type ultrananocrystalline films. Phys. Rev. B 76, 245316 (2007)

    Article  CAS  Google Scholar 

  24. I. Vlasov et al., Hybrid diamond-graphite nanowires produced by microwave plasma chemical vapor deposition. Adv. Mater. 19, 4058–4062 (2007)

    Article  CAS  Google Scholar 

  25. K. Panda, K.J. Sankaran, B.K. Panigrahi, N.-H. Tai, I.N. Lin, Direct observation and mechanism for enhanced electron emission in hydrogen plasma-treated diamond nanowire films. ACS Appl. Mater. Interfaces 6, 8531–8541 (2014)

    Article  CAS  Google Scholar 

  26. K.J. Sankaran et al., Structural and electrical properties of conducting diamond nanowires. ACS Appl. Mater. Interfaces 5, 1294–1301 (2013)

    Article  CAS  Google Scholar 

  27. I.N. Kholmanov et al., Improved electrical conductivity of graphene films integrated with metal nanowires. Nano Lett. 12, 5679–5683 (2012)

    Article  CAS  Google Scholar 

  28. M. Shellaiah, T.H. Chen, T. Simon, L.C. Li, K.W. Sun, F.H. Ko, An Affordable Wet Chemical Route to Grow Conducting Hybrid Graphite-Diamond Nanowires: Demonstration by A Single Nanowire Device. Sci. Reports 7, 11243 (2017)

    Article  CAS  Google Scholar 

  29. Q.X. Liu, C.X. Wang, S.W. Li, J.X. Zhang, G.W. Yang, Nucleation stability of diamond nanowires inside carbon nanotubes: A thermodynamic approach. Carbon 42, 629–633 (2004)

    Article  CAS  Google Scholar 

  30. A.S. Barnard, S.P. Russo, I.K. Snook, Surface structure of cubic diamond nanowires. Surf. Sci. 538, 204–210 (2003)

    Article  CAS  Google Scholar 

  31. C. Terashima, K. Arihara, S. Okazaki, T. Shichi, D.A. Tryk, T. Shirafuji, N. Saito, O. Takai, A. Fujisima, Fabrication of vertically aligned diamond whiskers from highly boron-doped diamond by oxygen etching. ACS Appl. Mater. Interfaces 3, 177–182 (2011)

    Article  CAS  Google Scholar 

  32. N. Yang, H. Uetsuka, E. Osawa, C.E. Nebel, Vertically aligned diamond nanowires for DNA sensing. Angew. Chem. Int. Ed. 47, 5183–5185 (2008)

    Article  CAS  Google Scholar 

  33. Y. Ando, Y. Nishibayashi, K. Kobashi, T. Hirao, K. Oura, Smooth and high-rate reactive ion etching of diamond. Diam. Relat. Mater. 11, 824–827 (2002)

    Article  CAS  Google Scholar 

  34. E.S. Baik, Y.J. Baik, S.W. Lee, D. Jeon, Fabrication of diamond nano-whiskers. Thin Solid Films 377–378, 295–298 (2000)

    Article  Google Scholar 

  35. W. Smirnov, A. Kriele, N. Yang, C.E. Nebel, Aligned diamond nano-wires: Fabrication and characterisation for advanced applications in bio- and electrochemistry. Diam. Relat. Mater. 19, 186–189 (2010)

    Article  CAS  Google Scholar 

  36. N. Yang, W. Smirnov, C.E. Nebel, Three-dimensional electrochemical reactions on tip-coated diamond nanowires with nickel nanoparticles. Electrochem. Commun. 27, 89–91 (2013)

    Article  CAS  Google Scholar 

  37. K. Wakui, Y. Yonezu, T. Aoki, M. Takeoka, K. Semba, Simple method for fabrication of diamond nanowires by inductively coupled plasma reactive ion etching. Jpn. J. Appl. Phys. 56(5), 058005 (2017)

    Article  Google Scholar 

  38. P. Subramanian, S. Kolagatla, S. Szunerits, Y. Coffinier, W.S. Yeap, K. Haenen, R. Boultherroub, A. Schechter, Atomc Force Microscopic and Raman Investigation of Boron-Doped Diamond Nanowire Electrodes and Their Activity toward Oxygen Reduction. J. Phys. Chem. C 121(6), 3397–3403 (2017)

    Article  CAS  Google Scholar 

  39. Q.Q. Jiang, W.X. Li, C.C. Tang, Y.C. Chang, T.T. Hao, X.Y. Pan, H.T. Ye, J.J. Li, C.Z. Gu, Large scale fabrication of nitrogen vacancy-embedded diamond nanostructures for single-photon source applications. Chin. Phys. B 25(11), 118105 (2016)

    Article  CAS  Google Scholar 

  40. Q. Wang, Y. Coffinier, M.S. Li, R. Boukherroub, S. Szunerits, Light-triggered release of biomolecules from diamond nanowire electrodes. Langmuir 32, 6515–6523 (2016)

    Article  CAS  Google Scholar 

  41. C.J. Widmann, C. Giese, M. Wolfer, D. Brink, N. Heidrich, C.E. Nebel, Fabrication and characterization of single crystalline diamond nanopillars with NV-centers. Diam. Relat. Mater. 54, 2–8 (2015)

    Article  CAS  Google Scholar 

  42. L. Marcon, A. Addad, Y. Coffinier, R. Boukherroub, Cell micropatterning on superhydrophobic diamond nanowires. Acta Biomater. 9, 4585–4591 (2013)

    Article  CAS  Google Scholar 

  43. Q. Wang, P. Subramanian, M.S. Li, W.S. Yeap, K. Haenen, Y. Coffinier, R. Boukherroub, S. Szunerits, Non-enzymatic glucose sensing on long and short diamond nanowire electrodes. Electrochem. Commun. 34, 286–290 (2013)

    Article  CAS  Google Scholar 

  44. Q. Wang, A. Vasilescu, P. Subramanian, A. Vezeanu, V. Andrei, Y. Coffinier, M.S. Li, R. Boukherroub, Szunerits S: simultaneous electrochemical detection of tryptophan and tyrosine using boron-doped diamond and diamond nanowire electrodes. Electrochem. Commun. 35, 84–87 (2013)

    Article  CAS  Google Scholar 

  45. P. Subramanian, Y. Coffinier, D. Steinmüller-Nethl, J. Foord, R. Boukherroub, S. Szunerits, Diamond nanowires decorated with metallic nanoparticles: A novel electrical interface for the immobilization of histidinylated biomolecuels. Electrochim. Acta 110, 4–8 (2013)

    Article  CAS  Google Scholar 

  46. L.T. Sun, J.L. Gong, Z.Y. Zhu, D.Z. Zhu, Z.X. Wang, W. Zhang, J.G. Hu, Q.T. Li, Synthesis and characterization of diamond nanowires from carbon nanotubes. Diam. Relat. Mater. 14, 749–752 (2005)

    Article  CAS  Google Scholar 

  47. L.T. Sun, J.L. Gong, D.Z. Zhu, Z.Y. Zhu, S.X. He, Diamond nanorods from carbon naotubes. Adv. Mater. 16, 1849–1853 (2004)

    Article  CAS  Google Scholar 

  48. N. Dubrovinskaia, L. Dubrovinsky, Aggregated diamond nanorods, the densest and least compressible form of carbon. Appl. Phys. Lett. 87, 083106 (2005)

    Article  CAS  Google Scholar 

  49. C.H. Hsu, S.G. Cloutier, S. Palefsky, J. Xu, Synthesis of diamond nanowires using atmospheric-pressure chemical vapor deposition. Nano Lett. 10, 3272–3276 (2010)

    Google Scholar 

  50. C.H. Hsu, J. Xu, Diamond nanowire—a challenge from extremes. Nanoscale 4, 5293–5299 (2012)

    Article  CAS  Google Scholar 

  51. D. Aradilla, F. Gao, G. Lewes-Malandrakis, W. Muller-Sebert, P. Gentile S. Pouget, C.E. Nebel, G. Bidan, Powering electrodes for high performance aqueous micro-supercapacitors: diamond-coated silicon nanowires operating at a wide cell voltage of 3 V. Electrochim. Acta 242, 173–179 (2017)

    Google Scholar 

  52. J. Shalini, K.J. Sankaran, C.L. Dong, C.Y. Lee, N.H. Tai, I.N. Lin, Insitu detection of dopamine using nitrogen incorporated diamond nanowire electrode. Nanoscale 5, 1159–1167 (2013)

    Article  CAS  Google Scholar 

  53. K.J. Sankaran, Y.F. Lin, W.B. Jian, H.C. Chen, K. Panda, B. Sundaravel, C.L. Dong, N.H. Tai, I.N. Lin, Structural and electrical properties of conducting diamond nanowires. ACS Appl. Mater. Interfaces 5, 1294–1301 (2013)

    Article  CAS  Google Scholar 

  54. K.J. Sankaran, N. Kumar, H.C. Chen, C.L. Dong, A. Bahuguna, S. Dash, A.K. Tyagi, C.Y. Lee, N.H. Tai, I.N. Lin, Sci. Adv. Mater. 5, 687–698 (2013)

    Article  CAS  Google Scholar 

  55. K. Panda, K.J. Sankaran, B.K. Panigrahi, N.H. Tai, I.N. Lin, Direct observation and mechanism for enhanced electron emission in hydrogen plasma-treated diamond nanowire films. ACS Appl. Mater. Interfaces 6, 8531–8541 (2014)

    Article  CAS  Google Scholar 

  56. G.S. Oehrlein, Reactive-ion etching. Phys. Today 39, 26–33 (1986)

    Article  CAS  Google Scholar 

  57. C.Y. Li, Y. Hatta, Preparation of diamond whiskers using Ar/O2 plasma etching. Diam. Relat. Mater. 14, 1780–1783 (2005)

    Article  CAS  Google Scholar 

  58. M.Y. Liao, S. Hishita, E. Watanabe, S. Koizumi, Y. Koide, Suspended single-crystal diamond nanowires for high-performance nanoelectromechanical switches. Adv. Mater. 22, 5393–5397 (2010)

    Article  CAS  Google Scholar 

  59. Y. Tzeng, J. Wei, J.T. Woo, W. Lanford, Freestanging single-crystalline chemical vapor deposited diamond films. Appl. Phys. Lett. 63, 2216–2218 (1993)

    Article  CAS  Google Scholar 

  60. E.S. Baik, Y.J. Baik, D. Jeon, Aligned diamond nanowhiskers. J. Mater. Res. 15, 923–926 (2000)

    Article  CAS  Google Scholar 

  61. Y.S. Zou, T. Yang, W.J. Zhang, Y.M. Chong, B. He, I. Bello, S.T. Lee, Fabrication of diamond nanopillars and their arrays. Appl. Phys. Lett. 92, 053105 (2008)

    Article  CAS  Google Scholar 

  62. W. Smirnov, A. Kriele, R. Hoffmann, E. Sillero, J. Hees, O.A. Williams, N. Yang, C. Kranz, C.E. Nebel, Diamond-modified afm probes: from diamond nanowires to atomic force microscopy-integrated boron-doped diamond electrodes. Anal. Chem. 83, 4936–4941 (2011)

    Article  CAS  Google Scholar 

  63. W. Janssen, E. Gheeraert, Dry etching of diamond nanowires using self-organized metal droplet masks. Diam. Relat. Mater. 20, 389–394 (2011)

    Article  CAS  Google Scholar 

  64. S. Okuyama, Matsushita SI (Preparation of periodic microstructured diamond surfaces. chemistry letters, Fujishima A, 2000), pp. 534–535

    Google Scholar 

  65. S. Okuyama, S.I. Matsushita, A. Fujishima, Periodic submicrocylinder diamond surfaces using two-dimensional fine particle arrays. Langmuir 18, 8282–8287 (2002)

    Article  CAS  Google Scholar 

  66. B.J.M. Hausmann, M. Khan, Y. Zhang, T.M. Babinec, K. Martinick, M. McCutcheon, P.R. Hemmer, M. Loncar, Fabrication of diamond nanowires for quantum information processing applications. Diam. Relat. Mater. 19, 621–629 (2010)

    Article  CAS  Google Scholar 

  67. N. Yang, H. Uetsuka, E. Osawa, C.E. Nebel, Vertically aligned nanowires from Boron-doped diamond. Nano Lett. 8, 3572–3576 (2008)

    Article  CAS  Google Scholar 

  68. N. Yang, H. Uetsuka, C.E. Nebel, Biofunctionalization of Vertically aligned diamond nanowires. Adv. Funct. Mater. 19, 887–893 (2009)

    Article  CAS  Google Scholar 

  69. N. Yang, H. Uetsuka, O.A. Williams, E. Osawa, N. Tokuda, C.E. Nebel, Vertically aligned diamond nanowires: fabrication, characterization, and application for DNA sensing. Phys. Status Solidi A 206, 2048–2056 (2009)

    Article  CAS  Google Scholar 

  70. N. Tokuda, H. Umezawa, T. Saito, K. Yamabe, H. Okushi, S. Yamasaki, Surface roughening of diamond (001) films during homoepitaxial growth in heavy boron doping. Diamond Relat. Mater. 16, 767–770 (2007)

    Article  CAS  Google Scholar 

  71. A. Kruger, F. Kataoka, M. Ozawa, T. Fujino, Y. Suzuki, A.E. Aleksenskii, A.Y. Vul, E. Osawa, Unusually tight aggregation in detonation nanodiamond: Identification and disintegration. Carbon 43, 1722–1730 (2005)

    Article  CAS  Google Scholar 

  72. O.A. Williams, O. Douheret, M. Daenen, K. Haenen, E. Osawa, M. Takahashi, Enhanced diamond nucleation on monodispersed nanocrystalline diamond. Chem. Phys. Lett. 445, 255–258 (2007)

    Article  CAS  Google Scholar 

  73. O.A. Williams, M. Daenen, J. Dhaen, K. Haenen, J. Maes, V.V. Moshchalkov, M. Nesladek, D.M. Gruen, Comparison of the growth and properties of ultrananocrystalline diamond and nanocrystalline diamond. Diam. Relat. Mater.15, 654–658 (2006)

    Google Scholar 

  74. M. Wei, C. Terashima, M. Lv, A. Fujishima, Z.Z. Gu, Boron-doped diamond nanograss array for electrochemical sensors. Chem. Commun. 24, 3624–3626 (2009)

    Article  CAS  Google Scholar 

  75. S. Szunerits, Y. Coffinier, E. Galopin, J. Brenner, Boukherroub R: Preparation of boron-doped diamond nanowires and their application for sensitive electrochemical detection of tryptophan. Electrochem. Commun. 12, 438–441 (2010)

    Article  CAS  Google Scholar 

  76. Y. Coffinier, S. Szunerits, H. Drobecq, M. Oleg, R. Boukherroub, Diamond nanowires for highly sensitive matrix-free mass spectrometry analysis of small molecules. Nanosacle 4, 231–238 (2012)

    Article  CAS  Google Scholar 

  77. Y. Coffinier, E. Galopin, S. Szunerits, R. Boukherroub, Preparation of superhydrophobic and oleophobic diamond nanograss arrays. J. Mater. Chem. 20, 10671–10675 (2010)

    Article  CAS  Google Scholar 

  78. P.S. Shah, T. Hanrath, K.P. Johnston, S.A. Korgel, Nanocrystal and nanowire synthesis and dispersibility in supercritical fluids. J. Phys. Chem. B 108, 9574–9587 (2004)

    Article  CAS  Google Scholar 

  79. Y. Wu, P. Yang, Direct observation of vapor-liquid-solid nanowire growth. J. Am. Chem. Soc. 123, 3165–3166 (2001)

    Article  CAS  Google Scholar 

  80. S. Kodambaka, J. Tersoff, M.C. Reuter, F.M. Ross, Germanium nanowire growth below the eutectic temperature. Science 316, 729–732 (2007)

    Article  CAS  Google Scholar 

  81. J.L. Lensch-Falk, E.R. Hemesath, D.E. Perea, L.J. Lauhon, Alternative catalysts for VSS growth of silicon and germanium nanowires. J. Mater. Chem. 19, 849–857 (2009)

    Article  CAS  Google Scholar 

  82. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 15, 353–389 (2003)

    Article  CAS  Google Scholar 

  83. H. Ringsdorf, B. Schlarb, J. Verzmer, Molecular architecture and function of polymeric oriented systems-models for the study of organization, surface recognition, and dynamics of biomembranes. Angew. Chem. Int. Ed. 27, 113–158 (1988)

    Article  Google Scholar 

  84. C.N.R. Rao, A. Govindaraj, F.L. Deepak, N.A. Gunari, M. Nath, Surfactant-assisted synthesis of semiconductor nanotubes and nanowires. Appl. Phys. Lett. 78, 1853–1855 (2001)

    Article  CAS  Google Scholar 

  85. Y. Yin, Y. Lu, Y. Sun, Y. Xia, Silver nanowires can be directly coated with amorphous silica to generate well-controlled coaxial nanocables of silver/silica. Nano Lett. 2, 427–430 (2002)

    Article  CAS  Google Scholar 

  86. P.W. May, CVD Diamond: A new technology for future. Endeavour 19, 101–106 (1995)

    Article  CAS  Google Scholar 

  87. S.S. Lee, O. Takai, H. Itoh, Uniform coating of CVD diamond on metallic wire substrates. J. Mater. Sci. 32, 2417–2422 (1997)

    Article  CAS  Google Scholar 

  88. G. Chollon, R. Naslain, C. Prentice, R. Shatwell, P. May, High temperature properties of SiC and diamond CVD-monofilaments. J. Eur. Ceram. Soc. 25, 1929–1942 (2005)

    Article  CAS  Google Scholar 

  89. V. Baranauskas, H.J. Ceragioli, A.C. Peterlevitz, A.F. Durrant, Development of tubes of micro-crystalline diamond and diamond-like carbon. Thin Solid Film 398, 250–254 (2001)

    Article  Google Scholar 

  90. M.K. Singh, E. Titus, J.C. Madaleno, G. Cabral, J. Gracio, Novel two-step method for synthesis of high-density nanocrystalline diamond fibers. Chem. Marer. 20, 1725–1732 (2008)

    CAS  Google Scholar 

  91. M.K. Singh, E. Titus, M.G. Willinger, J.C. Madaleno, J. Gracio, Microstructure and electron field emission study of diamond nanorod decorated a-SiO2 nanowires by microwave Ar–CH4/H2 plasma chemical vapor deposition with addition of N2. Diamond Relat. Mater. 18, 865–869 (2009)

    Article  CAS  Google Scholar 

  92. J.C. Madaleno, M.K. Singh, E. Titus, G. Cabral, J. Gracio, Electron field emission from patterned nanocrystalline diamond coated a-SiO2 micrometer-tip arrays. Appl. Phys. Lett. 92, 023113 (2008)

    Article  CAS  Google Scholar 

  93. D. Luo, L. Wu, J. Zhi, Fabrication of boron-doped diamond nanorod forest electrodes and their application in nonenzymatic amperometric glucose biosensing. ACS Nano 8, 2121–2128 (2009)

    Article  CAS  Google Scholar 

  94. D. Luo, L. Wu, J. Zhi, 2-D dimensional micro-network for boron-doped diamond film: fabrication and electrochemical sensing application. Chem. Commun. 46, 6488–6490 (2010)

    Article  CAS  Google Scholar 

  95. D. Aradilla, F. Gao, G. Lewes-Malandrakis, W. Muller-Sebert, P. Gentile, M. Boniface, D. Aldakov, B. Iliev, T.J.S. Schubert, C.E. Nebel, Designing 3D multihierarchical heteronanostructures for high-performance on-chip hybrid supercapacitors: poly(3,4-(ethylenedioxy)thiophene)-coated diamond/silicon nanowire electrodes in an aprotic ionic liquid. ACS Appl. Mater. Interfaces. 8, 18069–18077 (2016)

    Article  CAS  Google Scholar 

  96. D. Aradilla, F. Gao, G. Lewes-Malandrakis, W. Muller-Sebert, D. Gaboriau, P. Gentile, B. Iliev, T. Schubert, S. Sadki, G. Bidan, C.E. Nebel, A step forward into hierarchically nanostructured materials for high performance micro-supercapacitors: Diamond-coated SiNW electrodes in protic ionic liquid electrolyte. Electrochem. Commun. 63, 34–38 (2016)

    Article  CAS  Google Scholar 

  97. F. Gao,G. Lewes-Malandrakis, M.T. Wolfer, W. Müller-Sebert, P. Gentile, D. Aradilla,T. Schubert, C.E. Nebel, Diamond-coated silicon wires for supercapacitor applications in ionic liquids. Diam. Relat. Mater. 51, 1–6 (2015)

    Google Scholar 

  98. C.G. Granqvist, A. Andersson, O. Hundri, Spectrally selective surfaces of Ni-pigmented anodic Al2O3. Appl. Phys. Lett. 35, 268–270 (1979)

    Article  CAS  Google Scholar 

  99. C.A. Huber, T.E. Huber, M. Sadoqi, J.A. Lubin, S. Mannlis, C.B. Prater, Nanowire array composites. Science 263, 800–802 (1994)

    Article  CAS  Google Scholar 

  100. H. Masuda, T. Yanagishita, K. Yasui, K. Nishio, I. Yagi, T.N. Rao, A. Fujishima, synthesis of well-aligned diamond nanocylinders. Adv. Mater. 13, 247–249 (2001)

    Article  CAS  Google Scholar 

  101. F. Keller, M.S. Hunter, D.L. Robinson, Structural features of oxide coatings on aluminium. J. Electrochem. Soc. 100, 411–419 (1953)

    Article  CAS  Google Scholar 

  102. H. Masuda, K. Fukuda, Ordered metal nanohole arrays made by A two-step replication of honeycomb structures of anodic alumina. Science 268, 1466–1468 (1995)

    Article  CAS  Google Scholar 

  103. I.I. Vlasov, O.I. Lebedev, V.G. Ralchenko, E. Goovaerts, G. Bertoni, G.V. Tendeloo, V.I. Konov, Hybrid diamond –graphite nanowires produced by microwave plasma chemical vapor deposition. Adv. Mater. 19, 4058–4062 (2007)

    Article  CAS  Google Scholar 

  104. I.I. Vlasov, V.G. Ralchenko, E. Goovaerts, A.V. Saveliev, M.V. Kanzyuba, Bulk and surface-enhanced Raman spectroscopy of nitrogen-doped ultrananocrystalline diamond films. Phys. Status Solidi A Appl. Mater. Sci. 203, 3028–3035 (2006)

    Google Scholar 

  105. N. Shang, P. Papakonstantinou, P. Wang, A. Zakharov, U. Palnitkar, I.N. Lin, M. Chu, A. Stamboulis, Self-assembled growth, microstructure, and field-emission high-performance of ultrathin diamond nanorods. ACS Nano 3, 1032–1038 (2009)

    Article  CAS  Google Scholar 

  106. A.S. Barnard, I.K. Snook, Phase stability of nanocarbon in one dimension: nanotubes versus diamond nanowires. J. Chem. Phys. 120, 3817–3821 (2004)

    Article  CAS  Google Scholar 

  107. A.S. Barnard, S.P. Russo, I.K. Snook, Ab initio modeling of diamond nanowire structures. Nano Lett. 3, 1323–1328 (2003)

    Article  CAS  Google Scholar 

  108. A.R. Sobia, S. Adnan, A. Mukhtiar, A.A. Khurram, A.A. Turab, A. Awais, A. Naveed, Q.J. Faisal, H. Javaid, G.J. Yu, Effect of nitrogen addition on hydrogen incorporation in diamond nanorod thin films. Curr. Appl. Phys. 12, 712–717 (2012)

    Article  Google Scholar 

  109. J. Shalini, Y.C. Lin, T.H. Chang, K.J. Sankaran, H.C. Chen, C.Y. Lee, N.H. Tai, Ultra-nanocrystalline diamond nanowires with enhanced electrochemical properties. Electrochim. Acta 92, 9–19 (2013)

    Article  CAS  Google Scholar 

  110. P. Feng, X.P. Wang, A. Aldalbahi, A.F. Zhou, Methane induced electrical property change of nitrogen doped ultrananocrystalline diamond nanowires. Appl. Phys. Lett. 107, 233103 (2015)

    Article  CAS  Google Scholar 

  111. L.Y. Zeng, H.Y. Peng, W.B. Wang, Y.Q. Chen, D. Lei, W. Qi, J.Q. Liang, J.L. Zhao, X.G. Kong, H. Zhang, Nanocrystalline diamond films deposited by the hot cathode direct current plasma chemical vapor deposition method with different compositions of CH4/Ar/H-2 gas mixture. J. Phys. Chem. C 112, 1401–1406 (2008)

    Article  CAS  Google Scholar 

  112. L.Y. Zeng, H.Y. Peng, W.B. Wang, Y.Q. Chen, D. Lei, W. Qi, J.Q. Liang, J.L. Zhao, X.G. Kong, H. Zhang, Synthesis and characterization of diamond microcrystals and nanorods deposited by hot cathode direct current plasma chemical vapor deposition method. J. Phys. Chem. C 112, 6160–6164 (2008)

    Article  CAS  Google Scholar 

  113. H. Motahari, R. Malekfar, Bottom-up diamond nanorod growth in HFCVD from nanocrystalline diamond film as a template-free method. Mater. Res. Express 4 (2017)

    Google Scholar 

  114. F.P. Bundy, H.T. Hall, H.M. Strong, R.H. Wentorf, Man-made diamonds. Nature 176, 51–55 (1955)

    Article  CAS  Google Scholar 

  115. B.V. Derjaguin, D.V. Fedoseev, V.M. Lukyanovich, B.V. Spitzin, V.A. Ryabov, A.V. Lavrentyev, Filamentary diamond crystals. J. Cryst. Growth 2, 380–384 (1968)

    Article  Google Scholar 

  116. W.R.L. Lambrecht, C.H. Lee, B. Segall, J.C. Angus, Z.D. Li, M. Sunkara, Diamond nucleation by hydrogenation of the edges of graphitic precursors. Nature 364, 607–610 (1993)

    Article  CAS  Google Scholar 

  117. A. Gross, Hydrogen dissociation on metal surfaces - a model system for reactions on surfaces. Appl. Phys. A Mater. Sci. Process. 67, 627–635 (1998)

    Article  CAS  Google Scholar 

  118. H.F. Berger, E. Grosslinger, K.D. Rendulic, Coupling of vibrational and translational energy in the adsorption of H2 on FE(100)—state-resolved sticking coefficients. Surface Sci. 261, 313–320 (1992)

    Article  CAS  Google Scholar 

  119. J.H. Zhang, B.Q. Wei, J. Liang, Z.D. Gao, D.H. Wu, Synthesis of diamond from buckytubes by laser and quenching treatment. Mater. Lett. 31, 79–82 (1997)

    Article  CAS  Google Scholar 

  120. Y.Q. Hou, D.M. Zhuang, G. Zhang, M.S. Wu, J.J. Liu, Preparation of diamond films by hot filament chemical vapor deposition and nucleation by carbon nanotubes. Appl. Surf. Sci. 185, 303–308 (2002)

    Article  CAS  Google Scholar 

  121. Y.Q. Zhu, T. Sekine, T. Kobayashi, T. Takazawa, M. Terrones, H. Terrones, Collapsing carbon nanotubes and diamond formation under shock waves. Chem. Phys. Lett. 287, 689–693 (1998)

    Article  CAS  Google Scholar 

  122. B.Q. Wei, J. Liang, Z.D. Gao, J.H. Zhang, Y.Q. Zhu, Y.B. Li, D.H. Wu, The transformation of fullerenes into diamond under different processing conditions. J. Mater. Process. Technol. 63, 573–578 (1997)

    Article  Google Scholar 

  123. L.M. Cao, C.X. Gao, H.P. Sun, G.T. Zou, Z. Zhang, X.Y. Zhang, M. He, M. Zhang, Y.C. Li, J. Zhang, D.Y. Dai, L.L. Sun, W.K. Wang, Synthesis of diamond from carbon nanotubes under high pressure and high temperature. Carbon 39, 311–314 (2001)

    Article  CAS  Google Scholar 

  124. H. Yusa, Nanocrystalline diamond directly transformed from carbon nanotubes under high pressure. Diamond Relat. Mater. 11, 87–91 (2002)

    Article  CAS  Google Scholar 

  125. B. Wei, J. Zhang, J. Liang, D. Wu, The mechanism of phase transformation from carbon nanotube to diamond. Carbon 36, 997–1001 (1998)

    Article  CAS  Google Scholar 

  126. L.T. Sun, J.L. Gong, Z.Y. Zhu, D.Z. Zhu, S.X. He, Nanocrystalline diamond from carbon nanotubes. Appl. Phys. Lett. 84, 2901–2903 (2004)

    Article  CAS  Google Scholar 

  127. J. Singh, Nucleation and Growth-Mechanism of Diamond During Hot-Filament Chemical-Vapor-Deposition. J. Mater. Sci. 29, 2761–2766 (1994)

    Article  CAS  Google Scholar 

  128. N. Dubrovinskaia, L. Dubrovinsky, F. Langenhorst, S. Jacobsen, C. Liebske, Nanocrystalline diamond synthesized from C60. Diamond Relat. Mater. 14, 16–22 (2005)

    Article  CAS  Google Scholar 

  129. J. Voskuhl, M. Waller, S. Bandaru, B.A. Tkachenko, C. Fregonese, B. Wibbeling, P.R. Schreiner, B.J. Ravoo, Nanodiamonds in sugar rings: an experimental and theoretical investigation of cyclodextrin-nanodiamond inclusion complexes. Org. Biomol. Chem. 10, 4524–4530 (2012)

    Article  CAS  Google Scholar 

  130. J. Zhang, Y. Feng, H. Ishiwata, Y. Miyata, R. Kitaura, J.E.P. Dahl, R.M.K. Carlson, H. Shinohara, D. Tomanek, Synthesis and Transformation of Linear Adamantane Assemblies inside Carbon Nanotubes. ACS Nano 6, 8674–8683 (2012)

    Article  CAS  Google Scholar 

  131. D.A. Britz, A.N. Khlobystov, K. Porfyrakis, A. Ardavan, G.A.D. Briggs, Chemical reactions inside single-walled carbon nano test-tubes. Chem. Commun. 1, 37–39 (2005)

    Article  CAS  Google Scholar 

  132. J. Zhang, Y. Miyata, R. Kitaura, H. Shinohara, Preferential synthesis and isolation of (6, 5) single-wall nanotubes from one-dimensional C-60 coalescence. Nanoscale 3, 4190–4194 (2011)

    Article  CAS  Google Scholar 

  133. J. Zhang, Z. Zhu, Y.Q. Feng, H. Ishiwata, Y. Miyata, R. Kitaura, J.E.P. Dahl, R.M.K. Carlson, N.A. Fokina, P.R. Schreiner, Evidence of diamond nanowires formed inside carbon nanotubes from diamantine dicarboxylic acid. Angew. Chem. Int. Ed. 52, 3717–3721 (2013)

    Article  CAS  Google Scholar 

  134. G.C. McIntosh, M. Yoon, S. Berber, D. Tomanek, Diamond fragments as building blocks of functional nanostructures. Phys. Rev. B 70, 045401 (2004)

    Article  CAS  Google Scholar 

  135. W. Piekarczyk, How and why CVD diamond is formed: A solution of the thermodynamic paradox. J. Mater. Sci. 33, 3443–3453 (1998)

    Article  CAS  Google Scholar 

  136. O.A. Shenderova, V.V. Zhirnov, D.W. Brenner, Carbon nanostructures. Crit. Rev. Solid State Mater. Sci. 27, 227–356 (2002)

    Article  CAS  Google Scholar 

  137. J.T. Tanskanen, M. Linnolahti, A.J. Karttunen, T.A. Pakkanen, From fulleranes and icosahedral diamondoids to polyicosahedral nanowires: structural, electronic, and mechanical characteristics. J. Phys. Chem. C 112, 11122–11129 (2008)

    Article  CAS  Google Scholar 

  138. F.L. Liu, Theoretical study on the coplanar double-cage dodecahedrane C35H30. Phys. Chem. Chem. Phys. 6, 906–909 (2004)

    Article  CAS  Google Scholar 

  139. F.L. Liu, L. Peng, J.X. Zhao, S.Q. Wang, Theoretical study of two C50H40 isomers with three dodecahedrane cages sharing two pentagons. Int. J. Quantum Chem. 103, 167–175 (2005)

    Article  CAS  Google Scholar 

  140. A.S. Barnard, S.P. Russo, I.K. Snook, From nanodiamond to diamond nanowires: structural properties affected by dimension. Philos. Mag. 84, 899–907 (2004)

    Article  CAS  Google Scholar 

  141. J. Guo, B. Wen, R. Melnik, S. Yao, T. Li, Geometry and temperature dependent thermal conductivity of diamond nanowires: Anon-equilibrium molecular dynamics study. Phys. E 43, 155–160 (2010)

    Article  CAS  Google Scholar 

  142. J. Guo, B. Wen, R. Melnik, S. Yao, T. Li, Molecular dynamics study on diamond nanowires mechanical properties: strain rate, temperature and size dependent effects. Diam. Relat. Mater. 20, 551–555 (2011)

    Article  CAS  Google Scholar 

  143. O.A. Shenderova, D.W. Brenner, R.S. Ruoff, Would diamond nanorods be stronger than fullerene nanotubes? Nano Lett. 3, 805–809 (2003)

    Article  CAS  Google Scholar 

  144. J.N. Coleman, U. Khan, W.J. Blau, Gun’ko YK: small but strong: a review of the mechanical properties of carbon nanotube-polymer composites. Carbon 44, 1624–1652 (2006)

    Article  CAS  Google Scholar 

  145. B.Z. Kupfer, R.K. Ahmad, A. Zainal, R.B. Jackman, Diam. Relat. Mater. 19, 742 (2010)

    Article  CAS  Google Scholar 

  146. F. Occelli, P. Loubeyre, R. Letoullec, Properties of diamond under hydrostatic pressures up to 140 GPa. Nat. Mater. 2, 151–154 (2003)

    Article  CAS  Google Scholar 

  147. T. Yamanaka, S. Morimoto, H. Kanda, Influence of the isotope ratio on the lattice-constant of diamond. Phys. Rev. B 49, 9341–9343 (1994)

    Article  CAS  Google Scholar 

  148. H. Cynn, J.E. Klepeis, C.S. Yoo, D.A. Young, Osmium has the lowest experimentally determined compressibility. Phys. Rev. Lett. 88, 135701 (2002)

    Article  CAS  Google Scholar 

  149. H. Peelaers, B. Partoens, F.M. Peeters, Phonon band structure of Si nanowires: a stability analysis. Nano Lett. 9, 107–111 (2009)

    Article  CAS  Google Scholar 

  150. H. Peelaers, B. Partoens, F.M. Peeters, Phonons in Ge nanowires. Appl. Phys. Lett. 95, 122110 (2009)

    Article  CAS  Google Scholar 

  151. A. Trejo, A. Miranda, L. Rivera, A. Diaz-mendez, M. Cruz-Irisson, Phonon optical modes and electronic properties in diamond nanowires. Micoelectron. Eng. 90, 92–95 (2012)

    Article  CAS  Google Scholar 

  152. K.W. Sun, J.Y. Wang, T.Y. Ko, Raman spectroscopy of single nanodiamond: Phonon-confinement effects. Appl. Phys. Lett. 92, 153115 (2008)

    Article  CAS  Google Scholar 

  153. Y. Yonezu, K. Wakui, K. Furusawa, M. Takeoka, K. Semba, T. Aoki, Efficient Single-Photon Coupling from a Nitrogen-Vacancy Center Embedded in a Diamond Nanowire Utilizing an Optical Nanofiber. Sci. Rep. 7, 12985 (2017)

    Article  CAS  Google Scholar 

  154. S. Li, C.H. Li, B.W. Zhao, Y. Dong, C.C. Li, X.D. Chen, Y.S. Ge, F.W. Sun, A bright single-photon source from nitrogen-vacancy centers in diamond nanowires. Chin. Phys. Lett. 34, 096101 (2017)

    Article  Google Scholar 

  155. J.R. Solano, A.T. Banos, A.M. Duran, E.C. Quiroz, M.C. Irisson, DFT study of anisotropy effects on the electronic properties of diamond nanowires with nitrogen-vacancy center. J. Mol. Model. 23, 292 (2017)

    Article  CAS  Google Scholar 

  156. J.H. Zhang, J.X. Cao, X.Y. Chen, J.W. Ding, P.H. Zhang, W. Ren, Diamond nanowires with nitrogen vacancy under a transverse electric field. Phys. Rev. B 91, 045417 (2015)

    Article  CAS  Google Scholar 

  157. C.W. Padgett, D.W. Brenner, Influence of chemisorption on the thermal conductivity of single-wall carbon nanotubes. Nano Lett. 4, 1051–1053 (2004)

    Article  CAS  Google Scholar 

  158. N.V. Novikov, A.P. Podoba, S.V. Shmegera, A. Witek, A.M. Zaitsev, A.B. Denisenko, W.R. Fahmer, M. Werner, Influence of isotopic content on diamond thermal conductivity. Diamond Relat. Mater. 8, 1602–1606 (1999)

    Article  CAS  Google Scholar 

  159. J.F. Moreland, J.B. Freund, G. Chen, The disparate thermal conductivity of carbon nanotubes and diamond nanowires studied by atomistic simulation. Microscale Thermophys. Eng. 8, 61–69 (2004)

    Article  CAS  Google Scholar 

  160. C.W. Padgett, O. Shenderova, D.W. Brenner, Thermal conductivity of diamond nanorods: Molecular simulation and scaling relations. Nano Lett. 6, 1827–1831 (2006)

    Article  CAS  Google Scholar 

  161. F.J. Himpsel, J.A. Knapp, J.A. Vanvechten, D.E. Eastman, Quantum photoyield of diamond(111)—stable negative-affinity emitter. Phys. Rev. B 20, 624–627 (1979)

    Article  CAS  Google Scholar 

  162. B.J. Cui, J. Ristein, L. Ley, Electron affinity of the bare and hydrogen covered single crystal diamond (111) surface. Phys. Rev. Lett. 81, 429–432 (1998)

    Article  CAS  Google Scholar 

  163. T. Ito, M. Nishimura, M. Yokoyama, M. Irie, C.L. Wang, Highly efficient electron emitting diode fabricated with single-crystalline diamond. Diamond relat. Mater. 9, 1561–1568 (2000)

    Article  CAS  Google Scholar 

  164. I.L. Krainsky, V.M. Asnin, G.T. Mearini, J.A. Dayton, Negative-electron-affinity effect on the surface of chemical-vapor-deposited diamond polycrystalline films. Phys. Rev. B 53, R7650–R7653 (1996)

    Article  CAS  Google Scholar 

  165. Y.K. Chang, H.H. Hsieh, W.F. Pong, M.H. Tsai, F.Z. Chien, P.K. Tseng, L.C. Chen, T.Y. Wang, K.H. Chen, D.M. Bhusari, J.R. Yang, S.T. Lin, Quantum confinement effect in diamond nanocrystals studied by X-ray-absorption spectroscopy. Phys. Rev. Lett. 82, 5377–5380 (1999)

    Article  CAS  Google Scholar 

  166. N. Jiang, K. Eguchi, S. Noguchi, T. Inaoka, Y. Shintani, Structural characteristics and field electron emission properties of nano-diamond/carbon films. J. Cryst. Growth 236, 577–582 (2002)

    Article  CAS  Google Scholar 

  167. S. Gupta, B.L. Weiss, B.R. Weiner, G. Morell, Electron field emission from sulfur-incorporated nanocrystalline carbon thin films. Appl. Phys. Lett. 79, 3446–3448 (2001)

    Article  CAS  Google Scholar 

  168. L. Gan, E. Baskin, C. Saguy, R. Kalish, Quantization of 2D hole gas in conductive hydrogenated diamond surfaces observed by electron field emission. Phys. Rev. Lett. 96, 196808 (2006)

    Article  CAS  Google Scholar 

  169. W. Zhu, G.P. Kochanski, S. Jin, Low-field electron emission from undoped nanostructured diamond. Science 282, 1471–1473 (1998)

    Article  CAS  Google Scholar 

  170. D. Pradhan, I.N. Lin, Grain-Size-Dependent Diamond-Nondiamond Composite Films: Characterization and Field-Emission Properties. ACS Appl. Mater. Interfaces 1, 1444–1450 (2009)

    Article  CAS  Google Scholar 

  171. J.P. Thomas, H.C. Chen, N.H. Tai, I.N. Lin, Freestanding Ultrananocrystalline Diamond Films with Homojunction Insulating Layer on Conducting Layer and Their High Electron Field Emission Properties. ACS Appl. Mater. Interfaces 3, 4007–4013 (2011)

    Article  CAS  Google Scholar 

  172. M. Shiraishi, M. Ata, Work function of carbon nanotubes. Carbon 39, 1913–1917 (2001)

    Article  CAS  Google Scholar 

  173. Z. Xu, X.D. Bai, E.G. Wang, Wang Zl: Field emission of individual carbon nanotube with in situ tip image and real work function. Appl. Phys. Lett. 87, 163106 (2005)

    Article  CAS  Google Scholar 

  174. R.C. Smith, S.R.P. Silva, Interpretation of the field enhancement factor for electron emission from carbon nanotubes. J. Appl. Phys. 106, 014314 (2009)

    Article  CAS  Google Scholar 

  175. A. Mayer, N.M. Miskovsky, P.H. Cutler, Photon-stimulated field emission from semiconducting (10,0) and metallic (5,5) carbon nanotubes. Phys. Rev. B 65, 195416 (2002)

    Article  CAS  Google Scholar 

  176. Q.H. Wang, A.A. Setlur, J.M. Lauerhaas, J.Y. Dai, E.W. Seeling, R.P.H. Chang, A nanotube-based field-emission flat panel display. Appl. Phys. Lett. 72, 2912–2913 (1998)

    Article  CAS  Google Scholar 

  177. I. Aharonovich, D. Englund, M. Toth, Solid-state single-photon emitters. Nat. Photonics 10, 631–641 (2016)

    Article  CAS  Google Scholar 

  178. P.C. Maurer et al., Room-temperature quantum bit memory exceeding one second. Science 336, 1283–1286 (2012)

    Article  CAS  Google Scholar 

  179. C. Kurtsiefer, S. Mayer, P. Zarda, H. Weinfurter, Stable solid-state source of single photons. Phys. Rev. Lett. 85 290 (2000)

    Google Scholar 

  180. T. Gaebel et al., Room-temperature coherent coupling of single spins in diamond. Nat. Phys. 2, 408–413 (2006)

    Article  CAS  Google Scholar 

  181. J. Maze et al., Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455, 644–647 (2008)

    Article  CAS  Google Scholar 

  182. M. Almokhtar, M. Fujiwara, H. Takashima, Takeuchi S: Numerical simulations of nanodiamond nitrogen-vacancy centers coupled with tapered optical fibers as hybrid quantum nanophotonic devices. Opt. Express 22, 20045–20059 (2014)

    Article  CAS  Google Scholar 

  183. A. Sipahigil et al., An integrated diamond nanophotonics platform for quantum-optical networks. Science 354, 847–850 (2016)

    Article  CAS  Google Scholar 

  184. M. Najam-ul-Haq, M. Rainer, C.W. Huck, P. Hausberger, H. Kraushaar, G.K. Bonn, Nanostructured diamond-like carbon on digital versatile disc as a matrix-free target for laser desorption/ionization mass spectrometry. Anal. Chem. 80, 7467–7472 (2008)

    Article  CAS  Google Scholar 

  185. S. Szunerits, Y. Coffinier, R. Boukherroub, Diamond nanowires: a novel platform for electrochemistry and matrix-free mass spectrometry. Sensors 15, 12573–12593 (2015)

    Article  CAS  Google Scholar 

  186. A. Socoliuc, Atomic-scale control of friction by actuation of nanometer-sized contacts. Science 313, 207–210 (2006)

    Article  CAS  Google Scholar 

  187. J.M. Kim, J.H. Park, C.W. Baek, Y.K. Kim, The SiOG-based single-crystalline silicon (SCS) RF MEMS switch with uniform characteristics. J. Microelectromech. Syst. 13, 1036–1042 (2004)

    Article  CAS  Google Scholar 

  188. M. Adamschik, J. Kuserer, P. Schmid, K.B. Schad, D. Grobe, E. Kohn, Diamond microwave micro relay. Diam. Relat. Mater. 11, 672–676 (2002)

    Article  CAS  Google Scholar 

  189. V.P. Adiga, A.V. Sumant, S. Suresh, C. Gudeman, O. Auiello, J.A. Carlisle, R.W. Carpick, Mechanical stiffness and dissipation in ultrananocrystalline diamond microresonators. Phys. Rev. B 79, 245403 (2009)

    Article  CAS  Google Scholar 

  190. G. Carpini, F. Lucarelli, G. Marrazza, M. Mascini, Oligonucleotide-modified screen-printed gold electrodes for enzyme-amplified sensing of nucleic acids. Biosens. Bioelectron. 20, 167–175 (2004)

    Article  CAS  Google Scholar 

  191. O. Paenke, A. Kirbs, F. Lisdat, Voltammetric detection of single base-pair mismatches and quantification of label-free target ssDNA using. Biosens. Bioelectron. 22, 2656–2662 (2007)

    Article  CAS  Google Scholar 

  192. H. Aoki, H. Tao, Gene sensors based on peptide nucleic acid (PNA) probes: Relationship between sensor sensitivity and probe/target duplex stability. Analyst 130, 1478–1482 (2005)

    Article  CAS  Google Scholar 

  193. G. Zhao, Y. Qi, Y. Tian, Simultaneous and direct determination of tryptophan and tyrosine at boron-doped diamond electrode. Electroanalysis 18, 830–834 (2006)

    Article  CAS  Google Scholar 

  194. W. Huang, G. Mai, Y. Liu, C. Yang, W. Qua, Voltammetric Determination of Tryptophan at a Single-Wall Carbon Nanotubes Modified Electrode. J. Nanosci. Nanotechnol. 4, 423–427 (2004)

    Article  CAS  Google Scholar 

  195. J. Shalini, K.J. Sankaran, C.Y. Lee, N.H. Tai, I.N. Lin, An amperometric urea bisosensor based on covalent immobilization of urease on N-2 incorporated diamond nanowire electrode. Biosens. Bioelectron. 56, 64–70 (2014)

    Article  CAS  Google Scholar 

  196. P. Feng, X. Wang, A. Aldalbahi, A.F. Zhou, Methane induced electrical property change of nitrogen doped ultrananocrystalline diamond nanowires. Appl. Phys. Lett. 107, 233103 (2015)

    Article  CAS  Google Scholar 

  197. X.Y. Peng, J. Chu, L.D. Wang, S.K. Duan, P. Feng, Boron-doped diamond nanowires for CO gas sensing application. Sens. Actuators B Chem. 241, 383–389 (2017)

    Article  CAS  Google Scholar 

  198. F. Gao, R. Thomann, C.E. Nebel, Aligned Pt-diamond core-shell nanowires for electrochemical catalysis. Electrochem. Commun. 50, 32–35 (2015)

    Article  CAS  Google Scholar 

  199. N.J. Yang, J.S. Foord, X. Jiang, Diamond electrochemistry at the nanoscale: a Rev. Carbon 99, 90–110 (2016)

    Article  CAS  Google Scholar 

  200. D. Aradilla, F. Gao, G. Lewes-Malandrakis, W. Muller-Sebert, P. Gentile, S. Pouget, C.E. Nebel, G. Bidan, Powering electrodes for high performance aqueous micro-supercapacitors: diamond-coated silicon nanowires operating at a wide cell voltage of 3 V. Electrochim. Acta 242, 173–179 (2017)

    Article  CAS  Google Scholar 

  201. X.F. Chen, W.J. Zhang, Diamond nanostructures for drug delivery, bioimaging, and biosensing. Chem. Soc. Rev. 46, 734–760 (2017)

    Article  CAS  Google Scholar 

  202. X.Y. Zhu, S.Y. Kwok, M.F. Yuen, L. Yan, W. Chen, Y. Yang, Z.G. Wang, K.N. Yu, G.Y. Zhu, W.J. Zhang, Dense diamond nanoneedle arrays for enhanced intracellular delivery of drug molecules to cell lines. J. Mater. Sci. 50, 7800–7807 (2015)

    Article  CAS  Google Scholar 

  203. K.J. Sankaran, C.J. Yeh, S. Drijkoningen, P. Pobedinskas, M.K. Van Bael, K.C. Leou, I.N. Lin, K. Haenen, Enhancement of plasma illumination characteristics of few-layer graphene-diamond nanorods hybrid. Nanotechnology 28, 065701 (2017)

    Article  CAS  Google Scholar 

  204. C.H. Lee, E.S. Lee, Y.K. Lim, K.H. Park, H.D. Park, D.S. Lim, Enhanced electrochemical oxidation of phenol by boron-doped diamond nanowire electrode. RSC Adv. 7, 6229–6235 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciate the supports of the International Science & Technology Cooperation Program of China (no. 2013DFG50150), the Natural Foundation of Sciences of the People’s Republic of China (Grant no. 21,175,144, and 20,903,111) and the Key Project of Beijing Natural Science Foundation (Grant No. 2,120,002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinfang Zhi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yu, Y., Zhi, J. (2019). Diamond Nanowires: Theoretical Simulation and Experiments. In: Yang, N. (eds) Novel Aspects of Diamond. Topics in Applied Physics, vol 121. Springer, Cham. https://doi.org/10.1007/978-3-030-12469-4_10

Download citation

Publish with us

Policies and ethics