Skip to main content

Nanoparticle Behaviour in Complex Media: Methods for Characterizing Physicochemical Properties, Evaluating Protein Corona Formation, and Implications for Biological Studies

  • Chapter
  • First Online:
Book cover Biological Responses to Nanoscale Particles

Abstract

The transformation of nanoparticles (NPs) in physiological milieu is a dynamic phenomenon that is the subject of intense investigation. When introduced into the body, NPs can undergo a variety of changes, such as, protein adsorption, dissolution, agglomeration/aggregation, structural deformities and redox reactions. It is these changes that subsequently determine the uptake, bioavailability, translocation and fate of NPs, which ultimately determine their therapeutic efficiency, diagnostic efficacy or toxicity. This chapter will consider the colloidal interactions at the interface of NPs with the contents of biological milieu, the practical and theoretical considerations required to modify analytical and imaging techniques to detect and, if possible, quantify NPs in this complex environment, and the requirement for a highly interdisciplinary approach to understand the behaviour at the bio-nano interface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Based on inorganic salt concentrations of several common basal media formulations, such as DMEM, MEM, RPMI-1640, DMEM/F-12, Medium 199 with Earle’s salts.

Abbreviations

AFFF:

Asymmetric flow field-flow fractionation

AFM:

Atomic force microscopy

AUC:

Analytical ultracentrifuge

BSA:

Bovine serum albumin

BSE:

Backscattered electrons

CD:

Circular dichroism

CCM:

Cell culture media

DC:

Disc centrifuge analysis

DDLS:

Depolarized dynamic light scattering

DLS:

Dynamic light scattering

DLS-zeta potential:

Laser-Doppler velocimetry

EELS:

Electron energy loss spectroscopy

ESEM:

Environmental scanning electron microscope

EXAFS:

Extended X-ray absorption fine structure

FBS:

Foetal bovine serum

FCS:

Fluorescence correlation spectroscopy

FRET:

Förster resonance energy transfer

LIT:

Lock in thermography LM: light microscopy

NPs:

Nanoparticles

SANS:

Small-angle neutron scattering

SAXS:

Small-angle X-ray scattering

SE:

Secondary electrons

SERS:

Surface-enhanced Raman spectroscopy

SLS:

Static light scattering

SPIONs:

Superparamagnetic iron nanoparticles

sSAXS:

Synchrotron small angle X-ray scattering

STEM:

Scanning transmission electron microscope

STXM:

Scanning transmission X-ray microscopy

TDA:

Taylor dispersion analysis

TEM:

Transmission electron microscopy

TiO2:

Titanium dioxide

TRPS:

Tuneable resistive pulse sensing

UV-Vis:

Optical extinction spectroscopy in the UV-Visible range

XAS:

X-ray absorption spectroscopy

XANES:

X-ray absorption near edge structure

XRD:

X-ray diffraction

XRM:

X-ray microscopy

ZnO:

Zinc oxide

References

  1. Kim, B.Y.S., Rutka, J.T., Chan, W.C.W.: Nanomedicine. New Engl. J. Med. 363(25), 2434–2443 (2010)

    Google Scholar 

  2. Bobo, D., Robinson, K.J., Islam, J., Thurecht, K.J., Corrie, S.R.: Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm. Res. 33(10), 2373–2387 (2016)

    Google Scholar 

  3. Moore, T.L., Rodriguez-Lorenzo, L., Hirsch, V., Balog, S., Urban, D., Jud, C., Rothen-Rutishauser, B., Lattuada, M., Petri-Fink, A.: Nanoparticle colloidal stability in cell culture media and impact on cellular interactions. Chem. Soc. Rev. 44(17), 6287–6305 (2015)

    Google Scholar 

  4. Guyton, A.C., Hall, J.E.: Textbook of Medical Physiology, 11th ed, p XXXV, 1116 p. Elsevier/Saunders, Philadelphia [etc.] (2006)

    Google Scholar 

  5. Yao, T., Asayama, Y.: Animal-cell culture media: history, characteristics, and current issues. Reprod. Med. Biol. 16(2), 99–117 (2017)

    Google Scholar 

  6. Carrel, A.: On the permanent life of tissues outside of the organism. J. Exp. Med. 15(5), 516–528 (1912)

    Google Scholar 

  7. Ebeling, A.H.: A ten year old strain of fibroblasts. J. Exp. Med. 35(6), 755–759 (1922)

    Google Scholar 

  8. Fischer, A., Astrup, T., Ehrensvard, G., Oehlenschlager, V.: Growth of animal tissue cells in artificial media. Exp. Biol. Med. 67(1), 40–46 (1948)

    Google Scholar 

  9. Zheng, X., Baker, H., Hancock, W.S., Fawaz, F., McCaman, M., Pungor, E.: Proteomic analysis for the assessment of different lots of fetal bovine serum as a raw material for cell culture. Part IV. Application of proteomics to the manufacture of biological drugs. Biotechnol. Progr. 22(5), 1294–1300 (2006)

    Google Scholar 

  10. Eagle, H., Buffer combinations for mammalian cell culture. 174, 500–503 (1971)

    Google Scholar 

  11. Stopford, W., Turner, J., Cappellini, D., Brock, T.: Bioaccessibility testing of cobalt compounds. J. Environ. Monit. 5(4), 675–680 (2003)

    Google Scholar 

  12. Pagana, K.D., Pagana, T.J.: Mosby’s Manual of Diagnostic and Laboratory Tests, 5th ed, pp. 1180. Elsevier Mosby, St. Louis, Missouri (2014)

    Google Scholar 

  13. Anderson, N.L., Anderson, N.G.: The human plasma proteome: history, character, and diagnostic prospects. Mol. Cell. Proteomics 1(11), 845–867 (2002)

    Google Scholar 

  14. Hellstrand, E., Lynch, I., Andersson, A., Drakenberg, T., Dahlbäck, B., Dawson, K.A., Linse, S., Cedervall, T.: Complete high-density lipoproteins in nanoparticle corona. FEBS J. 276(12), 3372–3381 (2009)

    Google Scholar 

  15. Kellum, J.A.: Determinants of blood pH in health and disease. Crit. Care 4(1), 6 (2000)

    Google Scholar 

  16. Caracciolo, G., Farokhzad, O.C., Mahmoudi, M.: Biological identity of nanoparticles in vivo: clinical implications of the protein corona. Trends Biotechnol. 35(3), 257–264

    Google Scholar 

  17. Choi, M.-R., Bardhan, R., Stanton-Maxey, K.J., Badve, S., Nakshatri, H., Stantz, K.M., Cao, N., Halas, N.J., Clare, S.E.: Delivery of nanoparticles to brain metastases of breast cancer using a cellular Trojan horse. Cancer Nanotechnol. 3(1–6), 47–54 (2012)

    Google Scholar 

  18. Anselmo, A.C., Kumar, S., Gupta, V., Pearce, A.M., Ragusa, A., Muzykantov, V., Mitragotri, S.: Exploiting shape, cellular-hitchhiking and antibodies to target nanoparticles to lung endothelium: synergy between physical, chemical and biological approaches. Biomaterials 68, 1–8 (2015)

    Google Scholar 

  19. Wick, P., Manser, P., Limbach, L.K., Dettlaff-Weglikowska, U., Krumeich, F., Roth, S., Stark, W.J., Bruinink, A.: The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol. Lett. 168(2), 121–131 (2007)

    Google Scholar 

  20. Teeguarden, J.G., Hinderliter, P.M., Orr, G., Thrall, B.D., Pounds, J.G.: Particokinetics in vitro: dosimetry considerations for in vitro nanoparticle toxicity assessments. Toxicol. Sci. 95(2), 300–312 (2007)

    Google Scholar 

  21. Albanese, A., Chan, W.C.W.: Effect of gold nanoparticle aggregation on cell uptake and toxicity. ACS Nano 5(7), 5478–5489 (2011)

    Google Scholar 

  22. Singh, A.K.: Physicochemical, electronic, and mechanical properties of nanoparticles. Engineered Nanoparticles, pp. 77–123. Academic Press, Boston (2016)

    Google Scholar 

  23. Zhang, Z., Wu, Y.: Investigation of the NaBH4-induced aggregation of Au nanoparticles. Langmuir 26(12), 9214–9223 (2010)

    Google Scholar 

  24. Peretyazhko, T.S., Zhang, Q., Colvin, V.L.: Size-controlled dissolution of silver nanoparticles at neutral and acidic pH conditions: kinetics and size changes. Environ. Sci. Technol. 48(20), 11954–11961 (2014)

    ADS  Google Scholar 

  25. Larson, T.A., Joshi, P.P., Sokolov, K.: Preventing protein adsorption and macrophage uptake of gold nanoparticles via a hydrophobic shield. ACS Nano 6(10), 9182–9190 (2012)

    Google Scholar 

  26. Urban, D.A., Rodriguez-Lorenzo, L., Balog, S., Kinnear, C., Rothen-Rutishauser, B., Petri-Fink, A.: Plasmonic nanoparticles and their characterization in physiological fluids. Colloid Surf. B 137, 39–49 (2016)

    Google Scholar 

  27. Kreyling, W.G., Abdelmonem, A.M., Ali, Z., Alves, F., Geiser, M., Haberl, N., Hartmann, R., Hirn, S., de Aberasturi, D.J., Kantner, K., Khadem-Saba, G., Montenegro, J.-M., Rejman, J., Rojo, T., de Larramendi, I.R., Ufartes, R., Wenk, A., Parak, W.J.: In vivo integrity of polymer-coated gold nanoparticles. Nat. Nanotechnol. 10, 619 (2015)

    ADS  Google Scholar 

  28. Lynch, I., Langevin, D., Dawson, K.A.: Lessons for bionanointeractions from colloidal science. In: Starov, V.M. (ed.) Nanoscience: Colloidal and Interfacial Aspects, p. 369. Taylor & Francis, London (2010)

    Google Scholar 

  29. Cedervall, T., Lynch, I., Lindman, S., Berggård, T., Thulin, E., Nilsson, H., Dawson, K.A., Linse, S.: Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl. Acad. Sci. U. S. A. 104(7), 2050 (2007)

    ADS  Google Scholar 

  30. Walkey, C.D., Olsen, J.B., Song, F., Liu, R., Guo, H., Olsen, D.W.H., Cohen, Y., Emili, A., Chan, W.C.W.: Protein corona fingerprinting predicts the cellular interaction of gold and silver nanoparticles. ACS Nano 8(3), 2439–2455 (2014)

    Google Scholar 

  31. Liu, R., Jiang, W., Walkey, C.D., Chan, W.C.W., Cohen, Y.: Prediction of nanoparticles-cell association based on corona proteins and physicochemical properties. Nanoscale 7(21), 9664–9675 (2015)

    ADS  Google Scholar 

  32. Ke, P.C., Lin, S., Parak, W.J., Davis, T.P., Caruso, F.: A decade of the protein corona. ACS Nano 11(12), 11773–11776 (2017)

    Google Scholar 

  33. Treuel, L., Docter, D., Maskos, M., Stauber, R.H.: Protein corona—from molecular adsorption to physiological complexity. Beilstein J. Nanotech. 6, 857–873 (2015)

    Google Scholar 

  34. Medintz, I.L., Konnert, J.H., Clapp, A.R., Stanish, I., Twigg, M.E., Mattoussi, H., Mauro, J.M., Deschamps, J.R.: A fluorescence resonance energy transfer-derived structure of a quantum dot-protein bioconjugate nanoassembly. Proc. Natl. Acad. Sci. U. S. A. 101(26), 9612–9617 (2004)

    ADS  Google Scholar 

  35. Schein, C.H.: Solubility as a function of protein structure and solvent components. Bio/Technology 8, 308 (1990)

    Google Scholar 

  36. Monopoli, M.P., Åberg, C., Salvati, A., Dawson, K.A.: Biomolecular coronas provide the biological identity of nanosized materials. Nat. Nanotechnol. 7, 779 (2012)

    ADS  Google Scholar 

  37. Docter, D., Westmeier, D., Markiewicz, M., Stolte, S., Knauer, S.K., Stauber, R.H.: The nanoparticle biomolecule corona: lessons learned—challenge accepted? Chem. Soc. Rev. 44(17), 6094–6121 (2015)

    Google Scholar 

  38. Monopoli, M.P., Wan, S., Bombelli, F.B., Mahon, E., Dawson, K.A.: Comparisons of nanoparticle protein corona complexes isolated with different methods. Nano Life 03(04), 1343004 (2013)

    Google Scholar 

  39. Weber, C., Simon, J., Mailänder, V., Morsbach, S., Landfester, K.: Preservation of the soft protein corona in distinct flow allows identification of weakly bound proteins. Acta Biomater. 76, 217–224 (2018)

    Google Scholar 

  40. Lück, M., Paulke, B.-R., Schröder, W., Blunk, T., Müller, R.H.: Analysis of plasma protein adsorption on polymeric nanoparticles with different surface characteristics. J. Biomed. Mater. Res. 39(3), 478–485 (1998)

    Google Scholar 

  41. Gessner, A., Lieske, A., Paulke, B.-R., Müller, R.H.: Functional groups on polystyrene model nanoparticles: influence on protein adsorption. J. Biomed. Mater. Res. Part A 65A(3), 319–326 (2003)

    Google Scholar 

  42. Tenzer, S., Docter, D., Kuharev, J., Musyanovych, A., Fetz, V., Hecht, R., Schlenk, F., Fischer, D., Kiouptsi, K., Reinhardt, C., Landfester, K., Schild, H., Maskos, M., Knauer, S.K., Stauber, R.H.: Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat. Nanotechnol. 8, 772 (2013)

    ADS  Google Scholar 

  43. Zhdanov, V.P., Cho, N.-J.: Kinetics of the formation of a protein corona around nanoparticles. Math. Biosci. 282, 82–90 (2016)

    MathSciNet  MATH  Google Scholar 

  44. Vroman, L., Adams, A.L.: Identification of rapid changes at plasma–solid interfaces. J. Biomed. Mater. Res. 3(1), 43–67 (1969)

    Google Scholar 

  45. Ritz, S., Schöttler, S., Kotman, N., Baier, G., Musyanovych, A., Kuharev, J., Landfester, K., Schild, H., Jahn, O., Tenzer, S., Mailänder, V.: Protein corona of nanoparticles: distinct proteins regulate the cellular uptake. Biomacromolecules 16(4), 1311–1321 (2015)

    Google Scholar 

  46. Owens, D.E., Peppas, N.A.: Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharmaceut. 307(1), 93–102 (2006)

    Google Scholar 

  47. Schöttler, S., Becker, G., Winzen, S., Steinbach, T., Mohr, K., Landfester, K., Mailänder, V., Wurm, F.R.: Protein adsorption is required for stealth effect of poly(ethylene glycol)- and poly(phosphoester)-coated nanocarriers. Nat. Nanotechnol. 11, 372 (2016)

    ADS  Google Scholar 

  48. Perry, J.L., Reuter, K.G., Kai, M.P., Herlihy, K.P., Jones, S.W., Luft, J.C., Napier, M., Bear, J.E., DeSimone, J.M.: PEGylated PRINT nanoparticles: the impact of PEG density on protein binding, macrophage association, biodistribution, and pharmacokinetics. Nano Lett. 12(10), 5304–5310 (2012)

    ADS  Google Scholar 

  49. Sacchetti, C., Motamedchaboki, K., Magrini, A., Palmieri, G., Mattei, M., Bernardini, S., Rosato, N., Bottini, N., Bottini, M.: Surface polyethylene glycol conformation influences the protein corona of polyethylene glycol-modified single-walled carbon nanotubes: potential implications on biological performance. ACS Nano 7(3), 1974–1989 (2013)

    Google Scholar 

  50. Gref, R., Lück, M., Quellec, P., Marchand, M., Dellacherie, E., Harnisch, S., Blunk, T., Müller, R.H.: ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf. B Biointerfaces 18(3–4), 301–313 (2000)

    Google Scholar 

  51. Müller, J., Simon, J., Rohne, P., Koch-Brandt, C., Mailänder, V., Morsbach, S., Landfester, K.: Denaturation via surfactants changes composition of protein corona. Biomacromolecules 19(7), 2657–2664 (2018)

    Google Scholar 

  52. Müller, J., Bauer, K.N., Prozeller, D., Simon, J., Mailänder, V., Wurm, F.R., Winzen, S., Landfester, K.: Coating nanoparticles with tunable surfactants facilitates control over the protein corona. Biomaterials 115, 1–8 (2017)

    Google Scholar 

  53. Schäffler, M., Semmler-Behnke, M., Sarioglu, H., Takenaka, S., Wenk, A., Schleh, C., Hauck, S.M., Johnston, B.D., Kreyling, W.G.: Serum protein identification and quantification of the corona of 5, 15 and 80 nm gold nanoparticles. Nanotechnology 24(26), 265103 (2013)

    ADS  Google Scholar 

  54. Miclăuş, T., Bochenkov, V.E., Ogaki, R., Howard, K.A., Sutherland, D.S.: Spatial mapping and quantification of soft and hard protein coronas at silver nanocubes. Nano Lett. 14(4), 2086–2093 (2014)

    ADS  Google Scholar 

  55. Zhou, J.D., Gysell, M., Tara, S., Anthony, M., Darren, M., Rodney, F.M.: Differential plasma protein binding to metal oxide nanoparticles. Nanotechnology 20(45), 455101 (2009)

    Google Scholar 

  56. Feiner-Gracia, N., Beck, M., Pujals, S., Tosi, S., Mandal, T., Buske, C., Linden, M., Albertazzi, L.: Super-resolution microscopy unveils dynamic heterogeneities in nanoparticle protein corona. Small 13(41), 1701631–n/a (2017)

    Google Scholar 

  57. Welsher, K., Liu, Z., Sherlock, S.P., Robinson, J.T., Chen, Z., Daranciang, D., Dai, H.: A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat. Nanotechnol. 4, 773 (2009)

    ADS  Google Scholar 

  58. Wan, S., Kelly, P.M., Mahon, E., Stöckmann, H., Rudd, P.M., Caruso, F., Dawson, K.A., Yan, Y., Monopoli, M.P.: The “Sweet” side of the protein corona: effects of glycosylation on nanoparticle-cell interactions. ACS Nano 9(2), 2157–2166 (2015)

    Google Scholar 

  59. Lynch, I., Dawson, K.A.: Protein-nanoparticle interactions. Nano Today 3(1), 40–47 (2008)

    Google Scholar 

  60. Nguyen, V.H., Lee, B.-J.: Protein corona: a new approach for nanomedicine design. Int. J. Nanomed. 12, 3137–3151 (2017)

    Google Scholar 

  61. Patel, H.M.: Serum opsonins and liposomes: their interaction and opsonophagocytosis. Crit. Rev. Ther. Drug Carrier Syst. 9(1), 39–90 (1992)

    MathSciNet  Google Scholar 

  62. Chonn, A., Semple, S.C., Cullis, P.R.: Association of blood proteins with large unilamellar liposomes in vivo. Relation to circulation lifetimes. J. Biol. Chem. 267(26), 18759–19765 (1992)

    Google Scholar 

  63. Tyrrell, D.A., Richardson, V.J., Ryman, B.E.: The effect of serum protein fractions on liposome-cell interactions in cultured cells and the perfused rat liver. Biochim. Biophys. Acta (BBA) Gen. Subj. 497(2), 469–480 (1977)

    Google Scholar 

  64. Göppert, T.M., Müller, R.H.: Polysorbate-stabilized solid lipid nanoparticles as colloidal carriers for intravenous targeting of drugs to the brain: comparison of plasma protein adsorption patterns. J. Drug Target. 13(3), 179–187 (2005)

    Google Scholar 

  65. Mirshafiee, V., Kim, R., Park, S., Mahmoudi, M., Kraft, M.L.: Impact of protein pre-coating on the protein corona composition and nanoparticle cellular uptake. Biomaterials 75, 295–304 (2016)

    Google Scholar 

  66. Moghimi, S.M., Hunter, A.C., Murray, J.C.: Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol. Rev. 53(2), 283–318 (2001)

    Google Scholar 

  67. Corbo, C., Molinaro, R., Parodi, A., Toledano Furman, N.E., Salvatore, F., Tasciotti, E.: The impact of nanoparticle protein corona on cytotoxicity, immunotoxicity and target drug delivery. Nanomedicine 11(1), 81–100 (2016)

    Google Scholar 

  68. Salvati, A., Pitek, A.S., Monopoli, M.P., Prapainop, K., Bombelli, F.B., Hristov, D.R., Kelly, P.M., Åberg, C., Mahon, E., Dawson, K.A.: Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat. Nanotechnol. 8, 137 (2013)

    ADS  Google Scholar 

  69. Landgraf, L., Christner, C., Storck, W., Schick, I., Krumbein, I., Dähring, H., Haedicke, K., Heinz-Herrmann, K., Teichgräber, U., Reichenbach, J.R., Tremel, W., Tenzer, S., Hilger, I.: A plasma protein corona enhances the biocompatibility of Au@Fe3O4 Janus particles. Biomaterials 68, 77–88 (2015)

    Google Scholar 

  70. Ge, C., Du, J., Zhao, L., Wang, L., Liu, Y., Li, D., Yang, Y., Zhou, R., Zhao, Y., Chai, Z., Chen, C.: Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proc. Natl. Acad. Sci. U. S. A. 108(41), 16968–16973 (2011)

    ADS  Google Scholar 

  71. Wang, F., Yu, L., Monopoli, M.P., Sandin, P., Mahon, E., Salvati, A., Dawson, K.A.: The biomolecular corona is retained during nanoparticle uptake and protects the cells from the damage induced by cationic nanoparticles until degraded in the lysosomes. Nanomedicine Nanotechnol. Biol. Med. 9(8), 1159–1168 (2013)

    Google Scholar 

  72. Lee, I.S., Lee, N., Park, J., Kim, B.H., Yi, Y.-W., Kim, T., Kim, T.K., Lee, I.H., Paik, S.R., Hyeon, T.: Ni/NiO core/shell nanoparticles for selective binding and magnetic separation of histidine-tagged proteins. JACS 128(33), 10658–10659 (2006)

    Google Scholar 

  73. Capriotti, A.L., Caracciolo, G., Cavaliere, C., Colapicchioni, V., Piovesana, S., Pozzi, D., Laganà, A.: Analytical methods for characterizing the nanoparticle-protein corona. Chromatographia 77(11), 755–769 (2014)

    Google Scholar 

  74. Li, L., Mu, Q., Zhang, B., Yan, B.: Analytical strategies for detecting nanoparticle-protein interactions. The Analyst 135(7), 1519–1530 (2010)

    ADS  Google Scholar 

  75. Mahmoudi, M., Lynch, I., Ejtehadi, M.R., Monopoli, M.P., Bombelli, F.B., Laurent, S.: Protein–nanoparticle interactions: opportunities and challenges. Chem. Rev. 111(9), 5610–5637 (2011)

    Google Scholar 

  76. Aggarwal, P., Hall, J.B., McLeland, C.B., Dobrovolskaia, M.A., McNeil, S.E.: Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv. Drug Deliv. Rev. 61(6), 428–437 (2009)

    Google Scholar 

  77. Levy, R., Thanh, N.T.K., Doty, R.C., Hussain, I., Nichols, R.J., Schiffrin, D.J., Brust, M., Fernig, D.G.: Rational and combinatorial design of peptide capping Ligands for gold nanoparticles. JACS 126(32), 10076–10084 (2004)

    Google Scholar 

  78. Aubin-Tam, M.-E., Hamad-Schifferli, K.: Gold nanoparticle–cytochrome c complexes: the effect of nanoparticle ligand charge on protein structure. Langmuir 21(26), 12080–12084 (2005)

    Google Scholar 

  79. Ashby, J., Schachermeyer, S., Pan, S., Zhong, W.: Dissociation-based screening of nanoparticle-protein interaction via flow field-flow fractionation. Anal. Chem. 85(15), 7494–7501 (2013)

    Google Scholar 

  80. Aleksenko, S.S., Shmykov, A.Y., Oszwaldowski, S., Timerbaev, A.R.: Interactions of tumour-targeting nanoparticles with proteins: potential of using capillary electrophoresis as a direct probe. Metallomics 4(11), 1141–1148 (2012)

    Google Scholar 

  81. Kim, H.R., Andrieux, K., Delomenie, C., Chacun, H., Appel, M., Desmaele, D., Taran, F., Georgin, D., Couvreur, P., Taverna, M.: Analysis of plasma protein adsorption onto PEGylated nanoparticles by complementary methods: 2-DE, CE and protein Lab-on-chip((R)) system. Electrophoresis 28(13), 2252–2261 (2007)

    Google Scholar 

  82. Brambilla, D., Verpillot, R., Taverna, M., De Kimpe, L., Le Droumaguet, B., Nicolas, J., Canovi, M., Gobbi, M., Mantegazza, F., Salmona, M., Nicolas, V., Scheper, W., Couvreur, P., Andrieux, K.: New method based on capillary electrophoresis with laser-induced fluorescence detection (CE-LIF) to monitor interaction between nanoparticles and the amyloid-beta peptide. Anal. Chem. 82(24), 10083–10089 (2010)

    Google Scholar 

  83. Brambilla, D., Verpillot, R., Le Droumaguet, B., Nicolas, J., Taverna, M., Kona, J., Lettiero, B., Hashemi, S.H., De Kimpe, L., Canovi, M., Gobbi, M., Nicolas, V., Scheper, W., Moghimi, S.M., Tvaroska, I., Couvreur, P., Andrieux, K.: PEGylated nanoparticles bind to and alter amyloid-beta peptide conformation: toward engineering of functional nanomedicines for Alzheimer’s disease. ACS Nano 6(7), 5897–5908 (2012)

    Google Scholar 

  84. Chang, C.W., Tseng, W.L.: Gold nanoparticle extraction followed by capillary electrophoresis to determine the total, free, and protein-bound aminothiols in plasma. Anal. Chem. 82(7), 2696–2702 (2010)

    Google Scholar 

  85. Chen, F., Wang, G., Griffin, J.I., Brenneman, B., Banda, N.K., Holers, V.M., Backos, D.S., Wu, L., Moghimi, S.M., Simberg, D.: Complement proteins bind to nanoparticle protein corona and undergo dynamic exchange in vivo. Nat. Nanotechnol. 12, 387 (2016)

    ADS  Google Scholar 

  86. García-Álvarez, R., Hadjidemetriou, M., Sánchez-Iglesias, A., Liz-Marzán, L.M., Kostarelos, K.: In vivo formation of protein corona on gold nanoparticles. The effect of their size and shape. Nanoscale 10(3), 1256–1264 (2018)

    Google Scholar 

  87. Caracciolo, G., Pozzi, D., De Sanctis, S.C., Capriotti, A.L., Caruso, G., Samperi, R., Lagana, A.: Effect of membrane charge density on the protein corona of cationic liposomes: interplay between cationic charge and surface area. Appl. Phys. Lett. 99(3) (2011)

    Google Scholar 

  88. Dutta, D., Sundaram, S.K., Teeguarden, J.G., Riley, B.J., Fifield, L.S., Jacobs, J.M., Addleman, S.R., Kaysen, G.A., Moudgil, B.M., Weber, T.J.: Adsorbed proteins influence the biological activity and molecular targeting of nanomaterials. Toxicol. Sci. 100(1), 303–315 (2007)

    Google Scholar 

  89. Salvador-Morales, C., Flahaut, E., Sim, E., Sloan, J., Green, M.L., Sim, R.B.: Complement activation and protein adsorption by carbon nanotubes. Mol. Immunol. 43(3), 193–201 (2006)

    Google Scholar 

  90. Lundqvist, M., Stigler, J., Elia, G., Lynch, I., Cedervall, T., Dawson, K.A.: Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Natl. Acad. Sci. U. S. A. 105(38), 14265–14270 (2008)

    ADS  Google Scholar 

  91. Stolnik, S., Daudali, B., Arien, A., Whetstone, J., Heald, C.R., Garnett, M.C., Davis, S.S., Illum, L.: The effect of surface coverage and conformation of poly(ethylene oxide) (PEO) chains of poloxamer 407 on the biological fate of model colloidal drug carriers. Biochim. Biophys. Acta (BBA) Biomembr. 1514(2), 261–279 (2001)

    Google Scholar 

  92. Arora, P.S., Yamagiwa, H., Srivastava, A., Bolander, M.E., Sarkar, G.: Comparative evaluation of two two-dimensional gel electrophoresis image analysis software applications using synovial fluids from patients with joint disease. J. Orthop. Sci. 10(2), 160–166 (2005)

    Google Scholar 

  93. Lai, Z.W., Yan, Y., Caruso, F., Nice, E.C.: Emerging techniques in proteomics for probing nano-bio interactions. ACS Nano 6(12), 10438–10448 (2012)

    Google Scholar 

  94. Kim, H.R., Andrieux, K., Gil, S., Taverna, M., Chacun, H., Desmaële, D., Taran, F., Georgin, D., Couvreur, P.: Translocation of poly(ethylene glycol-co-hexadecyl)cyanoacrylate nanoparticles into rat brain endothelial cells: role of apolipoproteins in receptor-mediated endocytosis. Biomacromolecules 8(3), 793–799 (2007)

    Google Scholar 

  95. Chang, S.Y., Zheng, N.-Y., Chen, C.-S., Chen, C.-D., Chen, Y.-Y., Wang, C.R.C.: Analysis of peptides and proteins affinity-bound to iron oxide nanoparticles by MALDI MS. J. Am. Soc. Mass Spectrom. 18(5), 910–918 (2007)

    Google Scholar 

  96. Chittur, K.K.: FTIR/ATR for protein adsorption to biomaterial surfaces. Biomaterials 19(4), 357–369 (1998)

    Google Scholar 

  97. Goormaghtigh, E., Gasper, R., Bénard, A., Goldsztein, A., Raussens, V.: Protein secondary structure content in solution, films and tissues: redundancy and complementarity of the information content in circular dichroism, transmission and ATR FTIR spectra. Biochim. Biophys. Acta (BBA) Proteins Proteomics 1794(9), 1332–1343 (2009)

    Google Scholar 

  98. Shao, M., Lu, L., Wang, H., Luo, S., Ma, D.D.D.: Microfabrication of a new sensor based on silver and silicon nanomaterials, and its application to the enrichment and detection of bovine serum albumin via surface-enhanced Raman scattering. Microchim. Acta 164(1), 157–160 (2009)

    Google Scholar 

  99. Royer, C.A.: Probing protein folding and conformational transitions with fluorescence. Chem. Rev. 106(5), 1769–1784 (2006)

    Google Scholar 

  100. Mátyus, L., Szöllősi, J., Jenei, A.: Steady-state fluorescence quenching applications for studying protein structure and dynamics. J. Photochem. Photobiol. B 83(3), 223–236 (2006)

    Google Scholar 

  101. Vilanova, O., Mittag, J.J., Kelly, P.M., Milani, S., Dawson, K.A., Rädler, J.O., Franzese, G.: Understanding the kinetics of protein-nanoparticle corona formation. ACS Nano 10(12), 10842–10850 (2016)

    Google Scholar 

  102. Kelly, S.M., Jess, T.J., Price, N.C.: How to study proteins by circular dichroism. Biochim. Biophys. Acta (BBA) Proteins Proteomics 1751(2), 119–139 (2005)

    Google Scholar 

  103. Shang, L., Wang, Y., Jiang, J., Dong, S.: pH-dependent protein conformational changes in albumin: gold nanoparticle bioconjugates: a spectroscopic study. Langmuir 23(5), 2714–2721 (2007)

    Google Scholar 

  104. Deng, Z.J., Liang, M., Monteiro, M., Toth, I., Minchin, R.F.: Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation. Nat. Nanotechnol. 6, 39 (2010)

    ADS  Google Scholar 

  105. Ceccon, A., Lelli, M., D’Onofrio, M., Molinari, H., Assfalg, M.: Dynamics of a globular protein adsorbed to liposomal nanoparticles. JACS 136(38), 13158–13161 (2014)

    Google Scholar 

  106. Stayton, P.S., Drobny, G.P., Shaw, W.J., Long, J.R., Gilbert, M.: Molecular recognition at the protein-hydroxyapatite interface. Crit. Rev. Oral Biol. Med. 14(5), 370–376 (2003)

    Google Scholar 

  107. Carril, M., Padro, D., del Pino, P., Carrillo-Carrion, C., Gallego, M., Parak, W.J.: In situ detection of the protein corona in complex environments. Nat. Commun. 8(1), 1542 (2017)

    ADS  Google Scholar 

  108. Baier, G., Costa, C., Zeller, A., Baumann, D., Sayer, C., Araujo, P.H.H., Mailänder, V., Musyanovych, A., Landfester, K.: BSA adsorption on differently charged polystyrene nanoparticles using isothermal titration calorimetry and the influence on cellular uptake. Macromol. Biosci. 11(5), 628–638 (2011)

    Google Scholar 

  109. Lindman, S., Lynch, I., Thulin, E., Nilsson, H., Dawson, K.A., Linse, S.: Systematic investigation of the thermodynamics of HSA adsorption to N-iso-Propylacrylamide/N-tert-Butylacrylamide copolymer nanoparticles. Effects of particle size and hydrophobicity. Nano Lett. 7(4), 914–920 (2007)

    Google Scholar 

  110. Laera, S., Ceccone, G., Rossi, F., Gilliland, D., Hussain, R., Siligardi, G., Calzolai, L.: Measuring protein structure and stability of protein-nanoparticle systems with synchrotron radiation circular dichroism. Nano Lett. 11(10), 4480–4484 (2011)

    ADS  Google Scholar 

  111. Bhogale, A., Patel, N., Mariam, J., Dongre, P.M., Miotello, A., Kothari, D.C.: Comprehensive studies on the interaction of copper nanoparticles with bovine serum albumin using various spectroscopies. Colloids Surf. B 113, 276–284 (2014)

    Google Scholar 

  112. Astegno, A., Maresi, E., Marino, V., Dominici, P., Pedroni, M., Piccinelli, F., Dell’Orco, D.: Structural plasticity of calmodulin on the surface of CaF2 nanoparticles preserves its biological function. Nanoscale 6(24), 15037–15047 (2014)

    ADS  Google Scholar 

  113. Huang, R., Carney, R.P., Ikuma, K., Stellacci, F., Lau, B.L.T.: Effects of surface compositional and structural heterogeneity on nanoparticle-protein interactions: different protein configurations. ACS Nano 8(6), 5402–5412 (2014)

    Google Scholar 

  114. Michen, B., Geers, C., Vanhecke, D., Endes, C., Rothen-Rutishauser, B., Balog, S., Petri-Fink, A.: Avoiding drying-artifacts in transmission electron microscopy: characterizing the size and colloidal state of nanoparticles. Sci. Rep. 5, 9793 (2015)

    ADS  Google Scholar 

  115. Balog, S., Rodriguez-Lorenzo, L., Monnier, C.A., Obiols-Rabasa, M., Rothen-Rutishauser, B., Schurtenberger, P., Petri-Fink, A.: Characterizing nanoparticles in complex biological media and physiological fluids with depolarized dynamic light scattering. Nanoscale 7(14), 5991–5997 (2015)

    ADS  Google Scholar 

  116. Sharifi, S., Behzadi, S., Laurent, S., Laird Forrest, M., Stroeve, P., Mahmoudi, M.: Toxicity of nanomaterials. Chem. Soc. Rev. 41(6), 2323–2343 (2012)

    Google Scholar 

  117. Lin, P.-C., Lin, S., Wang, P.C., Sridhar, R.: Techniques for physicochemical characterization of nanomaterials. Biotechnol. Adv. 32(4), 711–726 (2014)

    Google Scholar 

  118. Treuel, L., Eslahian, K.A., Docter, D., Lang, T., Zellner, R., Nienhaus, K., Nienhaus, G.U., Stauber, R.H., Maskos, M.: Physicochemical characterization of nanoparticles and their behavior in the biological environment. Phys. Chem. Chem. Phys. 16(29), 15053–15067 (2014)

    Google Scholar 

  119. Cho, E.C., Liu, Y., Xia, Y.: A simple spectroscopic method for differentiating cellular uptakes of gold nanospheres and nanorods from their mixtures. Angew. Chem. Int. Ed. 49(11), 1976–1980 (2010)

    Google Scholar 

  120. Rischitor, G., Parracino, M., La Spina, R., Urbán, P., Ojea-Jiménez, I., Bellido, E., Valsesia, A., Gioria, S., Capomaccio, R., Kinsner-Ovaskainen, A., Gilliland, D., Rossi, F., Colpo, P.: Quantification of the cellular dose and characterization of nanoparticle transport during in vitro testing. Part. Fibre Toxicol. 13(1), 47 (2016)

    Google Scholar 

  121. Cho, E.C., Zhang, Q., Xia, Y.: The effect of sedimentation and diffusion on cellular uptake of gold nanoparticles. Nat. Nanotechnol. 6, 385 (2011)

    ADS  Google Scholar 

  122. Mukherjee, D., Leo, B.F., Royce, S.G., Porter, A.E., Ryan, M.P., Schwander, S., Chung, K.F., Tetley, T.D., Zhang, J., Georgopoulos, P.G.: Modeling physicochemical interactions affecting in vitro cellular dosimetry of engineered nanomaterials: application to nanosilver. J. Nanopart. Res. 16(10), 2616 (2014)

    ADS  Google Scholar 

  123. Hinderliter, P.M., Minard, K.R., Orr, G., Chrisler, W.B., Thrall, B.D., Pounds, J.G., Teeguarden, J.G.: ISDD: a computational model of particle sedimentation, diffusion and target cell dosimetry for in vitro toxicity studies. Part. Fibre Toxicol. 7(1), 36 (2010)

    Google Scholar 

  124. DeLoid, G., Cohen, J.M., Darrah, T., Derk, R., Rojanasakul, L., Pyrgiotakis, G., Wohlleben, W., Demokritou, P.: Estimating the effective density of engineered nanomaterials for in vitro dosimetry. Nat. Commun. 5, 3514 (2014)

    ADS  Google Scholar 

  125. DeLoid, G.M., Cohen, J.M., Pyrgiotakis, G., Pirela, S.V., Pal, A., Liu, J., Srebric, J., Demokritou, P.: Advanced computational modeling for in vitro nanomaterial dosimetry. Part. Fibre Toxicol. 12, 32 (2015)

    Google Scholar 

  126. Rodriguez-Lorenzo, L., Rothen-Rutishauser, B., Petri-Fink, A., Balog, S.: Nanoparticle polydispersity can strongly affect in vitro dose. Part. Part. Syst. Charact. 32(3), 321–333 (2015)

    Google Scholar 

  127. Thomas, D.G., Smith, J.N., Thrall, B.D., Baer, D.R., Jolley, H., Munusamy, P., Kodali, V., Demokritou, P., Cohen, J., Teeguarden, J.G.: ISD3: a particokinetic model for predicting the combined effects of particle sedimentation, diffusion and dissolution on cellular dosimetry for in vitro systems. Part. Fibre Toxicol. 15(1), 6 (2018)

    Google Scholar 

  128. Zhang, S., Li, J., Lykotrafitis, G., Bao, G., Suresh, S.: Size-dependent endocytosis of nanoparticles. Adv. Mater. 21(4), 419–424 (2009)

    Google Scholar 

  129. Abhishek, C., Giuseppe, B., Ramin, G.: The effect of interactions on the cellular uptake of nanoparticles. Phys. Biol. 8(4), 046002 (2011)

    Google Scholar 

  130. Kinnear, C., Moore, T.L., Rodriguez-Lorenzo, L., Rothen-Rutishauser, B., Petri-Fink, A.: Form follows function: nanoparticle shape and its implications for nanomedicine. Chem. Rev. 117(17), 11476–11521 (2017)

    Google Scholar 

  131. Sadik, O.A.: Anthropogenic nanoparticles in the environment. Environ. Sci. Process. Impacts 15(1), 19–20 (2013)

    Google Scholar 

  132. Buzea, C., Pacheco, I.I., Robbie, K.: Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2(4), Mr17–Mr71 (2007)

    Google Scholar 

  133. Kuhlbusch, T., Asbach, C., Fissan, H., Gohler, D., Stintz, M.: Nanoparticle exposure at nanotechnology workplaces: a review. Part. Fibre Toxicol. 8(1), 22 (2011)

    Google Scholar 

  134. Drasler, B., Sayre, P., Steinhauser, K.G., Petri-Fink, A., Rothen-Rutishauser, B.: In vitro approaches to assess the hazard of nanomaterials. Nanoimpact 8, 99–116 (2017)

    Google Scholar 

  135. Mühlfeld, C., Rothen-Rutishauser, B., Blank, F., Vanhecke, D., Ochs, M., Gehr, P.: Interactions of nanoparticles with pulmonary structures and cellular responses. AJP-Lung 294(5), L817–L829 (2008)

    Google Scholar 

  136. Conner, S.D., Schmid, S.L.: Regulated portals of entry into the cell. Nature 422, 37 (2003)

    ADS  Google Scholar 

  137. Aderem, A., Underhill, D.M.: Mechanisms of phagocytosis in macrophages. Annu. Rev. Immunol. 17(1), 593–623 (1999)

    Google Scholar 

  138. Spector, A.A., Yorek, M.A.: Membrane lipid composition and cellular function. J. Lipid Res. 26(9), 1015–1035 (1985)

    Google Scholar 

  139. Kuhn, D.A., Vanhecke, D., Michen, B., Blank, F., Gehr, P., Petri-Fink, A., Rothen-Rutishauser, B.: Different endocytotic uptake mechanisms for nanoparticles in epithelial cells and macrophages. Beilstein J. Nanotech. 5, 1625–1636 (2014)

    Google Scholar 

  140. Mahmoudi, M., Saeedi-Eslami, S.N., Shokrgozar, M.A., Azadmanesh, K., Hassanlou, M., Kalhor, H.R., Burtea, C., Rothen-Rutishauser, B., Laurent, S., Sheibani, S., Vali, H.: Cell “vision”: complementary factor of protein corona in nanotoxicology. Nanoscale 4(17), 5461–5468 (2012)

    ADS  Google Scholar 

  141. Feliu, N., Hühn, J., Zyuzin, M.V., Ashraf, S., Valdeperez, D., Masood, A., Said, A.H., Escudero, A., Pelaz, B., Gonzalez, E., Duarte, M.A.C., Roy, S., Chakraborty, I., Lim, M.L., Sjöqvist, S., Jungebluth, P., Parak, W.J.: Quantitative uptake of colloidal particles by cell cultures. Sci. Total Environ. 568, 819–828 (2016)

    ADS  Google Scholar 

  142. Donaldson, K., Stone, V., Borm, P.J.A., Jimenez, L.A., Gilmour, P.S., Schins, R.P.F., Knaapen, A.M., Rahman, I., Faux, S.P., Brown, D.M., MacNee, W.: Oxidative stress and calcium signaling in the adverse effects of environmental particles (PM10). Free Radic. Biol. Med. 34(11), 1369–1382 (2003)

    Google Scholar 

  143. Poland, C.A., Duffin, R., Kinloch, I., Maynard, A., Wallace, W.A.H., Seaton, A., Stone, V., Brown, S., MacNee, W., Donaldson, K.: Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat. Nanotechnol. 3, 423 (2008)

    Google Scholar 

  144. Schins, R.P.F., Knaapen, A.M.: Genotoxicity of poorly soluble particles. Inhal. Toxicol. 19(sup1), 189–198 (2007)

    Google Scholar 

  145. Krug, H.F., Wick, P.: Nanotoxicology: an interdisciplinary challenge. Angew. Chem. Int. Ed. 50(6), 1260–1278 (2011)

    Google Scholar 

  146. Paur, H.-R., Cassee, F.R., Teeguarden, J., Fissan, H., Diabate, S., Aufderheide, M., Kreyling, W.G., Hänninen, O., Kasper, G., Riediker, M., Rothen-Rutishauser, B., Schmid, O.: In-vitro cell exposure studies for the assessment of nanoparticle toxicity in the lung—a dialog between aerosol science and biology. J. Aerosol Sci. 42(10), 668–692 (2011)

    ADS  Google Scholar 

  147. Bourquin, J., Milosevic, A., Hauser, D., Lehner, R., Blank, F., Petri-Fink, A., Rothen-Rutishauser, B.: Biodistribution, clearance, and long-term fate of clinically relevant nanomaterials. Adv. Mater., 1704307 (2018)

    Google Scholar 

  148. Geers, C., Rodriguez-Lorenzo, L., Andreas Urban, D., Kinnear, C., Petri-Fink, A., Balog, S.: A new angle on dynamic depolarized light scattering: number-averaged size distribution of nanoparticles in focus. Nanoscale 8(34), 15813–15821 (2016)

    Google Scholar 

  149. Mehan, S., Chinchalikar, A.J., Kumar, S., Aswal, V.K., Schweins, R.: Small-angle neutron scattering study of structure and interaction of nanoparticle, protein, and surfactant complexes. Langmuir 29(36), 11290–11299 (2013)

    Google Scholar 

  150. Spinozzi, F., Ceccone, G., Moretti, P., Campanella, G., Ferrero, C., Combet, S., Ojea-Jimenez, I., Ghigna, P.: Structural and thermodynamic properties of nanoparticle-protein complexes: a combined SAXS and SANS study. Langmuir 33(9), 2248–2256 (2017)

    Google Scholar 

  151. Diroll, B.T., Weigandt, K.M., Jishkariani, D., Cargnello, M., Murphy, R.J., Hough, L.A., Murray, C.B., Donnio, B.: Quantifying “Softness” of organic coatings on gold nanoparticles using correlated small-angle X-ray and neutron scattering. Nano Lett. 15(12), 8008–8012 (2015)

    ADS  Google Scholar 

  152. Bhattacharjee, S.: DLS and zeta potential—what they are and what they are not? J. Contr. Release 235, 337–351 (2016)

    Google Scholar 

  153. Huang, Y., Wang, X.B., Becker, F.F., Gascoyne, P.R.: Introducing dielectrophoresis as a new force field for field-flow fractionation. Biophys. J. 73(2), 1118–1129 (1997)

    Google Scholar 

  154. Uma, B., Swaminathan, T.N., Radhakrishnan, R., Eckmann, D.M., Ayyaswamy, P.S.: Nanoparticle Brownian motion and hydrodynamic interactions in the presence of flow fields. Phys. Fluids 23(7), 073602 (2011)

    ADS  Google Scholar 

  155. Das, S., Kundu, A., Hossain, S.M., Saha, H., Datta, S.K.: Effect of size on the scattering properties of silica nanoparticles. In: 2014 IEEE 2nd International Conference on Emerging Electronics (ICEE), 3–6 December 2014, pp. 1–4 (2014)

    Google Scholar 

  156. Horiba Instruments, I.: Zeta Potential of Bovine Serum Albumin (BSA) Protein. Irvine, CA, U.S.A (2009)

    Google Scholar 

  157. Vanhecke, D., Kuhn, D.A., Jimenez de Aberasturi, D., Balog, S., Milosevic, A., Urban, D., Peckys, D., de Jonge, N., Parak, W.J., Petri-Fink, A., Rothen-Rutishauser, B.: Involvement of two uptake mechanisms of gold and iron oxide nanoparticles in a co-exposure scenario using mouse macrophages. Beilstein J. Nanotechnol. 8, 2396–2409 (2017)

    Google Scholar 

  158. Nuhn, L., Gietzen, S., Mohr, K., Fischer, K., Toh, K., Miyata, K., Matsumoto, Y., Kataoka, K., Schmidt, M., Zentel, R.: Aggregation behavior of cationic nanohydrogel particles in human blood serum. Biomacromolecules 15(4), 1526–1533 (2014)

    Google Scholar 

  159. Rausch, K., Reuter, A., Fischer, K., Schmidt, M.: Evaluation of nanoparticle aggregation in human blood serum. Biomacromolecules 11(11), 2836–2839 (2010)

    Google Scholar 

  160. Hemmelmann, M., Mohr, K., Fischer, K., Zentel, R., Schmidt, M.: Interaction of pHPMA–pLMA copolymers with human blood serum and its components. Mol. Pharm. 10(10), 3769–3775 (2013)

    Google Scholar 

  161. Barisik, M., Atalay, S., Beskok, A., Qian, S.: Size dependent surface charge properties of silica nanoparticles. J. Phys. Chem. C 118(4), 1836–1842 (2014)

    Google Scholar 

  162. Durantie, E., Vanhecke, D., Rodriguez-Lorenzo, L., Delhaes, F., Balog, S., Septiadi, D., Bourquin, J., Petri-Fink, A., Rothen-Rutishauser, B.: Biodistribution of single and aggregated gold nanoparticles exposed to the human lung epithelial tissue barrier at the air-liquid interface. Part. Fibre Toxicol. 14(1), 49 (2017)

    Google Scholar 

  163. Balog, S., Rodriguez-Lorenzo, L., Monnier, C.A., Michen, B., Obiols-Rabasa, M., Casal-Dujat, L., Rothen-Rutishauser, B., Petri-Fink, A., Schurtenberger, P.: Dynamic depolarized light scattering of small round plasmonic nanoparticles: when imperfection is only perfect. J. Phys. Chem. C 118(31), 17968–17974 (2014)

    Google Scholar 

  164. Hirsch, V., Kinnear, C., Rodriguez-Lorenzo, L., Monnier, C.A., Rothen-Rutishauser, B., Balog, S., Petri-Fink, A.: In vitro dosimetry of agglomerates. Nanoscale 6(13), 7325–7331 (2014)

    ADS  Google Scholar 

  165. Pal, N., Verma, S.D., Singh, M.K., Sen, S.: Fluorescence correlation spectroscopy: an efficient tool for measuring size, size-distribution and polydispersity of microemulsion droplets in solution. Anal. Chem. 83(20), 7736–7744 (2011)

    Google Scholar 

  166. Shang, L., Nienhaus, G.U.: In situ characterization of protein adsorption onto nanoparticles by fluorescence correlation spectroscopy. Acc. Chem. Res. 50(2), 387–395 (2017)

    Google Scholar 

  167. Milosevic, A.M., Rodriguez-Lorenzo, L., Balog, S., Monnier, C.A., Petri-Fink, A., Rothen-Rutishauser, B.: Assessing the stability of fluorescently encoded nanoparticles in lysosomes by using complementary methods. Angew. Chem. Int. Ed. Engl. 56(43), 13382–13386 (2017)

    Google Scholar 

  168. Silvestri, A., Di Silvio, D., Llarena, I., Murray, R.A., Marelli, M., Lay, L., Polito, L., Moya, S.E.: Influence of surface coating on the intracellular behaviour of gold nanoparticles: a fluorescence correlation spectroscopy study. Nanoscale 9(38), 14730–14739 (2017)

    Google Scholar 

  169. Yang, W., Lu, J., Gilbert, E.P., Knott, R., He, L., Cheng, W.: Probing soft corona structures of DNA-capped nanoparticles by small angle neutron scattering. J. Phys. Chem. C 119(32), 18773–18778 (2015)

    Google Scholar 

  170. Camarero-Espinosa, S., Endes, C., Mueller, S., Petri-Fink, A., Rothen-Rutishauser, B., Weder, C., Clift, M.J.D., Foster, E.J.: Elucidating the potential biological impact of cellulose nanocrystals. Fibers 4(3) (2016)

    Google Scholar 

  171. Kinnear, C., Balog, S., Rothen-Rutishauser, B., Petri-Fink, A.: Thermally reversible self-assembly of nanoparticles via polymer crystallization. Macromol. Rapid Commun. 35(23), 2012–2017 (2014)

    Google Scholar 

  172. Dorofeev, G.A., Streletskii, A.N., Povstugar, I.V., Protasov, A.V., Elsukov, E.P.: Determination of nanoparticle sizes by X-ray diffraction. Colloid J. 74(6), 675–685 (2012)

    Google Scholar 

  173. Urban, D.A., Milosevic, A.M., Bossert, D., Crippa, F., Moore, T.L., Geers, C., Balog, S., Rothen-Rutishauser, B., Petri-Fink, A.: Taylor dispersion of inorganic nanoparticles and comparison to dynamic light scattering and transmission electron microscopy. Colloid Interface Sci. Commun. 22, 29–33 (2018)

    Google Scholar 

  174. Balog, S., Urban, D.A., Milosevic, A.M., Crippa, F., Rothen-Rutishauser, B., Petri-Fink, A.: Taylor dispersion of nanoparticles. J. Nanopart. Res. 19(8) (2017)

    Google Scholar 

  175. Zhang, D., Neumann, O., Wang, H., Yuwono, V.M., Barhoumi, A., Perham, M., Hartgerink, J.D., Wittung-Stafshede, P., Halas, N.J.: Gold nanoparticles can induce the formation of protein-based aggregates at physiological pH. Nano Lett. 9(2), 666–671 (2009)

    ADS  Google Scholar 

  176. Bekdemir, A., Stellacci, F.: A centrifugation-based physicochemical characterization method for the interaction between proteins and nanoparticles. Nat. Commun. 7, 13121 (2016)

    ADS  Google Scholar 

  177. Walter, J., Löhr, K., Karabudak, E., Reis, W., Mikhael, J., Peukert, W., Wohlleben, W., Cölfen, H.: Multidimensional analysis of nanoparticles with highly disperse properties using multiwavelength analytical ultracentrifugation. ACS Nano 8(9), 8871–8886 (2014)

    Google Scholar 

  178. Ashby, J., Pan, S., Zhong, W.: Size and surface functionalisation of iron oxide nanoparticles influence the composition and dynamic nature of their protein corona. ACS Appl. Mater. Interfaces 6(17), 15412–15419 (2014)

    Google Scholar 

  179. Zook, J.M., Rastogi, V., MacCuspie, R.I., Keene, A.M., Fagan, J.: Measuring agglomerate size distribution and dependence of localized surface plasmon resonance absorbance on gold nanoparticle agglomerate size using analytical ultracentrifugation. ACS Nano 5(10), 8070–8079 (2011)

    Google Scholar 

  180. Planken, K.L., Colfen, H.: Analytical ultracentrifugation of colloids. Nanoscale 2(10), 1849–1869 (2010)

    ADS  Google Scholar 

  181. Gigault, J., Pettibone, J.M., Schmitt, C., Hackley, V.A.: Rational strategy for characterization of nanoscale particles by asymmetric-flow field flow fractionation: a tutorial. Anal. Chim. Acta 809, 9–24 (2014)

    Google Scholar 

  182. Kozak, D., Anderson, W., Vogel, R., Trau, M.: Advances in resistive pulse sensors: devices bridging the void between molecular and microscopic detection. Nano Today 6(5), 531–545 (2011)

    Google Scholar 

  183. Blundell, E.L.C.J., Healey, M.J., Holton, E., Sivakumaran, M., Manstana, S., Platt, M.: Characterisation of the protein corona using tunable resistive pulse sensing: determining the change and distribution of a particle’s surface charge. Anal. Bioanal. Chem. 408(21), 5757–5768 (2016)

    Google Scholar 

  184. Sikora, A., Shard, A.G., Minelli, C.: Size and ζ-potential measurement of silica nanoparticles in serum using tunable resistive pulse sensing. Langmuir 32(9), 2216–2224 (2016)

    Google Scholar 

  185. Cipelletti, L., Biron, J.-P., Martin, M., Cottet, H.: Polydispersity analysis of taylor dispersion data: the cumulant method. Anal. Chem. 86(13), 6471–6478 (2014)

    Google Scholar 

  186. Balog, S.: Taylor dispersion of polydisperse nanoclusters and nanoparticles: modeling, simulation, and analysis. Anal. Chem. (2018)

    Google Scholar 

  187. Dominguez, D., Alhusain, M., Alharbi, N., Bernussi, A., Grave de Peralta, L.: Fourier plane imaging microscopy for detection of plasmonic crystals with periods beyond the optical diffraction limit, vol. 10 (2015)

    Google Scholar 

  188. Gustafsson, M.G.L.: Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc. 198(2), 82–87 (2000)

    Google Scholar 

  189. Chang, B.-J., Lin, S.H., Chou, L.-J., Chiang, S.-Y.: Subdiffraction scattered light imaging of gold nanoparticles using structured illumination. Opt. Lett. 36(24), 4773–4775 (2011)

    ADS  Google Scholar 

  190. Vainrub, A., Pustovyy, O., Vodyanoy, V.: Resolution of 90 nm (λ/5) in an optical transmission microscope with an annular condenser. Opt. Lett. 31(19), 2855–2857 (2006)

    ADS  Google Scholar 

  191. Guttenberg, M., Bezerra, L., Neu-Baker, N.M., del Pilar Sosa Peña, M., Elder, A., Oberdörster, G., Brenner, S.A.: Biodistribution of inhaled metal oxide nanoparticles mimicking occupational exposure: a preliminary investigation using enhanced darkfield microscopy. J. Biophotonics 9(10), 987–993 (2016)

    Google Scholar 

  192. Peña, M.D.P.S., Gottipati, A., Tahiliani, S., Neu-Baker, N.M., Frame, M.D., Friedman, A.J., Brenner, S.A.: Hyperspectral imaging of nanoparticles in biological samples: simultaneous visualization and elemental identification. Microsc. Res. Tech. 79(5), 349–358 (2016)

    Google Scholar 

  193. Monnier, C.A., Lattuada, M., Burnand, D., Crippa, F., Martinez-Garcia, J.C., Hirt, A.M., Rothen-Rutishauser, B., Bonmarin, M., Petri-Fink, A.: A lock-in-based method to examine the thermal signatures of magnetic nanoparticles in the liquid, solid and aggregated states. Nanoscale 8(27), 13321–13332 (2016)

    ADS  Google Scholar 

  194. Drasler, B., Vanhecke, D., Rodriguez-Lorenzo, L., Petri-Fink, A., Rothen-Rutishauser, B.: Quantifying nanoparticle cellular uptake: which method is best? Nanomedicine 12(10), 1095–1099 (2017)

    Google Scholar 

  195. Vanhecke, D., Rodriguez-Lorenzo, L., Clift, M.J.D., Blank, F., Petri-Fink, A., Rothen-Rutishauser, B.: Quantification of nanoparticles at the single-cell level: an overview about state-of-the-art techniques and their limitations. Nanomedicine 9(12), 1885–1900 (2014)

    Google Scholar 

  196. Thieme, J., McNult, I., Vogt, S., Paterson, D.: X-ray spectromicroscopy—a tool for environmental sciences. Environ. Sci. Technol. 41(20), 6885–6889 (2007)

    ADS  Google Scholar 

  197. Lawrence, J., Dynes, J., Korber, D., Swerhone, G., Leppard, G., Hitchcock, A.P.: Monitoring the fate of copper nanoparticles in river biofilms using scanning transmission X-ray microscopy (STXM), vol. 329, pp. 18–25 (2011)

    Google Scholar 

  198. Takechi-Haraya, Y., Goda, Y., Sakai-Kato, K.: Imaging and size measurement of nanoparticles in aqueous medium by use of atomic force microscopy. Anal. Bioanal. Chem. 410(5), 1525–1531 (2018)

    Google Scholar 

  199. Cazaux, J.: Material contrast in SEM: fermi energy and work function effects. Ultramicroscopy 110(3), 242–253 (2010)

    Google Scholar 

  200. Kisielowski, C., Freitag, B., Bischoff, M., van Lin, H., Lazar, S., Knippels, G., Tiemeijer, P., van der Stam, M., von Harrach, S., Stekelenburg, M., Haider, M., Uhlemann, S., Müller, H., Hartel, P., Kabius, B., Miller, D., Petrov, I., Olson, E.A., Donchev, T., Kenik, E.A., Lupini, A.R., Bentley, J., Pennycook, S.J., Anderson, I.M., Minor, A.M., Schmid, A.K., Duden, T., Radmilovic, V., Ramasse, Q.M., Watanabe, M., Erni, R., Stach, E.A., Denes, P., Dahmen, U.: Detection of single atoms and buried defects in three dimensions by aberration-corrected electron microscope with 0.5-Å information limit. Microsc. Microanal. 14(5), 469–477 (2008)

    Google Scholar 

  201. Liu, J.: Scanning transmission electron microscopy and its application to the study of nanoparticles and nanoparticle systems. J. Electron. Microsc. 54(3), 251–278 (2005)

    Google Scholar 

  202. Michen, B., Geers, C., Vanhecke, D., Endes, C., Rothen-Rutishauser, B., Balog, S., Petri-Fink, A.: Avoiding drying-artifacts in transmission electron microscopy: characterizing the size and colloidal state of nanoparticles. Sci. Rep. 5 (2015)

    Google Scholar 

  203. Ahmad, N., Wang, G., Nelayah, J., Ricolleau, C., Alloyeau, D.: Exploring the formation of symmetric gold nanostars by liquid-cell transmission electron microscopy. Nano Lett. 17(7), 4194–4201 (2017)

    ADS  Google Scholar 

  204. Milosevic, A.M., Rodriguez-Lorenzo, L., Balog, S., Monnier, C.A., Petri-Fink, A., Rothen-Rutishauser, B.: Assessing the stability of fluorescently encoded nanoparticles in lysosomes by using complementary methods. Angew. Chem. Int. Ed. 56(43), 13382–13386 (2017)

    Google Scholar 

  205. Dillon, J.C.K., Bezerra, L., del Pilar Sosa Peña, M., Neu-Baker, N.M., Brenner, S.A.: Hyperspectral data influenced by sample matrix: the importance of building relevant reference spectral libraries to map materials of interest. Microsc. Res. Tech. 80(5), 462–470 (2017)

    Google Scholar 

  206. Mühlfeld, C., Rothen-Rutishauser, B., Vanhecke, D., Blank, F., Gehr, P., Ochs, M.: Visualization and quantitative analysis of nanoparticles in the respiratory tract by transmission electron microscopy. Part. Fibre Toxicol. 4(1), 11 (2007)

    Google Scholar 

  207. Gundersen, H.J.G., Jensen, E.B.: The efficiency of systematic sampling in stereology and its prediction. J. Microsc. 147(3), 229–263 (1987)

    Google Scholar 

  208. Slack, S.M., Horbett, T.A.: The Vroman effect. In: Proteins at Interfaces II, American Chemical Society, vol. 602, pp. 112–128 (1995)

    Google Scholar 

  209. Casals, E., Pfaller, T., Duschl, A., Oostingh, G.J., Puntes, V.: Time evolution of the nanoparticle protein corona. ACS Nano 4(7), 3623–3632 (2010)

    Google Scholar 

  210. Vroman, L.: Effect of adsorbed proteins on the wettability of hydrophilic and hydrophobic solids. Nature 196, 476 (1962)

    ADS  Google Scholar 

  211. Li, T., Senesi, A.J., Lee, B.: Small angle X-ray scattering for nanoparticle research. Chem. Rev. 116(18), 11128–11180 (2016)

    Google Scholar 

  212. Fong, W.K., Salentinig, S., Prestidge, C.A., Mezzenga, R., Hawley, A., Boyd, B.J.: Generation of geometrically ordered lipid-based liquid-crystalline nanoparticles using biologically relevant enzymatic processing. Langmuir 30(19), 5373–5377 (2014)

    Google Scholar 

  213. Warren, D.B., Anby, M.U., Hawley, A., Boyd, B.J.: Real time evolution of liquid crystalline nanostructure during the digestion of formulation lipids using synchrotron small-angle X-ray scattering. Langmuir 27(15), 9528–9534 (2011)

    Google Scholar 

  214. Hummer, A.A., Rompel, A.: The use of X-ray absorption and synchrotron based micro-X-ray fluorescence spectroscopy to investigate anti-cancer metal compounds in vivo and in vitro. Metallomics 5(6), 597–614 (2013)

    Google Scholar 

  215. Wang, B., Feng, W., Chai, Z., Zhao, Y.: Probing the interaction at nano-bio interface using synchrotron radiation-based analytical techniques. Sci. China Chem. 58(5), 768–779 (2015)

    Google Scholar 

  216. Ilinski, P., Lai, B., Cai, Z., Yun, W., Legnini, D., Talarico, T., Cholewa, M., Webster, L.K., Deacon, G.B., Rainone, S., Phillips, D.R., Stampfl, A.P.J.: The direct mapping of the uptake of platinum anticancer agents in individual human ovarian adenocarcinoma cells using a hard X-ray microprobe. Cancer Res. 63(8), 1776–1779 (2003)

    Google Scholar 

  217. Wang, B., Yin, J.-J., Zhou, X., Kurash, I., Chai, Z., Zhao, Y., Feng, W.: Physicochemical origin for free radical generation of iron oxide nanoparticles in biomicroenvironment: catalytic activities mediated by surface chemical states. J. Phys. Chem. C 117(1), 383–392 (2013)

    Google Scholar 

  218. Wang, L., Li, J., Pan, J., Jiang, X., Ji, Y., Li, Y., Qu, Y., Zhao, Y., Wu, X., Chen, C.: Revealing the binding structure of the protein corona on gold nanorods using synchrotron radiation-based techniques: understanding the reduced damage in cell membranes. JACS 135(46), 17359–17368 (2013)

    Google Scholar 

  219. Zhong, J., Song, L., Meng, J., Gao, B., Chu, W., Xu, H., Luo, Y., Guo, J., Marcelli, A., Xie, S., Wu, Z.: Bio-nano interaction of proteins adsorbed on single-walled carbon nanotubes. Carbon 47(4), 967–973 (2009)

    Google Scholar 

  220. Robinson, I.: Nanoparticle structure by coherent X-ray diffraction. J. Phys. Soc. Jpn. 82(2), 021012 (2012)

    ADS  Google Scholar 

  221. Li, X., Chiu, C.-Y., Wang, H.-J., Kassemeyer, S., Botha, S., Shoeman, R.L., Lawrence, R.M., Kupitz, C., Kirian, R., James, D., Wang, D., Nelson, G., Messerschmidt, M., Boutet, S., Williams, G.J., Hartmann, E., Jafarpour, A., Foucar, L.M., Barty, A., Chapman, H., Liang, M., Menzel, A., Wang, F., Basu, S., Fromme, R., Doak, R.B., Fromme, P., Weierstall, U., Huang, M.H., Spence, J.C.H., Schlichting, I., Hogue, B.G., Liu, H.: Diffraction data of core-shell nanoparticles from an X-ray free electron laser. Sci. Data 4, 170048 (2017)

    Google Scholar 

  222. Whitesides, G.M.: The origins and the future of microfluidics. Nature 442, 368 (2006)

    ADS  Google Scholar 

  223. Song, Y., Hormes, J., Kumar, C.S.S.R.: Microfluidic synthesis of nanomaterials. Small 4(6), 698–711 (2008)

    Google Scholar 

  224. Salafi, T., Zeming, K.K., Zhang, Y.: Advancements in microfluidics for nanoparticle separation. Lab Chip 17(1), 11–33 (2017)

    Google Scholar 

  225. Valencia, P.M., Farokhzad, O.C., Karnik, R., Langer, R.: Microfluidic technologies for accelerating the clinical translation of nanoparticles. Nat. Nanotechnol. 7(10), 623–629 (2012)

    ADS  Google Scholar 

  226. Björnmalm, M., Yan, Y., Caruso, F.: Engineering and evaluating drug delivery particles in microfluidic devices. J. Contr. Release 190, 139–149 (2014)

    Google Scholar 

  227. Lo Giudice, M.C., Herda, L.M., Polo, E., Dawson, K.A.: In situ characterization of nanoparticle biomolecular interactions in complex biological media by flow cytometry. Nat. Commun. 7, 13475 (2016)

    ADS  Google Scholar 

  228. Sun, J., Xianyu, Y., Jiang, X.: Point-of-care biochemical assays using gold nanoparticle-implemented microfluidics. Chem. Soc. Rev. 43(17), 6239–6253 (2014)

    Google Scholar 

  229. Fan, X., White, I.M.: Optofluidic microsystems for chemical and biological analysis. Nat. Photonics 5, 591 (2011)

    ADS  Google Scholar 

  230. Varghese, S.S., Zhu, Y., Davis, T.J., Trowell, S.C.: FRET for lab-on-a-chip devices—current trends and future prospects. Lab Chip 10(11), 1355–1364 (2010)

    Google Scholar 

  231. Dannhauser, D., Romeo, G., Causa, F., De Santo, I., Netti, P.A.: Multiplex single particle analysis in microfluidics. Analyst 139(20), 5239–5246 (2014)

    ADS  Google Scholar 

  232. Stehle, R., Goerigk, G., Wallacher, D., Ballauff, M., Seiffert, S.: Small-angle X-ray scattering in droplet-based microfluidics. Lab Chip 13(8), 1529–1537 (2013)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Swiss National Science Foundation through the National Center of Competence in Research Bio-Inspired Materials (WKF through the Research Program for Women in Science). The authors acknowledge financial support of the Swiss National Science Foundation (ML through grant number PP00P2_159258, BRR through grant number 310030_159847/1), the Adolphe Merkle Foundation, and the University of Fribourg. LRL acknowledges financial support from the Marie Curie COFUND Action (600375. NanoTRAINforGrowth).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alke Petri-Fink .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fong, WK. et al. (2019). Nanoparticle Behaviour in Complex Media: Methods for Characterizing Physicochemical Properties, Evaluating Protein Corona Formation, and Implications for Biological Studies. In: Gehr, P., Zellner, R. (eds) Biological Responses to Nanoscale Particles. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-12461-8_5

Download citation

Publish with us

Policies and ethics