Skip to main content

Imaging Techniques for Probing Nanoparticles in Cells and Skin

  • Chapter
  • First Online:
Biological Responses to Nanoscale Particles

Part of the book series: NanoScience and Technology ((NANO))

Abstract

Imaging techniques for probing the interactions of nanoparticles with cells and skin are essential for a qualitative and quantitative understanding of uptake and penetration processes. A variety of important visualization techniques is reviewed for providing an overview on established and recently developed techniques. This includes optical microscopy, fluorescence microscopy, electron microscopy, Raman microscopy, optical near-field microscopy, X-ray microscopy, as well as recent and emerging developments in the field of spectromicroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stark, W.J.: Nanoparticles in biological systems. Angew. Chem. Int. Ed. 50(6), 1242–1258 (2011)

    Google Scholar 

  2. Shang, L., Nienhaus, G.U.: Small fluorescent nanoparticles at the nano-bio interface. Mater. Today 16(3), 58–66 (2013)

    Google Scholar 

  3. Treuel, L., Jiang, X.E., Nienhaus, G.U.: New views on cellular uptake and trafficking of manufactured nanoparticles. J. R. Soc. Interface 10(82), 20120939 (2013)

    Google Scholar 

  4. Pelaz, B., et al.: Interfacing Engineered nanoparticles with biological systems: anticipating adverse nano-bio interactions. Small 9(9–10), 1573–1584 (2013)

    Google Scholar 

  5. Geiser, M., Kreyling, W.G.: Deposition and biokinetics of inhaled nanoparticles. Part. Fibre Toxicol. 7(2), 17 (2010)

    Google Scholar 

  6. Shang, L., et al.: Nanoparticle interactions with live cells: quantitative fluorescence microscopy of nanoparticle size effects. Beilstein J. Nanotechnol. 5, 2388–2397 (2014)

    Google Scholar 

  7. Lundqvist, M., et al.: Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Nat. Acad. Sci. 105(38), 14265–14270 (2008)

    ADS  Google Scholar 

  8. Treuel, L., Nienhaus, G.U.: Toward a molecular understanding of nanoparticle–protein interactions. Biophys. Rev. 4(2), 137–147 (2012)

    Google Scholar 

  9. Monopoli, M.P., et al.: Biomolecular coronas provide the biological identity of nanosized materials. Nat. Nanotechnol. 7(12), 779–786 (2012)

    ADS  Google Scholar 

  10. Xiao Wen, L., et al.: Penetration of Nanoparticles into Human Skin. Curr. Pharm. Des. 19(35), 6353–6366 (2013)

    Google Scholar 

  11. Döge, N., et al.: Identification of polystyrene nanoparticle penetration across intact skin barrier as rare event at sites of focal particle aggregations. J. Biophotonics 11(4), e201700169 (2018)

    Google Scholar 

  12. Graf, C., et al.: Penetration of spherical and rod-like gold nanoparticles into intact and barrier-disrupted human skin. In: SPIE BiOS, vol. 9338, pp. 93381L–933811. SPIE 9338 (2015)

    Google Scholar 

  13. Graf, C., et al.: Shape-dependent dissolution and cellular uptake of silver nanoparticles. Langmuir 34(4), 1506–1519 (2018)

    Google Scholar 

  14. Wang, H., et al.: Optical sizing of immunolabel clusters through multispectral plasmon coupling microscopy. Nano Lett. 11(2), 498–504 (2011)

    ADS  Google Scholar 

  15. Blank, H., et al.: Application of low-energy scanning transmission electron microscopy for the study of Pt-nanoparticle uptake in human colon carcinoma cells. Nanotoxicology 8(4), 433–446 (2014)

    Google Scholar 

  16. Peckys, D.B., et al.: Epidermal growth factor receptor subunit locations determined in hydrated cells with environmental scanning electron microscopy. Sci. Rep. 3, 2626 (2013)

    Google Scholar 

  17. Peckys, D.B., de Jonge, N.: Liquid scanning transmission electron microscopy: imaging protein complexes in their native environment in whole eukaryotic cells. Microsc. Microanal. 20(2), 346–365 (2014)

    Google Scholar 

  18. Yamamoto, K., et al.: Selective probing of the penetration of dexamethasone into human skin by soft X-ray spectromicroscopy. Anal. Chem. 87(12), 6173–6179 (2015)

    Google Scholar 

  19. Yamamoto, K., et al.: Core-multishell nanocarriers: transport and release of dexamethasone probed by soft X-ray spectromicroscopy. J. Control. Release 242, 64–70 (2016)

    Google Scholar 

  20. Yamamoto, K., et al.: Influence of the skin barrier on the penetration of topically-applied dexamethasone probed by soft X-ray spectromicroscopy. Eur. J. Pharm. Biopharm. 118(SI), 30–37 (2017)

    Google Scholar 

  21. Meinke, M.C., et al.: Evaluation of carotenoids and reactive oxygen species in human skin after UV irradiation: a critical comparison between in vivo and ex vivo investigations. Exp. Dermatol. 24(3), 194–197 (2015)

    Google Scholar 

  22. Honeywell-Nguyen, P.L., Gooris, G.S., Bouwstra, J.A.: Quantitative assessment of the transport of elastic and rigid vesicle components and a model drug from these vesicle formulations into human skin in vivo. J. Invest. Dermatol. 123(5), 902–910 (2004)

    Google Scholar 

  23. Witting, M., et al.: Interactions of hyaluronic acid with the skin and implications for the dermal delivery of biomacromolecules. Mol. Pharm. 12(5), 1391–1401 (2015)

    Google Scholar 

  24. Lewin, M., et al.: Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat. Biotechnol. 18(4), 410–414 (2000)

    Google Scholar 

  25. Selvi, B.R., et al.: Intrinsically fluorescent carbon nanospheres as a nuclear targeting vector: delivery of membrane-impermeable molecule to modulate gene expression in vivo. Nano Lett. 8(10), 3182–3188 (2008)

    ADS  Google Scholar 

  26. Song, Z., et al.: Background free imaging of upconversion nanoparticle distribution in human skin. J. Biomed. Opt. 18(6), 061215 (2013)

    ADS  Google Scholar 

  27. Huang, Y., Fenech, M., Shi, Q.H.: Micronucleus formation detected by live-cell imaging. Mutagenesis 26(1), 133–138 (2011)

    Google Scholar 

  28. Seynhaeve, A.L.B., ten Hagen, T.L.M.: Using in vitro live-cell imaging to explore chemotherapeutics delivered by lipid-based nanoparticles. J. Vis. Exp. 129, e55405 (2017)

    Google Scholar 

  29. Wildt, B.E., et al.: Intracellular accumulation and dissolution of silver nanoparticles in L-929 fibroblast cells using live cell time-lapse microscopy. Nanotoxicology 10(6), 710–719 (2016)

    Google Scholar 

  30. Boreham, A., et al.: Determination of nanostructures and drug distribution in lipid nanoparticles by single molecule microscopy. Eur. J. Pharm. Biopharm. 110, 31–38 (2017)

    Google Scholar 

  31. Volz, P., et al.: Application of single molecule fluorescence microscopy to characterize the penetration of a large amphiphilic molecule in the stratum corneum of human skin. Int. J. Mol. Sci. 16(4), 6960–6977 (2015)

    Google Scholar 

  32. van der Zwaag, D., et al.: Super resolution imaging of nanoparticles cellular uptake and trafficking. ACS Appl. Mater. Inter. 8(10), 6391–6399 (2016)

    Google Scholar 

  33. Peuschel, H., et al.: Quantification of internalized silica nanoparticles via STED microscopy. Biomed. Res. Int. 2015, 961208 (2015)

    Google Scholar 

  34. Wang, S.H., et al.: Evolution of gold nanoparticle clusters in living cells studied by sectional dark-field optical microscopy and chromatic analysis. J. Biophotonics 9(7), 738–749 (2016)

    Google Scholar 

  35. Deka, G., et al.: Nonlinear plasmonic imaging techniques and their biological applications. Nanophotonics 6(1), 31–49 (2017)

    MathSciNet  Google Scholar 

  36. Alexiev, U., et al.: Time-resolved fluorescence microscopy (FLIM) as an analytical tool in skin nanomedicine. Eur. J. Pharm. Biopharm. 116(SI), 111–124 (2017)

    Google Scholar 

  37. Vogt, A., et al.: Nanocarriers for drug delivery into and through the skin—do existing technologies match clinical challenges? J. Control. Release 242, 3–15 (2016)

    Google Scholar 

  38. Ostrowski, A., et al.: Overview about the localization of nanoparticles in tissue and cellular context by different imaging techniques. Beilstein J. Nanotechnol. 6, 263–280 (2015)

    Google Scholar 

  39. Baeza, A., et al.: Electron microscopy for inorganic-type drug delivery nanocarriers for antitumoral applications: what does it reveal? J. Mater. Chem. B 5(15), 2714–2725 (2017)

    Google Scholar 

  40. Chen, D.D., Monteiro-Riviere, N.A., Zhang, L.S.W.: Intracellular imaging of quantum dots, gold, and iron oxide nanoparticles with associated endocytic pathways. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 9(2), e1419 (2017)

    Google Scholar 

  41. Lin, L.L., et al.: Non-invasive nanoparticle imaging technologies for cosmetic and skin care products. Cosmetics 2, 196–210 (2015)

    Google Scholar 

  42. Potocnik, J.: Commission recommendation of 18 October 2011 on the defnition of nanomaterals. Official J. Europ. Union L275/38 (2011)

    Google Scholar 

  43. Panyam, J., Labhasetwar, V.: Dynamics of endocytosis and exocytosis of poly(D, L-Lactide-co-Glycolide) nanoparticles in vascular smooth muscle cells. Pharm. Res. 20(2), 212–220 (2003)

    Google Scholar 

  44. Jiang, X., et al.: Endo- and exocytosis of zwitterionic quantum dot nanoparticles by live HeLa cells. ACS Nano 4(11), 6787–6797 (2010)

    Google Scholar 

  45. Clift, M.J.D., et al.: The impact of different nanoparticle surface chemistry and size on uptake and toxicity in a murine macrophage cell line. Toxicol. Appl. Pharmacol. 232(3), 418–427 (2008)

    Google Scholar 

  46. dos Santos, T., et al.: Quantitative assessment of the comparative nanoparticle-uptake efficiency of a range of cell lines. Small 7(23), 3341–3349 (2011)

    Google Scholar 

  47. Byrne, G.D., et al.: Live imaging of cellular internalization of single colloidal particle by combined label-free and fluorescence total internal reflection microscopy. Mol. Pharm. 12(11), 3862–3870 (2015)

    Google Scholar 

  48. Ann, F.H., et al.: Nanotechnology: toxicologic pathology. Toxicol. Pathol. 41(2), 395–409 (2013)

    Google Scholar 

  49. Song, C.X., et al.: Formulation and characterization of biodegradable nanoparticles for intravascular local drug delivery. J. Control. Release 43(2), 197–212 (1997)

    MathSciNet  Google Scholar 

  50. Haase, M., Schaefer, H.: Upconverting Nanoparticles. Ang. Chem. Int. Ed. 50(26), 5808–5829 (2011)

    Google Scholar 

  51. Song, C.X., et al.: Bifunctional cationic solid lipid nanoparticles of β-NaYF4: Yb, Er upconversion nanoparticles coated with a lipid for bioimaging and gene delivery. RSC Adv. 7(43), 26633–26639 (2017)

    Google Scholar 

  52. Kuo, T.-R., et al.: Chemical enhancer induced changes in the mechanisms of transdermal delivery of zinc oxide nanoparticles. Biomaterials 30(16), 3002–3008 (2009)

    Google Scholar 

  53. Prow, T.W., et al.: Quantum dot penetration into viable human skin. Nanotoxicology 6(2), 173–185 (2012)

    Google Scholar 

  54. Labouta, H.I., et al.: Gold nanoparticle penetration and reduced metabolism in human skin by toluene. Pharm. Res. 28(11), 2931–2944 (2011)

    Google Scholar 

  55. Prow, T., et al.: Nanoparticle tethered antioxidant response element as a biosensor for oxygen induced toxicity in retinal endothelial cells. Mol. Vis. 12(67–69), 616–625 (2006)

    Google Scholar 

  56. Prow, T.W., et al.: Nanoparticles and microparticles for skin drug delivery. Adv. Drug. Del. Rev. 63(6), 470–491 (2011)

    Google Scholar 

  57. de Campos, A.M., et al.: Chitosan nanoparticles as new ocular drug delivery systems: in vitro stability, in vivo fate, and cellular toxicity. Pharm. Res. 21(5), 803–810 (2004)

    Google Scholar 

  58. Prow, T.W., et al.: Ocular nanoparticle toxicity and transfection of the retina and retinal pigment epithelium. Nanomedicine 4(4), 340–349 (2008)

    Google Scholar 

  59. Kang, J.H., Jang, W.Y., Ko, Y.T.: The effect of surface charges on the cellular uptake of liposomes investigated by live cell imaging. Pharm. Res. 34(4), 704–717 (2017)

    Google Scholar 

  60. Oreopoulos, J., Berman, R., Browne, M.: Spinning-disk confocal microscopy: present technology and future trends. In: Waters, Wittmann, T. (eds.) Quantitative Imaging in Cell Biology, pp. 153–175. Elsevier Academic Press Inc, San Diego (2014)

    Google Scholar 

  61. Baroli, B., et al.: Penetration of metallic nanoparticles in human full-thickness skin. J. Invest. Dermatol. 127(7), 1701–1712 (2007)

    Google Scholar 

  62. Cross, S.E., et al.: Human skin penetration of sunscreen nanoparticles: in-vitro assessment of a novel micronized zinc oxide formulation. Skin Pharmacol. Physiol. 20(3), 148–154 (2007)

    Google Scholar 

  63. Gratieri, T., et al.: Penetration of quantum dot particles through human skin. J. Biomed. Nanotechnol. 6(5), 586–595 (2010)

    Google Scholar 

  64. Alvarez-Roman, R., et al.: Skin penetration and distribution of polymeric nanoparticles. J. Control. Release 99(1), 53–62 (2004)

    Google Scholar 

  65. Mortensen, L.J., et al.: In vivo skin penetration of quantum dot nanoparticles in the murine model: the effect of UVR. Nano Lett. 8(9), 2779–2787 (2008)

    ADS  Google Scholar 

  66. Ostrowski, A., et al.: Skin barrier disruptions in tape stripped and allergic dermatitis models have no effect on dermal penetration and systemic distribution of AHAPS-functionalized silica nanoparticles. Nanomedicine 10(7), 1571–1581 (2014)

    Google Scholar 

  67. Rouse, J.G., et al.: Effects of mechanical flexion on the penetration of fullerene amino acid-derivatized peptide nanoparticles through skin. Nano Lett. 7(1), 155–160 (2007)

    ADS  Google Scholar 

  68. Gonzalez, S., et al.: Changing paradigms in dermatology: Confocal microscopy in clinical and surgical dermatology. Clin. Dermatol. 21(5), 359–369 (2003)

    Google Scholar 

  69. Shahriari, N., et al.: In vivo reflectance confocal microscopy image interpretation for the dermatopathologist. J. Cutan. Pathol. 45(3), 187–197 (2018)

    Google Scholar 

  70. Summers, H.D., et al.: Statistical analysis of nanoparticle dosing in a dynamic cellular system. Nat. Nanotechnol. 6(3), 170–174 (2011)

    ADS  Google Scholar 

  71. Vranic, S., et al.: Deciphering the mechanisms of cellular uptake of engineered nanoparticles by accurate evaluation of internalization using imaging flow cytometry. Part. Fibre Toxicol. 10, 2 (2013)

    Google Scholar 

  72. Gao, N.Y., et al.: Shape-dependent two-photon photoluminescence of single gold nanoparticles. J. Phys. Chem. B 118(25), 13904–13911 (2014)

    Google Scholar 

  73. Richter, T., et al.: Dead but highly dynamic—the stratum corneum is divided into three hydration zones. Skin Pharmacol. Physiol. 17(5), 246–257 (2004)

    Google Scholar 

  74. Rane, T.D., Armani, A.M.: Two-photon microscopy analysis of gold nanoparticle uptake in 3D cell spheroids. PLoS ONE 11(12), e0167548 (2016)

    Google Scholar 

  75. Zhu, Y.J., et al.: Penetration of silver nanoparticles into porcine skin ex vivo using fluorescence lifetime imaging microscopy, Raman microscopy, and surface-enhanced Raman scattering microscopy. J. Biomed. Opt. 20(5), 051006 (2015)

    ADS  Google Scholar 

  76. Li, K., Schneider, M.: Quantitative evaluation and visualization of size effect on cellular uptake of gold nanoparticles by multiphoton imaging-UV/Vis spectroscopic analysis. J. Biomed. Opt. 19(10), 101505 (2014)

    ADS  Google Scholar 

  77. Graf, B.W., et al.: In vivo imaging of immune cell dynamics in skin in response to zinc-oxide nanoparticle exposure. Biomed. Opt. Exp. 4(10), 1817–1828 (2013)

    Google Scholar 

  78. Basuki, J.S., et al.: Using fluorescence lifetime imaging microscopy to monitor theranostic nanoparticle uptake and intracellular doxorubicin release. ACS Nano 7(11), 10175–10189 (2013)

    Google Scholar 

  79. Boreham, A., et al.: Exploiting fluorescence lifetime plasticity in FLIM: target molecule localization in cells and tissues. ACS Med. Chem. Lett. 2(10), 724–728 (2011)

    Google Scholar 

  80. Roberts, M.S., et al.: Non-invasive imaging of skin physiology and percutaneous penetration using fluorescence spectral and lifetime imaging with multiphoton and confocal microscopy. Eur. J. Pharm. Biopharm. 77(3), 469–488 (2011)

    Google Scholar 

  81. Hanson, K.M., et al.: Two-photon fluorescence lifetime imaging of the skin stratum corneum pH gradient. Biophys. J. 83(3), 1682–1690 (2002)

    ADS  Google Scholar 

  82. Hell, S.W.: Nanoscopy with focused light (Nobel Lecture). Angew. Chem. Int. Ed. 54(28), 8054–8066 (2015)

    Google Scholar 

  83. Kamiyama, D., Huang, B.: Development in the STORM. Dev. Cell 23(6), 1103–1110 (2012)

    Google Scholar 

  84. Betzig, E.: Single molecules, cells, and super-resolution optics (Nobel Lecture). Ang. Chem. Int. Ed. 54(28), 8034–8053 (2015)

    Google Scholar 

  85. Gustafsson, M.G.L.: Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl. Acad. Sci. U.S.A. 102(37), 13081–13086 (2005)

    Google Scholar 

  86. Schübbe, S., et al.: Size-dependent localization and quantitative evaluation of the intracellular migration of silica nanoparticles in Caco-2 cells. Chem. Mater. 24(5), 914–923 (2012)

    Google Scholar 

  87. Nedosekin, D.A., et al.: Photothermal confocal multicolor microscopy of nanoparticles and nanodrugs in live cells. Drug Metab. Rev. 47(3), 346–355 (2015)

    Google Scholar 

  88. Vermeulen, P., Cognet, L., Lounis, B.: Photothermal microscopy: optical detection of small absorbers in scattering environments. J. Microsc. 254(3), 115–121 (2014)

    Google Scholar 

  89. Galanzha, E., Zharov, V.P.: Circulating tumor cell detection and capture by photoacoustic flow cytometry in vivo and ex vivo. Cancers 5(4), 1691–1738 (2013)

    Google Scholar 

  90. Nieves, D.J., et al.: Photothermal raster image correlation spectroscopy of gold nanoparticles in solution and on live cells. R. Soc. Open Sci. 2(6), 140454 (2015)

    ADS  Google Scholar 

  91. Erni, R., et al.: Atomic-resolution imaging with a sub-50-pm electron probe. Phys. Rev. Lett. 102(9), 096101 (2009)

    ADS  Google Scholar 

  92. Jane, A.F., et al.: Ultrastructural analysis in preclinical safety evaluation. Toxicol. Pathol. 40(2), 391–402 (2012)

    Google Scholar 

  93. Hoenger, A., McIntosh, J.R.: Probing the macromolecular organization of cells by electron tomography. Curr. Opin. Cell Biol. 21(1), 89–96 (2009)

    Google Scholar 

  94. Leis, A., et al.: Visualizing cells at the nanoscale. Trends Biochem. Sci. 34(2), 60–70 (2009)

    Google Scholar 

  95. Kourkoutis, L.F., Plitzko, J.M., Baumeister, W.: Electron microscopy of biological materials at the nanometer scale. Annu. Rev. Mater. Res. 42(1), 33–58 (2012)

    ADS  Google Scholar 

  96. Pierson, J., et al.: Toward visualization of nanomachines in their native cellular environment. Histochem. Cell Biol. 132(3), 253–262 (2009)

    Google Scholar 

  97. Medalia, O., et al.: Macromolecular architecture in eukaryotic cells visualized by cryoelectron tomography. Science 298(5596), 1209–1213 (2002)

    ADS  Google Scholar 

  98. Fujimoto, K.: Freeze-fracture replica electron microscopy combined with SDS digestion for cytochemical labeling of integral membrane proteins. Application to the immunogold labeling of intercellular junctional complexes. J. Cell. Sci. 108(11), 3443–3449 (1995)

    Google Scholar 

  99. Bushby, A.J., et al.: Imaging three-dimensional tissue architectures by focused ion beam scanning electron microscopy. Nat. Protoc. 6(6), 845–858 (2011)

    Google Scholar 

  100. Gontier, E., et al.: Is there penetration of titania nanoparticles in sunscreens through skin? A comparative electron and ion microscopy study. Nanotoxicology 2(4), 218–231 (2008)

    Google Scholar 

  101. Hubbs, A.F., et al.: Nanotoxicology-a pathologist’s perspective. Toxicol. Pathol. 39(2), 301–324 (2011)

    Google Scholar 

  102. Adachi, K., et al.: In vivo effect of industrial titanium dioxide nanoparticles experimentally exposed to hairless rat skin. Nanotoxicology 4(3), 296–306 (2010)

    Google Scholar 

  103. Marquis, B.J., et al.: Analytical methods to assess nanoparticle toxicity. Analyst 134(3), 425–439 (2009)

    MathSciNet  ADS  Google Scholar 

  104. Kempen, P.J., et al.: A scanning transmission electron microscopy approach to analyzing large volumes of tissue to detect nanoparticles. Microsc. Microanal. 19(5), 1290–1297 (2013)

    ADS  Google Scholar 

  105. Droste, M.S., et al.: Noninvasive measurement of cell volume changes by negative staining. J. Biomed. Opt. 10(6), 064017 (2005)

    ADS  Google Scholar 

  106. Richter, T., et al.: Pros and cons: cryo-electron microscopic evaluation of block faces versus cryo-sections from frozen-hydrated skin specimens prepared by different techniques. J. Microsc. Oxford 225(2), 201–207 (2007)

    MathSciNet  ADS  Google Scholar 

  107. Echlin, P.: Low-Temperature Microscopy and Analysis. Springer, Berlin (1992)

    Google Scholar 

  108. Lucas, M.S., Günthert, M., Gasser, P., Lucas, F., Wepf, R.: Bridging microscopes: 3D correlative light and scanning electron microscopy of complex biological structures. In: Müller-Reichert, T., Verkade, P. (eds.) Correlative Light and Electron Microscopy, pp. 325–356. Academic Press, Cambridge (2012)

    Google Scholar 

  109. McDonald, K.L.: A review of high-pressure freezing preparation techniques for correlative light and electron microscopy of the same cells and tissues. J. Microsc. 235(3), 273–281 (2009)

    MathSciNet  Google Scholar 

  110. Webster, P., Schwarz, H., Griffiths, G.: Preparation of cells and tissues for immuno EM, Chap. 3. In: Methods Cell Biology, pp. 45–58. Academic Press, Amsterdam (2008)

    Google Scholar 

  111. Norlén, L.: Nanostructure of the stratum corneum extracellular lipid matrix as observed by cryo-electron microscopy of vitreous skin sections. Int. J. Cosmet. Sci. 29(5), 335–352 (2007)

    Google Scholar 

  112. Asahina, S., Togashi, T., Terasaki, O., Takami, S., Adschiri, T., Shibata, M., Erdman, N.: High-resolution low-voltage scanning electron microscope study of nanostructured materials. Microsc. Anal. 26, S12–S14 (2012)

    Google Scholar 

  113. Callaway, E.: The revolution will not be crystallized: a new method sweeps through structural biology. Nature 525(7568), 172–174 (2015)

    ADS  Google Scholar 

  114. Engel, A., Dubochet, J., Kellenberger, E.: Some progress in the use of a scanning transmission electron microscope for the observation of biomacromolecules. J. Ultrastruct. Res. 57(3), 322–330 (1976)

    Google Scholar 

  115. Ohtsuki, M.: Observation of unstained biological macromolecules with STEM. Ultramicroscopy 5(3), 317–323 (1980)

    Google Scholar 

  116. Colliex, C., Mory, C.: Scanning transmission electron microscopy of biological structures. Biol. Cell 80(2–3), 175–180 (1994)

    Google Scholar 

  117. Porter, A.E., et al.: Direct imaging of single-walled carbon nanotubes in cells. Nat. Nanotechnol. 2(11), 713–717 (2007)

    ADS  Google Scholar 

  118. Uchida, M., et al.: Intracellular distribution of macrophage targeting ferritin-iron oxide nanocomposite. Adv. Mater. 21(4), 458–462 (2009)

    MathSciNet  Google Scholar 

  119. Donald, A.M.: The use of environmental scanning electron microscopy for imaging wet and insulating materials. Nat. Mater. 2, 511–516 (2003)

    ADS  Google Scholar 

  120. de Jonge, N., Ross, F.M.: Electron microscopy of specimens in liquid. Nat. Nanotechnol. 6, 695–704 (2011)

    ADS  Google Scholar 

  121. Stokes, D.J.: Principles and practice of variable pressure/environmental scanning electron microscopy (VP-ESEM). Wiley, Chichester, West-Sussex (2008)

    Google Scholar 

  122. Kirk, S.E., Skepper, J.N., Donald, A.M.: Application of environmental scanning electron microscopy to determine biological surface structure. J. Microsc. 233(2), 205–224 (2009)

    MathSciNet  Google Scholar 

  123. Bogner, A., et al.: Wet STEM: a new development in environmental SEM for imaging nano-objects included in a liquid phase. Ultramicroscopy 104(3), 290–301 (2005)

    Google Scholar 

  124. Williamson, M.J., et al.: Dynamic microscopy of nanoscale cluster growth at the solid–liquid interface. Nat. Mater. 2(8), 532–536 (2003)

    ADS  Google Scholar 

  125. de Jonge, N., et al.: Scanning transmission electron microscopy of biological specimens in water. Microsc. Microanal. 13(S02), 242–243 (2007)

    Google Scholar 

  126. de Jonge, N., et al.: Electron microscopy of whole cells in liquid with nanometer resolution. Proc. Natl. Acad. Sci. 106(7), 2159–2164 (2009)

    Google Scholar 

  127. Peckys, D.B., et al.: Nanoscale imaging of whole cells using a liquid enclosure and a scanning transmission electron microscope. PLoS ONE 4(12), e8214 (2009)

    ADS  Google Scholar 

  128. Le Trequesser, Q., et al.: Single cell in situ detection and quantification of metal oxide nanoparticles using multimodal correlative microscopy. Anal. Chem. 86(15), 7311–7319 (2014)

    Google Scholar 

  129. Peckys, D.B., Bandmann, V., de Jonge, N.: Correlative fluorescence and scanning transmission electron microscopy of quantum dot-labeled proteins on whole cells in liquid. In: Müller-Reichert, T., Verkade, P. (eds.) Methods in Cell Biology, vol. 124, pp. 305–322. Academic Press, Cambridge (2014)

    Google Scholar 

  130. Liu, M.M., et al.: Real-time visualization of clustering and intracellular transport of gold nanoparticles by correlative imaging. Nat. Commun. 8, 15646 (2017)

    ADS  Google Scholar 

  131. Jahn, K.A., et al.: Correlative microscopy: providing new understanding in the biomedical and plant sciences. Micron 43(5), 565–582 (2012)

    Google Scholar 

  132. Lal, S., Link, S., Halas, N.J.: Nano-optics from sensing to waveguiding. Nat. Photon. 1(11), 641–648 (2007)

    ADS  Google Scholar 

  133. Krafft, C., et al.: Label-free molecular imaging of biological cells and tissues by linear and nonlinear Raman spectroscopic approaches. Ang. Chem. Int. Ed. 56, 4392–4430 (2017)

    Google Scholar 

  134. Zhang, G.J., et al.: Imaging the prodrug-to-drug transformation of a 5-fluorouracil derivative in skin by confocal Raman microscopy. J. Invest. Dermatol. 127(5), 1205–1209 (2007)

    Google Scholar 

  135. Freudiger, C.W., et al.: Label-free biomedical imaging with high sensitivity by stimulated raman scattering microscopy. Science 322(5909), 1857–1861 (2008)

    ADS  Google Scholar 

  136. Klossek, A., et al.: Studies for improved understanding of lipid distributions in human skin by combining stimulated and spontaneous Raman microscopy. Eur. J. Pharm. Biopharm. 116(SI), 76–84 (2017)

    Google Scholar 

  137. Belsey, N.A., et al.: Evaluation of drug delivery to intact and porated skin by coherent Raman scattering and fluorescence microscopies. J. Control. Release, 174, 37–42 (2014)

    Google Scholar 

  138. Saar, B.G., et al.: Imaging drug delivery to skin with stimulated Raman scattering microscopy. Mol. Pharm. 8(3), 969–975 (2011)

    Google Scholar 

  139. Giulbudagian, M., et al.: Correlation between the chemical composition of thermoresponsive nanogels and their interaction with the skin barrier. J. Control. Release 243, 323–332 (2016)

    Google Scholar 

  140. Zhang, C., Zhang, D.L., Cheng, J.X.: Coherent Raman scattering microscopy in biology and medicine. In: Yarmush, M.L. (ed.) Annual Review of Biomedical Engineering, vol. 17, pp. 415–445 (2015)

    Google Scholar 

  141. Vo-Dinh, T., et al.: SERS nanosensors and nanoreporters: golden opportunities in biomedical applications. Wiley Interdiscip. Rev.-Nanomedicine Nanobiotechnology 7, 17–33 (2015)

    Google Scholar 

  142. Li, Q., et al.: AFM-based force spectroscopy for bioimaging and biosensing. RSC Adv. 6(16), 12893–12912 (2016)

    Google Scholar 

  143. Berweger, S., et al.: Nano-chemical infrared imaging of membrane proteins in lipid bilayers. J. Am. Chem. Soc. 135(49), 18292–18295 (2013)

    Google Scholar 

  144. Hermann, P., et al.: Enhancing the sensitivity of nano-FTIR spectroscopy. Opt. Express 25(14), 16574–16588 (2017)

    ADS  Google Scholar 

  145. Verma, P.: Tip-enhanced Raman spectroscopy: technique and recent advances. Chem. Rev. 117(9), 6447–6466 (2017)

    Google Scholar 

  146. Dazzi, A., Prater, C.B.: AFM-IR: technology and applications in nanoscale infrared spectroscopy and chemical imaging. Chem. Rev. 117, 5146–5173 (2017)

    Google Scholar 

  147. Lawrence, J.R., et al.: Soft X-ray spectromicroscopy for speciation, quantitation and nano-eco-toxicology of nanomaterials. J. Microsc. 261, 130–147 (2016)

    Google Scholar 

  148. Karunakaran, C., et al.: Introduction of soft X-ray spectromicroscopy as an advanced technique for plant biopolymers research. PLoS ONE 10, e0122959 (2015)

    Google Scholar 

  149. Stöhr, J.: NEXAFS spectroscopy. In: Gomer, R. (ed.) Springer Series in Surface Science, vol. 25. Springer, Berlin (1992)

    Google Scholar 

  150. Schulz, R., et al.: Data-based modeling of drug penetration relates human skin barrier function to the interplay of diffusivity and free-energy profiles. Proc. Natl. Acad. Sci. U.S.A. 114(14), 3631–3636 (2017)

    Google Scholar 

  151. Schneider, G., et al.: Three-dimensional cellular ultrastructure resolved by X-ray microscopy. Nat. Methods 7(12), 985–987 (2010)

    Google Scholar 

  152. Graf, C., et al.: Qualitative detection of single submicron and nanoparticles in human skin by scanning transmission X-ray microscopy. J. Biomed. Opt. 14(2), 021015 (2009)

    ADS  Google Scholar 

  153. Bos, J.D., Meinardi, M.: The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Exp. Dermatol. 9(3), 165–169 (2000)

    Google Scholar 

Download references

Acknowledgements

We are grateful for the contributions of our collaborators contributing to some of the results shown. Specifically, we are indebted to Dr. F. Rancan, Dr. A. Klossek, K. Yamamoto, and Dr. R. Flesch. We thankfully acknowledge the Deutsche Forschungsgemeinschaft for the support of the Priority Program SPP 1313 “Biological Responses to Nanoscale Particles”, project RU420/12-1, and SFB 1112.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christina Graf or Eckart Rühl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Graf, C., Rühl, E. (2019). Imaging Techniques for Probing Nanoparticles in Cells and Skin. In: Gehr, P., Zellner, R. (eds) Biological Responses to Nanoscale Particles. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-12461-8_9

Download citation

Publish with us

Policies and ethics