Skip to main content

Cellular and Non-cellular Barriers to Particle Transport Across the Lungs

  • Chapter
  • First Online:
Biological Responses to Nanoscale Particles

Part of the book series: NanoScience and Technology ((NANO))

  • 977 Accesses

Abstract

Compared to the human body’s other outer epithelia, like e.g. the skin and the GI tract, the lungs have the largest surface area. Moreover, the so called “air-blood-barrier” is extremely thin, but also very tight to fulfill its physiological function. This chapter discusses the lung as a biological barrier in the context of inhaled particles. This important function is provided by some specific cellular as well as non-cellular elements. How the lung copes with particles “after landing” is not only relevant regarding the risks of accidentally inhaled nanomaterials, but also for designing safe and efficient nanopharmaceuticals to be inhaled on purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rackley, C.R., Stripp, B.R.: Building and maintaining the epithelium of the lung. J. Clin. Investig. 122, 2724–2730 (2012)

    Google Scholar 

  2. Besnard, V., Whitsett, J.A.: Chapter 73—Tissue engineering for the respiratory epithelium: cell-based therapies for treatment of lung disease A2—Lanza, Robert. In: Langer, R., Vacanti, J. (eds.) Principles of Tissue Engineering, 4th edn., pp. 1543–1560. Academic Press, Boston (2014)

    Google Scholar 

  3. Crapo, J.D., Barry, B.E., Gehr, P., et al.: Cell number and cell characteristics of the normal human lung. Am. Rev. Respir. Dis. 126, 332–337 (1982)

    Google Scholar 

  4. Weibel, E.R.: Lung morphometry: the link between structure and function. Cell Tissue Res. 367, 413–426 (2017)

    Google Scholar 

  5. Klein, S.G., Hennen, J., Serchi, T., et al.: Potential of coculture in vitro models to study inflammatory and sensitizing effects of particles on the lung. Toxicol. In Vitro 25 (2011)

    Google Scholar 

  6. Hastedt, J.E., Bäckman, P., Clark, A.R., et al.: Scope and relevance of a pulmonary biopharmaceutical classification system. In: AAPS/FDA/USP Workshop March 16–17th, 2015 in Baltimore, MD. AAPS Open 2:1 (2016)

    Google Scholar 

  7. Bourquin, J., Milosevic, A., Hauser, D., et al.: Biodistribution, clearance, and long-term fate of clinically relevant nanomaterials. Adv. Mater. (Deerfield Beach, Fla.) (2018)

    Google Scholar 

  8. Patton, J.S., Byron, P.R.: Inhaling medicines: delivering drugs to the body through the lungs. Nat. Rev. Drug Discov. 6, 67–74 (2007)

    Google Scholar 

  9. Herd, H., Daum, N., Jones, A.T., et al.: Nanoparticle geometry and surface orientation influence mode of cellular uptake. ACS Nano 7, 1961–1973 (2013)

    Google Scholar 

  10. Hillaireau, H., Couvreur, P.: Nanocarriers’ entry into the cell: relevance to drug delivery. Cell. Mol. Life Sci. CMLS 66, 2873–2896 (2009)

    Google Scholar 

  11. Puisney, C., Baeza-Squiban, A., Boland, S.: Mechanisms of uptake and translocation of nanomaterials in the lung. Adv. Exp. Med. Biol. 1048, 21–36 (2018)

    Google Scholar 

  12. Rivera-Gil, P., Jimenez De Aberasturi, D., Wulf, V., et al.: The challenge to relate the physicochemical properties of colloidal nanoparticles to their cytotoxicity. Acc. Chem. Res. 46, 743–749 (2013)

    Google Scholar 

  13. Vercauteren, D., Vandenbroucke, R.E., Jones, A.T., et al.: The use of inhibitors to study endocytic pathways of gene carriers: optimization and pitfalls. Mol. Ther. J. Am. Soc. Gene Ther. 18, 561–569 (2010)

    Google Scholar 

  14. Doshi, N., Mitragotri, S.: Needle-shaped polymeric particles induce transient disruption of cell membranes. J. R. Soc. Interface 7(Suppl 4), S403–410 (2010)

    Google Scholar 

  15. Elder, A., Gelein, R., Silva, V., et al.: Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ. Health Perspect. 114, 1172–1178 (2006)

    Google Scholar 

  16. Nickel, S., Clerkin, C.G., Selo, M.A., et al.: Transport mechanisms at the pulmonary mucosa: implications for drug delivery. Expert Opin. Drug Deliv. 13, 667–690 (2016)

    Google Scholar 

  17. Dreaden, E.C., Raji, I.O., Austin, L.A., et al.: P-glycoprotein-dependent trafficking of nanoparticle-drug conjugates. Small 10, 1719–1723 (2014)

    Google Scholar 

  18. Soundararajan, R., Sasaki, K., Godfrey, L., et al.: Direct in vivo evidence on the mechanism by which nanoparticles facilitate the absorption of a water insoluble, P-gp substrate. Int. J. Pharm. 514, 121–132 (2016)

    Google Scholar 

  19. Gupta, D., Singh, A., Khan, A.U.: Nanoparticles as efflux pump and biofilm inhibitor to rejuvenate bactericidal effect of conventional antibiotics. Nanoscale Res. Lett. 12, 454 (2017)

    ADS  Google Scholar 

  20. Kasper, J.Y., Feiden, L., Hermanns, M.I., et al.: Pulmonary surfactant augments cytotoxicity of silica nanoparticles: studies on an in vitro air-blood barrier model. Beilstein J. Nanotechnol. 6, 517–528 (2015)

    Google Scholar 

  21. Rothen-Rutishauser, B.M., Kiama, S.G., Gehr, P.: A three-dimensional cellular model of the human respiratory tract to study the interaction with particles. Am. J. Respir. Cell Mol. Biol. 32, 281–289 (2005)

    Google Scholar 

  22. Hittinger, M., Mell, N.A., Huwer, H., et al.: Autologous co-culture of primary human alveolar macrophages and epithelial cells for investigating aerosol medicines. Part II: Evaluation of IL-10-loaded microparticles for the treatment of lung inflammation. ATLA Altern. Lab. Anim. 44, 349–360 (2016)

    Google Scholar 

  23. Ong, H.X., Benaouda, F., Traini, D., et al.: In vitro and ex vivo methods predict the enhanced lung residence time of liposomal ciprofloxacin formulations for nebulisation. Eur. J. Pharm. Biopharm. Off. J. Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V 86, 83–89 (2014)

    Google Scholar 

  24. Salomon, J.J., Muchitsch, V.E., Gausterer, J.C., et al.: The cell line NCl-H441 is a useful in vitro model for transport studies of human distal lung epithelial barrier. Mol. Pharm. 11, 995–1006 (2014)

    Google Scholar 

  25. De Souza Carvalho, C., Daum, N., Lehr, C.M.: Carrier interactions with the biological barriers of the lung: advanced in vitro models and challenges for pulmonary drug delivery. Adv. Drug Deliv. Rev. 75, 129–140 (2014)

    Google Scholar 

  26. Muller, L., Riediker, M., Wick, P., et al.: Oxidative stress and inflammation response after nanoparticle exposure: differences between human lung cell monocultures and an advanced three-dimensional model of the human epithelial airways. J. R. Soc. Interface 7(Suppl 1), S27–40 (2010)

    Google Scholar 

  27. Hittinger, M., Juntke, J., Kletting, S., et al.: Preclinical safety and efficacy models for pulmonary drug delivery of antimicrobials with focus on in vitro models. Adv. Drug Deliv. Rev. 85, 44–56 (2015)

    Google Scholar 

  28. Zhu, Y., Chidekel, A., Shaffer, T.H.: Cultured human airway epithelial cells (Calu-3): a model of human respiratory function, structure, and inflammatory responses. Crit. Care Res. Pract. 2010, 1–8 (2010)

    Google Scholar 

  29. Knowles, M.R., Boucher, R.C.: Mucus clearance as a primary innate defense mechanism for mammalian airways. J. Clin. Investig. 109, 571–577 (2002)

    Google Scholar 

  30. Wanner, A., Salathé, M., O’riordan, T.G.: Mucociliary clearance in the airways. Am. J. Respir. Crit. Care Med. 154, 1868–1902 (1996)

    Google Scholar 

  31. Leff, A.R., Schumacker, P.T.: Respiratory physiology: basics and applications (1993)

    Google Scholar 

  32. Lieleg, O., Ribbeck, K.: Biological hydrogels as selective diffusion barriers. Trends Cell Biol. 21, 543–551 (2011)

    Google Scholar 

  33. Murgia, X., Loretz, B., Hartwig, O., et al.: The role of mucus on drug transport and its potential to affect therapeutic outcomes. Adv. Drug Deliv. Rev. 124, 82–97 (2018)

    Google Scholar 

  34. Schuster, B.S., Suk, J.S., Woodworth, G.F., et al.: Nanoparticle diffusion in respiratory mucus from humans without lung disease. Biomaterials 34, 3439–3446 (2013)

    Google Scholar 

  35. Lillehoj, E.P., Kim, K.C.: Airway mucus: its components and function. Arch. Pharmacal. Res. 25, 770 (2002)

    Google Scholar 

  36. Lai, S.K., Wang, Y.-Y., Hida, K., et al.: Nanoparticles reveal that human cervicovaginal mucus is riddled with pores larger than viruses. Proc. Natl. Acad. Sci. U.S.A. 107, 598–603 (2010)

    ADS  Google Scholar 

  37. Taylor, C., Allen, A., Dettmar, P.W., et al.: The gel matrix of gastric mucus is maintained by a complex interplay of transient and nontransient associations. Biomacromolecules 4, 922–927 (2003)

    Google Scholar 

  38. Lillehoj, E.P., Kato, K., Lu, W., et al.: Cellular and molecular biology of airway mucins. Int. Rev. Cell Mol. Biol. 303, 139–202 (2013)

    Google Scholar 

  39. Wickström, C., Davies, J.R., Eriksen, G.V., et al.: MUC5B is a major gel-forming, oligomeric mucin from human salivary gland, respiratory tract and endocervix: identification of glycoforms and C-terminal cleavage. Biochem. J. 334(Pt 3), 685–693 (1998)

    Google Scholar 

  40. Bansil, R., Turner, B.S.: Mucin structure, aggregation, physiological functions and biomedical applications. Curr. Opin. Colloid Interface Sci. 11, 164–170 (2006)

    Google Scholar 

  41. Perez-Vilar, J., Hill, R.L.: The structure and assembly of secreted mucins. J. Biol. Chem. 274, 31751–31754 (1999)

    Google Scholar 

  42. Thornton, D.J., Sheehan, J.K.: From mucins to mucus. Proc. Am. Thorac. Soc. 1, 54–61 (2004)

    Google Scholar 

  43. Turner, B.S., Bhaskar, K.R., Hadzopoulou-Cladaras, M., et al.: Cysteine-rich regions of pig gastric mucin contain von Willebrand factor and cystine knot domains at the carboxyl terminal1. The sequences described in this paper have been submitted to the GenBank Nucleotide Sequence Database, and have been assigned the Ge. Biochim. Biophys. Acta (BBA) Gene Struct. Expr. 1447, 77–92 (1999)

    Google Scholar 

  44. Boegh, M., Nielsen, H.M.R.: Mucus as a barrier to drug delivery—understanding and mimicking the barrier properties. Basic Clin. Pharmacol. Toxicol. 116, 179–186 (2015)

    Google Scholar 

  45. Murgia, X., De Souza Carvalho, C., Lehr, C.-M.: Overcoming the pulmonary barrier: new insights to improve the efficiency of inhaled therapeutics. Eur. J. Nanomed. 6, 157–169 (2014)

    Google Scholar 

  46. Murgia, X., Yasar, H., Carvalho-Wodarz, C., et al.: Modelling the bronchial barrier in pulmonary drug delivery: a human bronchial epithelial cell line supplemented with human tracheal mucus. Eur. J. Pharm. Biopharm. 118, 79–88 (2017)

    Google Scholar 

  47. Rubin, B.K., Ramirez, O., Zayas, J.G., et al.: Collection and analysis of respiratory mucus from subjects without lung disease. Am. Rev. Respir. Dis. 141, 1040–1043 (1990)

    Google Scholar 

  48. Balsamo, R., Lanata, L., Egan, C.G.: Mucoactive drugs. Eur. Respir. Rev. 19, 127–133 (2010)

    Google Scholar 

  49. Elborn, J.S.: Cystic fibrosis. The Lancet 388, 2519–2531 (2017)

    Google Scholar 

  50. Ramos, F.L., Krahnke, J.S., Kim, V.: Clinical issues of mucus accumulation in COPD. Int. J. COPD 139–150 (2014)

    Google Scholar 

  51. Kreda, S.M., Davis, C.W., Rose, M.C.: CFTR, mucins, and mucus obstruction in cystic fibrosis. Cold Spring Harbor Perspect. Med. 2, a009589 (2012)

    Google Scholar 

  52. Yuan, S., Hollinger, M., Lachowicz-Scroggins, M.E., et al.: Oxidation increases mucin polymer cross-links to stiffen airway mucus gels. Sci. Transl. Med. 7:276ra227–276ra227 (2015)

    Google Scholar 

  53. Perks, B., Shute, J.K.: DNA and actin bind and inhibit interleukin-8 function in cystic fibrosis sputa. Am. J. Respir. Crit. Care Med. 162, 1767–1772 (2000)

    Google Scholar 

  54. Kirch, J., Schneider, A., Abou, B., et al.: Optical tweezers reveal relationship between microstructure and nanoparticle penetration of pulmonary mucus. Proc. Natl. Acad. Sci. U.S.A. 109, 18355–18360 (2012)

    ADS  Google Scholar 

  55. Sanders, N.N., De Smedt, S.C., Van Rompaey, E., et al.: Cystic fibrosis sputum. Am. J. Respir. Crit. Care Med. 162, 1905–1911 (2000)

    Google Scholar 

  56. Schuster, B.S., Ensign, L.M., Allan, D.B., et al.: Particle tracking in drug and gene delivery research: state-of-the-art applications and methods. Adv. Drug Deliv. Rev. 91, 70–91 (2015)

    Google Scholar 

  57. Kirch, J., Guenther, M., Doshi, N., et al.: Mucociliary clearance of micro- and nanoparticles is independent of size, shape and charge—an ex vivo and in silico approach. J. Control. Release 159, 128–134 (2012)

    Google Scholar 

  58. Murgia, X., Pawelzyk, P., Schaefer, U.F., et al.: Size-limited penetration of nanoparticles into porcine respiratory mucus after aerosol deposition. Biomacromolecules 17, 1536–1542 (2016)

    Google Scholar 

  59. Nordgård, C.T., Nonstad, U., Olderøy, M.Ø., et al.: Alterations in mucus barrier function and matrix structure induced by guluronate oligomers. Biomacromol 15, 2294–2300 (2014)

    Google Scholar 

  60. Suk, J.S., Xu, Q., Kim, N., et al.: PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. 99, 28–51 (2016)

    Google Scholar 

  61. Bhattacharjee, S., Mahon, E., Harrison, S.M., et al.: Nanoparticle passage through porcine jejunal mucus: microfluidics and rheology. Nanomed. Nanotechnol. Biol. Med. 13, 863–873 (2017)

    Google Scholar 

  62. Beisner, J., Dong, M., Taetz, S., et al.: Nanoparticle mediated delivery of 2′-O-methyl-RNA leads to efficient telomerase inhibition and telomere shortening in human lung cancer cells. Lung Cancer 68, 346–354 (2017)

    Google Scholar 

  63. Kuzmov, A., Minko, T.: Nanotechnology approaches for inhalation treatment of lung diseases. J. Control. Release 219, 500–518 (2015)

    Google Scholar 

  64. Mahiny, A.J., Dewerth, A., Mays, L.E., et al.: In vivo genome editing using nuclease-encoding mRNA corrects SP-B deficiency. Nat. Biotech. 33, 584–586 (2015)

    Google Scholar 

  65. Duneclift, S., Wells, U., Widdicombe, J.: Estimation of thickness of airway? Surface liquid in ferret trachea in vitro estimation of thickness of airway surface liquid in ferret trachea in vitro. 761–767 (2012)

    Google Scholar 

  66. Widdicombe, J.H.: Regulation of the depth and composition of airway surface liquid. J. Anat. 201 (2002)

    Google Scholar 

  67. Yoneda, K.: Mucous blanket of rat bronchus. Am. Rev. Respir. Dis. 114, 837–842 (1976)

    Google Scholar 

  68. Abuchowski, A., Mccoy, J.R., Palczuk, N.C., et al.: Effect of covalent attachment of polyethylene glycol on immunogenicity and circulating life of bovine liver catalase. J. Biol. Chem. 252, 3582–3586 (1977)

    Google Scholar 

  69. Huckaby, J.T., Lai, S.K.: PEGylation for enhancing nanoparticle diffusion in mucus. Adv. Drug Deliv. Rev. (2017)

    Google Scholar 

  70. Schneider, C.S., Xu, Q., Boylan, N.J., et al.: Nanoparticles that do not adhere to mucus provide uniform and long-lasting drug delivery to airways following inhalation. Sci. Adv. 3 (2017)

    Google Scholar 

  71. Shan, W., Zhu, X., Tao, W., et al.: Enhanced oral delivery of protein drugs using zwitterion-functionalized nanoparticles to overcome both the diffusion and absorption barriers. ACS Appl. Mater. Interfaces 8, 25444–25453 (2016)

    Google Scholar 

  72. Vukosavljevic, B., Murgia, X., Schwarzkopf, K., et al.: Tracing molecular and structural changes upon mucolysis with N-acetyl cysteine in human airway mucus. Int. J. Pharm. 553, 373–376 (2017)

    Google Scholar 

  73. Rubin, B.K.: Secretion properties, clearance, and therapy in airway disease. Transl. Respir. Med. 2, 6 (2014)

    Google Scholar 

  74. Suk, J.S., Boylan, N.J., Trehan, K., et al.: N-acetylcysteine enhances cystic fibrosis sputum penetration and airway gene transfer by highly compacted DNA nanoparticles. Mol. Ther. 19, 1981–1989 (2011)

    Google Scholar 

  75. Deacon, J., Abdelghany, S.M., Quinn, D.J., et al.: Antimicrobial efficacy of tobramycin polymeric nanoparticles for Pseudomonas aeruginosa infections in cystic fibrosis: formulation, characterisation and functionalisation with dornase alfa (DNase). J. Control. Release 198, 55–61 (2015)

    Google Scholar 

  76. Dünnhaupt, S., Kammona, O., Waldner, C., et al.: Nano-carrier systems: strategies to overcome the mucus gel barrier. Eur. J. Pharm. Biopharm. 96, 447–453 (2015)

    Google Scholar 

  77. Mathiowitz, E., Chickering III, D.E., Lehr, C.-M.: Bioadhesive drug delivery systems: fundamentals, novel approaches, and development. 696 (1999)

    Google Scholar 

  78. Bravo-Osuna, I., Vauthier, C., Farabollini, A., et al.: Mucoadhesion mechanism of chitosan and thiolated chitosan-poly(isobutyl cyanoacrylate) core-shell nanoparticles. Biomaterials 28, 2233–2243 (2007)

    Google Scholar 

  79. Schipper, N.G.M., Vårum, K.M., Stenberg, P., et al.: Chitosans as absorption enhancers of poorly absorbable drugs. Eur. J. Pharm. Sci. 8, 335–343 (1999)

    ADS  Google Scholar 

  80. Iqbal, J., Shahnaz, G., Dünnhaupt, S., et al.: Preactivated thiomers as mucoadhesive polymers for drug delivery. Biomaterials 33, 1528–1535 (2012)

    Google Scholar 

  81. Cui, F., Qian, F., Yin, C.: Preparation and characterization of mucoadhesive polymer-coated nanoparticles. Int. J. Pharm. 316, 154–161 (2006)

    Google Scholar 

  82. Cooper, J.L., Quinton, P.M., Ballard, S.T.: Mucociliary transport in porcine trachea: differential effects of inhibiting chloride and bicarbonate secretion. Am. J. Physiol. Lung Cell. Mol. Physiol. 304, L184–L190 (2013)

    Google Scholar 

  83. Foster, W.M., Langenback, E., Bergofsky, E.H.: Measurement of tracheal and bronchial mucus velocities in man: relation to lung clearance. J. Appl. Physiol. 48, 965–971 (1980)

    Google Scholar 

  84. Friedman, M., Dougherty, R., Nelson, S.R., et al.: Acute effects of an aerosol hair spray on tracheal mucociliary transport. Am. Rev. Respir. Dis. 116, 281–286 (1977)

    Google Scholar 

  85. Henning, A., Schneider, M., Bur, M., et al.: Embryonic chicken trachea as a new in vitro model for the investigation of mucociliary particle clearance in the airways. AAPS PharmSciTech 9, 521–527 (2008)

    Google Scholar 

  86. Hoegger, M.J., Awadalla, M., Namati, E., et al.: Assessing mucociliary transport of single particles in vivo shows variable speed and preference for the ventral trachea in newborn pigs. Proc. Natl. Acad. Sci. U.S.A. 111, 2355–2360 (2014)

    ADS  Google Scholar 

  87. Veldhuizen, R., Nag, K., Orgeig, S., et al.: The role of lipids in pulmonary surfactant. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 1408, 90–108 (1998)

    Google Scholar 

  88. Avery, M.E., Said, S.: Surface phenomena in lungs in health and disease. Medicine 44, 503–526 (1965)

    Google Scholar 

  89. Papaioannou, A.I., Papiris, S., Papadaki, G., et al.: Surfactant proteins in smoking-related lung disease. Bentham Sci. 1574–1581 (2016)

    Google Scholar 

  90. Bernhard, W.: Lung surfactant: function and composition in the context of development and respiratory physiology. Ann. Anat. 208, 146–150 (2016)

    Google Scholar 

  91. Serrano, A.G., Pérez-Gil, J.: Protein-lipid interactions and surface activity in the pulmonary surfactant system. Chem. Phys. Lipid. 141, 105–118 (2006)

    Google Scholar 

  92. Baoukina, S., Tieleman, D.P.: Computer simulations of lung surfactant. Biochim. Biophys. Acta Biomembr. 1858, 2431–2440 (2016)

    Google Scholar 

  93. Pérez-Gil, J.: Structure of pulmonary surfactant membranes and films: the role of proteins and lipid-protein interactions. Biochim. Biophys. Acta Biomembr. 1778, 1676–1695 (2008)

    Google Scholar 

  94. Nathan, N., Taytard, J., Duquesnoy, P., et al.: Surfactant protein A: a key player in lung homeostasis. Int. J. Biochem. Cell Biol. 81, 151–155 (2016)

    Google Scholar 

  95. Lopez-Rodriguez, E., Gay-Jordi, G., Mucci, A., et al.: Lung surfactant metabolism: early in life, early in disease and target in cell therapy. Cell Tissue Res. 367, 721–735 (2017)

    Google Scholar 

  96. Brandsma, J., Postle, A.D.: Analysis of the regulation of surfactant phosphatidylcholine metabolism using stable isotopes. Ann. Anat. Anatomischer Anz. 211, 176–183 (2017)

    Google Scholar 

  97. Khan, A., Agarwal, R.: Pulmonary alveolar proteinosis. Respir. Care 56, 1016–1028 (2011)

    Google Scholar 

  98. Räsch, S.S.: The nanoparticle corona in the deep lung: pulmonary surfactant adsorption and its role in nano-bio interactions (2016)

    Google Scholar 

  99. Amigoni, A., Pettenazzo, A., Stritoni, V., et al.: Surfactants in acute respiratory distress syndrome in infants and children: past, present and future. Clin. Drug Investig. 37, 1–8 (2017)

    Google Scholar 

  100. Griese, M.: Pulmonary alveolar proteinosis: a comprehensive clinical perspective. Pediatrics 140, e20170610 (2017)

    Google Scholar 

  101. Carey, B., Trapnell, B.C.: The molecular basis of pulmonary alveolar proteinosis. Clin. Immunol. 135, 223–235 (2011)

    Google Scholar 

  102. Ijaz, M.K., Zargar, B., Wright, K.E., et al.: Generic aspects of the airborne spread of human pathogens indoors and emerging air decontamination technologies. Am. J. Infect. Control 44, S109–S120 (2016)

    Google Scholar 

  103. Hidalgo, A., Cruz, A., Pérez-Gil, J.: Pulmonary surfactant and nanocarriers: toxicity versus combined nanomedical applications. Biochim. Biophys. Acta Biomembr. 1859, 1740–1748 (2017)

    Google Scholar 

  104. Raesch, S.S., Tenzer, S., Storck, W., et al.: Proteomic and lipidomic analysis of nanoparticle corona upon contact with lung surfactant reveals differences in protein, but not lipid composition. ACS Nano 9, 11872–11885 (2015)

    Google Scholar 

  105. Kapralov, A.A., Feng, W.H., Amoscato, A.A., et al.: Adsorption of surfactant lipids by single-walled carbon nanotubes in mouse lung upon pharyngeal aspiration. ACS Nano 6, 4147–4156 (2012)

    Google Scholar 

  106. Ruge, C.A., Schaefer, U.F., Herrmann, J., et al.: The interplay of lung surfactant proteins and lipids assimilates the macrophage clearance of nanoparticles. PLoS ONE 7, e40775 (2012)

    ADS  Google Scholar 

  107. Vennemann, A., Alessandrini, F., Wiemann, M.: Differential effects of surface-functionalized zirconium oxide nanoparticles on alveolar macrophages, rat lung, and a mouse allergy model. Nanomaterials 7, 280 (2017)

    Google Scholar 

  108. Moliva, J.I., Rajaram, M.V.S., Sidiki, S., et al.: Molecular composition of the alveolar lining fluid in the aging lung. Age (Dordrecht, Netherlands) 36, 9633 (2014)

    Google Scholar 

  109. Ujma, S., Horsnell, W.G.C., Katz, A.A., et al.: Non-pulmonary immune functions of surfactant proteins A and D. J. Innate Immun. 9, 3–11 (2017)

    Google Scholar 

  110. Han, S.H., Mallampalli, R.K.: The role of surfactant in lung disease and host defense against pulmonary infections. Ann. Am. Thorac. Soc. 12, 765–774 (2015)

    Google Scholar 

  111. Nayak, A., Dodagatta-Marri, E., Tsolaki, A.G., et al.: An insight into the diverse roles of surfactant proteins, SP-A and SP-D in innate and adaptive immunity. Front. Immunol. 3, 1–21 (2012)

    Google Scholar 

  112. Stein, S.W., Thiel, C.G.: The history of therapeutic aerosols: a chronological review. J. Aerosol. Med. Pulm. Drug. Deliv. 30, 20–41 (2017)

    Google Scholar 

  113. Dalby, R.N., Eicher, J., Zierenberg, B.: Development of Respimat((R)) Soft Mist Inhaler and its clinical utility in respiratory disorders. Med. Devices (Auckland, N.Z.) 4, 145–155 (2011)

    Google Scholar 

  114. Edwards, D.A., Hanes, J., Caponetti, G., et al.: Large porous particles for pulmonary drug delivery. Science (New York, N.Y.) 276, 1868–1871 (1997)

    Google Scholar 

  115. Muralidharan, P., Malapit, M., Mallory, E., et al.: Inhalable nanoparticulate powders for respiratory delivery. Nanomed. Nanotechnol. Biol. Med. 11, 1189–1199 (2015)

    Google Scholar 

  116. May, S., Jensen, B., Wolkenhauer, M., et al.: Dissolution techniques for in vitro testing of dry powders for inhalation. Pharm. Res. 29, 2157–2166 (2012)

    Google Scholar 

  117. Forbes, B., Bäckman, P., Christopher, D., et al.: In vitro testing of orally inhaled products: development of science-based regulatory approaches. AAPSJ 17 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole Schneider-Daum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schneider-Daum, N., Hittinger, M., Murgia, X., Lehr, CM. (2019). Cellular and Non-cellular Barriers to Particle Transport Across the Lungs. In: Gehr, P., Zellner, R. (eds) Biological Responses to Nanoscale Particles. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-12461-8_7

Download citation

Publish with us

Policies and ethics