Skip to main content

Calcium Signaling During Brain Aging and Its Influence on the Hippocampal Synaptic Plasticity

  • Chapter
  • First Online:
Calcium Signaling

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1131))

Abstract

Calcium (Ca2+) ions are highly versatile intracellular signaling molecules and are universal second messenger for regulating a variety of cellular and physiological functions including synaptic plasticity. Ca2+ homeostasis in the central nervous system endures subtle dysregulation with advancing age. Research has provided abundant evidence that brain aging is associated with altered neuronal Ca2+ regulation and synaptic plasticity mechanisms. Much of the work has focused on the hippocampus, a brain region critically involved in learning and memory, which is particularly susceptible to dysfunction during aging. The current chapter takes a specific perspective, assessing various Ca2+ sources and the influence of aging on Ca2+ sources and synaptic plasticity in the hippocampus. Integrating the knowledge of the complexity of age-related alterations in neuronal Ca2+ signaling and synaptic plasticity mechanisms will positively shape the development of highly effective therapeutics to treat brain disorders including cognitive impairment associated with aging and neurodegenerative disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carafoli E (2002) Calcium signaling: a tale for all seasons. Proc Natl Acad Sci U S A 99(3):1115–1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Capiod T (2016) Extracellular calcium has multiple targets to control cell proliferation. Adv Exp Med Biol 898:133–156

    Article  CAS  PubMed  Google Scholar 

  3. Clapham DE (2007) Calcium signaling. Cell 131(6):1047–1058

    Article  CAS  PubMed  Google Scholar 

  4. Toth AB, Shum AK, Prakriya M (2016) Regulation of neurogenesis by calcium signaling. Cell Calcium 59(2–3):124–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Berridge MJ (2012) Calcium signalling remodelling and disease. Biochem Soc Trans 40(2):297–309

    Article  CAS  PubMed  Google Scholar 

  6. Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1(1):11–21

    Article  CAS  PubMed  Google Scholar 

  7. Orrenius S, Zhivotovsky B, Nicotera P (2003) Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 4(7):552–565

    Article  CAS  PubMed  Google Scholar 

  8. Rizzuto R (2001) Intracellular Ca2+ pools in neuronal signalling. Curr Opin Neurobiol 11(3):306–311

    Article  CAS  PubMed  Google Scholar 

  9. Berridge MJ (1998) Neuronal calcium signaling. Neuron 21(1):13–26

    CAS  PubMed  Google Scholar 

  10. Geiger JR, Melcher T, Koh DS, Sakmann B, Seeburg PH, Jonas P et al (1995) Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS. Neuron 15(1):193–204

    Article  CAS  PubMed  Google Scholar 

  11. Ghosh A, Ginty DD, Bading H, Greenberg ME (1994) Calcium regulation of gene expression in neuronal cells. J Neurobiol 25(3):294–303

    Article  CAS  PubMed  Google Scholar 

  12. Parekh AB, Putney JW Jr (2005) Store-operated calcium channels. Physiol Rev 85(2):757–810

    Article  CAS  PubMed  Google Scholar 

  13. Prakriya M, Lewis RS (2015) Store-operated calcium channels. Physiol Rev 95(4):1383–1436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Clapham DE (2003) TRP channels as cellular sensors. Nature 426(6966):517–524

    Article  CAS  PubMed  Google Scholar 

  15. Moran MM, Xu H, Clapham DE (2004) TRP ion channels in the nervous system. Curr Opin Neurobiol 14(3):362–369

    Article  CAS  PubMed  Google Scholar 

  16. Ramsey IS, Delling M, Clapham DE (2006) An introduction to TRP channels. Annu Rev Physiol 68:619–647

    Article  CAS  PubMed  Google Scholar 

  17. Bai JZ, Lipski J (2014) Involvement of TRPV4 channels in Abeta(40)-induced hippocampal cell death and astrocytic Ca2+ signalling. Neurotoxicology 41:64–72

    Article  CAS  PubMed  Google Scholar 

  18. Hartmann J, Henning HA, Konnerth A (2011) mGluR1/TRPC3-mediated synaptic transmission and calcium signaling in mammalian central neurons. Cold Spring Harb Perspect Biol 3(4):pii: a006726

    Article  CAS  Google Scholar 

  19. Zhang H, Sun S, Wu L, Pchitskaya E, Zakharova O, Fon Tacer K et al (2016) Store-operated Calcium Channel complex in postsynaptic spines: a new therapeutic target for Alzheimer’s disease treatment. J Neurosci 36(47):11837–11850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cavazzini M, Bliss T, Emptage N (2005) Ca2+ and synaptic plasticity. Cell Calcium 38(3–4):355–367

    Article  CAS  PubMed  Google Scholar 

  21. Foster TC (1999) Involvement of hippocampal synaptic plasticity in age-related memory decline. Brain Res Rev 30(3):236–249

    Article  CAS  PubMed  Google Scholar 

  22. Foster TC (2007) Calcium homeostasis and modulation of synaptic plasticity in the aged brain. Aging Cell 6(3):319–325

    Article  CAS  PubMed  Google Scholar 

  23. Bear MF, Abraham WC (1996) Long-term depression in hippocampus. Annu Rev Neurosci 19:437–462

    Article  CAS  PubMed  Google Scholar 

  24. Malenka RC, Bear MF (2004) LTP and LTD: an embarrassment of riches. Neuron 44(1):5–21

    Article  CAS  PubMed  Google Scholar 

  25. Collingridge G (1987) Synaptic plasticity. The role of NMDA receptors in learning and memory. Nature 330(6149):604–605

    Article  CAS  PubMed  Google Scholar 

  26. Collingridge GL, Bliss TV (1995) Memories of NMDA receptors and LTP. Trends Neurosci 18(2):54–56

    Article  CAS  PubMed  Google Scholar 

  27. Collingridge GL, Peineau S, Howland JG, Wang YT (2010) Long-term depression in the CNS. Nat Rev Neurosci 11(7):459–473

    Article  CAS  PubMed  Google Scholar 

  28. Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361(6407):31–39

    Article  CAS  PubMed  Google Scholar 

  29. Kumar A (2011) Long-term potentiation at CA3-CA1 hippocampal synapses with special emphasis on aging, disease, and stress. Front Aging Neurosci 3:7

    Article  PubMed  PubMed Central  Google Scholar 

  30. Muller W, Connor JA (1991) Dendritic spines as individual neuronal compartments for synaptic Ca2+ responses. Nature 354(6348):73–76

    Article  CAS  PubMed  Google Scholar 

  31. Nicoll RA, Malenka RC (1999) Expression mechanisms underlying NMDA receptor-dependent long-term potentiation. Ann N Y Acad Sci 868:515–525

    Article  CAS  PubMed  Google Scholar 

  32. Conti R, Lisman J (2002) A large sustained Ca2+ elevation occurs in unstimulated spines during the LTP pairing protocol but does not change synaptic strength. Hippocampus 12(5):667–679

    Article  CAS  PubMed  Google Scholar 

  33. Matsuzaki M, Honkura N, Ellis-Davies GC, Kasai H (2004) Structural basis of long-term potentiation in single dendritic spines. Nature 429(6993):761–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lisman J, Yasuda R, Raghavachari S (2012) Mechanisms of CaMKII action in long-term potentiation. Nat Rev Neurosci 13(3):169–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chang JY, Parra-Bueno P, Laviv T, Szatmari EM, Lee SR, Yasuda R (2017) CaMKII autophosphorylation is necessary for optimal integration of Ca2+ signals during LTP induction, but not maintenance. Neuron 94(4):800–808 e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dudek SM, Bear MF (1992) Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade. Proc Natl Acad Sci U S A 89(10):4363–4367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dunwiddie T, Lynch G (1978) Long-term potentiation and depression of synaptic responses in the rat hippocampus: localization and frequency dependency. J Physiol 276:353–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kumar A, Foster TC (2005) Intracellular calcium stores contribute to increased susceptibility to LTD induction during aging. Brain Res 1031(1):125–128

    Article  CAS  PubMed  Google Scholar 

  39. Norris CM, Halpain S, Foster TC (1998) Reversal of age-related alterations in synaptic plasticity by blockade of L-type Ca2+ channels. J Neurosci 18(9):3171–3179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Artola A, Singer W (1993) Long-term depression of excitatory synaptic transmission and its relationship to long-term potentiation. Trends Neurosci 16(11):480–487

    Article  CAS  PubMed  Google Scholar 

  41. Lee HK, Kameyama K, Huganir RL, Bear MF (1998) NMDA induces long-term synaptic depression and dephosphorylation of the GluR1 subunit of AMPA receptors in hippocampus. Neuron 21(5):1151–1162

    Article  CAS  PubMed  Google Scholar 

  42. Bienenstock EL, Cooper LN, Munro PW (1982) Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci 2(1):32–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Khachaturian ZS (1989) Calcium, membranes, aging, and Alzheimer’s disease. Introduction and overview. Ann N Y Acad Sci 568:1–4

    Article  CAS  PubMed  Google Scholar 

  44. Landfield PW, Pitler TA (1984) Prolonged Ca2+−dependent afterhyperpolarizations in hippocampal neurons of aged rats. Science 226(4678):1089–1092

    Article  CAS  PubMed  Google Scholar 

  45. Gibson GE, Peterson C (1987) Calcium and the aging nervous system. Neurobiol Aging 8(4):329–343

    Article  CAS  PubMed  Google Scholar 

  46. Disterhoft JF, Thompson LT, Moyer JR, Mogul DJ (1996) Calcium-dependent afterhyperpolarization and learning in young and aging hippocampus. Life Sci 59(5–6):413–420

    Article  CAS  PubMed  Google Scholar 

  47. Alzheimer’s Association Calcium Hypothesis W (2017) Calcium hypothesis of Alzheimer’s disease and brain aging: a framework for integrating new evidence into a comprehensive theory of pathogenesis. Alzheimers Dement 13(2):178–182 e17

    Article  Google Scholar 

  48. Frazier HN, Maimaiti S, Anderson KL, Brewer LD, Gant JC, Porter NM et al (2017) Calcium’s role as nuanced modulator of cellular physiology in the brain. Biochem Biophys Res Commun 483(4):981–987

    Article  CAS  PubMed  Google Scholar 

  49. Gibson GE, Thakkar A (2017) Interactions of mitochondria/metabolism and calcium regulation in Alzheimer’s disease: a calcinist point of view. Neurochem Res 42(6):1636–1648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pchitskaya E, Popugaeva E, Bezprozvanny I (2018) Calcium signaling and molecular mechanisms underlying neurodegenerative diseases. Cell Calcium 70:87–94

    Article  CAS  PubMed  Google Scholar 

  51. Sompol P, Norris CM (2018) Ca2+, Astrocyte activation and calcineurin/NFAT signaling in age-related neurodegenerative diseases. Front Aging Neurosci 10:199

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Vardjan N, Verkhratsky A, Zorec R (2017) Astrocytic pathological calcium homeostasis and impaired vesicle trafficking in neurodegeneration. Int J Mol Sci 18(2):358

    Article  PubMed Central  CAS  Google Scholar 

  53. Verkhratsky A, Rodriguez-Arellano JJ, Parpura V, Zorec R (2017) Astroglial calcium signalling in Alzheimer’s disease. Biochem Biophys Res Commun 483(4):1005–1012

    Article  CAS  PubMed  Google Scholar 

  54. Zorec R, Parpura V, Verkhratsky A (2018) Astroglial vesicular network: evolutionary trends, physiology and pathophysiology. Acta Physiol (Oxford) 222(2)

    Google Scholar 

  55. Gant JC, Blalock EM, Chen KC, Kadish I, Thibault O, Porter NM et al (2018) FK506-binding protein 12.6/1b, a negative regulator of [Ca2+], rescues memory and restores genomic regulation in the Hippocampus of aging rats. J Neurosci 38(4):1030–1041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gant JC, Chen KC, Kadish I, Blalock EM, Thibault O, Porter NM et al (2015) Reversal of aging-related neuronal Ca2+ dysregulation and cognitive impairment by delivery of a transgene encoding FK506-binding protein 12.6/1b to the Hippocampus. J Neurosci 35(30):10878–10887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Toescu EC, Verkhratsky A (2007) The importance of being subtle: small changes in calcium homeostasis control cognitive decline in normal aging. Aging Cell 6(3):267–273

    Article  CAS  PubMed  Google Scholar 

  58. Murchison D, Griffith WH (2007) Calcium buffering systems and calcium signaling in aged rat basal forebrain neurons. Aging Cell 6(3):297–305

    Article  CAS  PubMed  Google Scholar 

  59. Thibault O, Gant JC, Landfield PW (2007) Expansion of the calcium hypothesis of brain aging and Alzheimer’s disease: minding the store. Aging Cell 6(3):307–317

    Article  CAS  PubMed  Google Scholar 

  60. Foster TC, Norris CM (1997) Age-associated changes in Ca2+−dependent processes: relation to hippocampal synaptic plasticity. Hippocampus 7(6):602–612

    Article  CAS  PubMed  Google Scholar 

  61. Rapp PR, Gallagher M (1996) Preserved neuron number in the hippocampus of aged rats with spatial learning deficits. Proc Natl Acad Sci U S A 93(18):9926–9930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. West MJ (1993) Regionally specific loss of neurons in the aging human hippocampus. Neurobiol Aging 14(4):287–293

    Article  CAS  PubMed  Google Scholar 

  63. Foster TC (2012) Dissecting the age-related decline on spatial learning and memory tasks in rodent models: N-methyl-D-aspartate receptors and voltage-dependent Ca(2)(+) channels in senescent synaptic plasticity. Prog Neurobiol 96(3):283–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kumar A, Foster TC (2018) Alteration in NMDA receptor mediated glutamatergic neurotransmission in the Hippocampus during senescence. Neurochem Res 44(1):38–48

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  65. Thibault O, Landfield PW (1996) Increase in single L-type calcium channels in hippocampal neurons during aging. Science 272(5264):1017–1020

    Article  CAS  PubMed  Google Scholar 

  66. Tombaugh GC, Rowe WB, Rose GM (2005) The slow afterhyperpolarization in hippocampal CA1 neurons covaries with spatial learning ability in aged Fisher 344 rats. J Neurosci 25(10):2609–2616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Murphy GG, Rahnama NP, Silva AJ (2006) Investigation of age-related cognitive decline using mice as a model system: behavioral correlates. Am J Geriatr Psychiatry 14(12):1004–1011

    Article  PubMed  Google Scholar 

  68. Abu-Omar N, Das J, Szeto V, Feng ZP (2018) Neuronal ryanodine receptors in development and aging. Mol Neurobiol 55(2):1183–1192

    Article  CAS  PubMed  Google Scholar 

  69. Catterall WA (2000) Structure and regulation of voltage-gated Ca2+ channels. Annu Rev Cell Dev Biol 16:521–555

    Article  CAS  PubMed  Google Scholar 

  70. Dolphin AC (2006) A short history of voltage-gated calcium channels. Br J Pharmacol 147(Suppl 1):S56–S62

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Jones SW (1998) Overview of voltage-dependent calcium channels. J Bioenerg Biomembr 30(4):299–312

    Article  CAS  PubMed  Google Scholar 

  72. Kang MG, Chen CC, Felix R, Letts VA, Frankel WN, Mori Y et al (2001) Biochemical and biophysical evidence for gamma 2 subunit association with neuronal voltage-activated Ca2+ channels. J Biol Chem 276(35):32917–32924

    Article  CAS  PubMed  Google Scholar 

  73. Bertolino M, Llinas RR (1992) The central role of voltage-activated and receptor-operated calcium channels in neuronal cells. Annu Rev Pharmacol Toxicol 32:399–421

    Article  CAS  PubMed  Google Scholar 

  74. Veselovskii NS, Fedulova SA (1983) 2 types of calcium channels in the somatic membrane of spinal ganglion neurons in the rat. Dokl Akad Nauk SSSR 268(3):747–750

    CAS  PubMed  Google Scholar 

  75. Nowycky MC, Fox AP, Tsien RW (1985) Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature 316(6027):440–443

    Article  CAS  PubMed  Google Scholar 

  76. Bean BP (1989) Classes of calcium channels in vertebrate cells. Annu Rev Physiol 51:367–384

    Article  CAS  PubMed  Google Scholar 

  77. Carbone E, Lux HD (1984) A low voltage-activated, fully inactivating Ca channel in vertebrate sensory neurones. Nature 310(5977):501–502

    Article  CAS  PubMed  Google Scholar 

  78. Fedulova SA, Kostyuk PG, Veselovsky NS (1985) Two types of calcium channels in the somatic membrane of new-born rat dorsal root ganglion neurones. J Physiol 359:431–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Soong TW, Stea A, Hodson CD, Dubel SJ, Vincent SR, Snutch TP (1993) Structure and functional expression of a member of the low voltage-activated calcium channel family. Science 260(5111):1133–1136

    Article  CAS  PubMed  Google Scholar 

  80. Nilius B, Hess P, Lansman JB, Tsien RW (1985) A novel type of cardiac calcium channel in ventricular cells. Nature 316(6027):443–446

    Article  CAS  PubMed  Google Scholar 

  81. Campbell LW, Hao SY, Thibault O, Blalock EM, Landfield PW (1996) Aging changes in voltage-gated calcium currents in hippocampal CA1 neurons. J Neurosci 16(19):6286–6295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Brewer LD, Dowling AL, Curran-Rauhut MA, Landfield PW, Porter NM, Blalock EM (2009) Estradiol reverses a calcium-related biomarker of brain aging in female rats. J Neurosci 29(19):6058–6067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Herman JP, Chen KC, Booze R, Landfield PW (1998) Up-regulation of alpha1D Ca2+ channel subunit mRNA expression in the hippocampus of aged F344 rats. Neurobiol Aging 19(6):581–587

    Article  CAS  PubMed  Google Scholar 

  84. Veng LM, Mesches MH, Browning MD (2003) Age-related working memory impairment is correlated with increases in the L-type calcium channel protein alpha1D (Cav1.3) in area CA1 of the hippocampus and both are ameliorated by chronic nimodipine treatment. Brain Res Mol Brain Res 110(2):193–202

    Article  CAS  PubMed  Google Scholar 

  85. Chen KC, Blalock EM, Thibault O, Kaminker P, Landfield PW (2000) Expression of alpha 1D subunit mRNA is correlated with L-type Ca2+ channel activity in single neurons of hippocampal “zipper” slices. Proc Natl Acad Sci U S A 97(8):4357–4362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Nunez-Santana FL, Oh MM, Antion MD, Lee A, Hell JW, Disterhoft JF (2014) Surface L-type Ca2+ channel expression levels are increased in aged hippocampus. Aging Cell 13(1):111–120

    Article  CAS  PubMed  Google Scholar 

  87. Davare MA, Hell JW (2003) Increased phosphorylation of the neuronal L-type Ca2+ channel Ca(v)1.2 during aging. Proc Natl Acad Sci U S A 100(26):16018–16023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Norris CM, Halpain S, Foster TC (1998) Alterations in the balance of protein kinase/phosphatase activities parallel reduced synaptic strength during aging. J Neurophysiol 80(3):1567–1570

    Article  CAS  PubMed  Google Scholar 

  89. Norris CM, Blalock EM, Chen KC, Porter NM, Landfield PW (2002) Calcineurin enhances L-type Ca2+ channel activity in hippocampal neurons: increased effect with age in culture. Neuroscience 110(2):213–225

    Article  CAS  PubMed  Google Scholar 

  90. Lu CB, Hamilton JB, Powell AD, Toescu EC, Vreugdenhil M (2009) Effect of ageing on CA3 interneuron sAHP and gamma oscillations is activity-dependent. Neurobiol Aging 32(5):956–965. [epub ahead of print]

    Article  PubMed  CAS  Google Scholar 

  91. Foster TC (2005) Interaction of rapid signal transduction cascades and gene expression in mediating estrogen effects on memory over the life span. Front Neuroendocrinol 26(2):51–64

    Article  CAS  PubMed  Google Scholar 

  92. Foster TC, Kumar A (2002) Calcium dysregulation in the aging brain. Neuroscientist 8(4):297–301

    Article  CAS  PubMed  Google Scholar 

  93. Kumar A, Foster TC (2002) 17beta-estradiol benzoate decreases the AHP amplitude in CA1 pyramidal neurons. J Neurophysiol 88(2):621–626

    Article  CAS  PubMed  Google Scholar 

  94. Moyer JR Jr, Thompson LT, Black JP, Disterhoft JF (1992) Nimodipine increases excitability of rabbit CA1 pyramidal neurons in an age- and concentration-dependent manner. J Neurophysiol 68(6):2100–2109

    Article  CAS  PubMed  Google Scholar 

  95. Cull-Candy S, Brickley S, Farrant M (2001) NMDA receptor subunits: diversity, development and disease. Curr Opin Neurobiol 11(3):327–335

    Article  CAS  PubMed  Google Scholar 

  96. Kutsuwada T, Kashiwabuchi N, Mori H, Sakimura K, Kushiya E, Araki K et al (1992) Molecular diversity of the NMDA receptor channel. Nature 358(6381):36–41

    Article  CAS  PubMed  Google Scholar 

  97. Meguro H, Mori H, Araki K, Kushiya E, Kutsuwada T, Yamazaki M et al (1992) Functional characterization of a heteromeric NMDA receptor channel expressed from cloned cDNAs. Nature 357(6373):70–74

    Article  CAS  PubMed  Google Scholar 

  98. Monyer H, Sprengel R, Schoepfer R, Herb A, Higuchi M, Lomeli H et al (1992) Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science 256(5060):1217–1221

    Article  CAS  PubMed  Google Scholar 

  99. Moriyoshi K, Masu M, Ishii T, Shigemoto R, Mizuno N, Nakanishi S (1991) Molecular cloning and characterization of the rat NMDA receptor. Nature 354(6348):31–37

    Article  CAS  PubMed  Google Scholar 

  100. Kumar A (2015) NMDA receptor function during senescence: implication on cognitive performance. Front Neurosci 9:473

    PubMed  PubMed Central  Google Scholar 

  101. Laube B, Kuhse J, Betz H (1998) Evidence for a tetrameric structure of recombinant NMDA receptors. J Neurosci 18(8):2954–2961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Al-Hallaq RA, Jarabek BR, Fu Z, Vicini S, Wolfe BB, Yasuda RP (2002) Association of NR3A with the N-methyl-D-aspartate receptor NR1 and NR2 subunits. Mol Pharmacol 62(5):1119–1127

    Article  CAS  PubMed  Google Scholar 

  103. Schuler T, Mesic I, Madry C, Bartholomaus I, Laube B (2008) Formation of NR1/NR2 and NR1/NR3 heterodimers constitutes the initial step in N-methyl-D-aspartate receptor assembly. J Biol Chem 283(1):37–46

    Article  PubMed  CAS  Google Scholar 

  104. Sucher NJ, Akbarian S, Chi CL, Leclerc CL, Awobuluyi M, Deitcher DL et al (1995) Developmental and regional expression pattern of a novel NMDA receptor-like subunit (NMDAR-L) in the rodent brain. J Neurosci 15(10):6509–6520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Low CM, Wee KS (2010) New insights into the not-so-new NR3 subunits of N-methyl-D-aspartate receptor: localization, structure, and function. Mol Pharmacol 78(1):1–11

    Article  CAS  PubMed  Google Scholar 

  106. Chen PE, Geballe MT, Stansfeld PJ, Johnston AR, Yuan H, Jacob AL et al (2005) Structural features of the glutamate binding site in recombinant NR1/NR2A N-methyl-D-aspartate receptors determined by site-directed mutagenesis and molecular modeling. Mol Pharmacol 67(5):1470–1484

    Article  CAS  PubMed  Google Scholar 

  107. Garaschuk O, Schneggenburger R, Schirra C, Tempia F, Konnerth A (1996) Fractional Ca2+ currents through somatic and dendritic glutamate receptor channels of rat hippocampal CA1 pyramidal neurones. J Physiol 491(Pt 3):757–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Gonzales RA, Brown LM, Jones TW, Trent RD, Westbrook SL, Leslie SW (1991) N-methyl-D-aspartate mediated responses decrease with age in Fischer 344 rat brain. Neurobiol Aging 12(3):219–225

    Article  CAS  PubMed  Google Scholar 

  109. Pittaluga A, Fedele E, Risiglione C, Raiteri M (1993) Age-related decrease of the NMDA receptor-mediated noradrenaline release in rat hippocampus and partial restoration by D-cycloserine. Eur J Pharmacol 231(1):129–134

    Article  CAS  PubMed  Google Scholar 

  110. Barnes CA, Rao G, Shen J (1997) Age-related decrease in the N-methyl-D-aspartateR-mediated excitatory postsynaptic potential in hippocampal region CA1. Neurobiol Aging 18(4):445–452

    Article  CAS  PubMed  Google Scholar 

  111. Eckles-Smith K, Clayton D, Bickford P, Browning MD (2000) Caloric restriction prevents age-related deficits in LTP and in NMDA receptor expression. Brain Res Mol Brain Res 78(1–2):154–162

    Article  CAS  PubMed  Google Scholar 

  112. Magnusson KR (1998) The aging of the NMDA receptor complex. Front Biosci 3:e70–e80

    Article  CAS  PubMed  Google Scholar 

  113. Gore AC, Oung T, Woller MJ (2002) Age-related changes in hypothalamic gonadotropin-releasing hormone and N-methyl-D-aspartate receptor gene expression, and their regulation by oestrogen, in the female rat. J Neuroendocrinol 14(4):300–309

    Article  CAS  PubMed  Google Scholar 

  114. Liu P, Smith PF, Darlington CL (2008) Glutamate receptor subunits expression in memory-associated brain structures: regional variations and effects of aging. Synapse 62(11):834–841

    Article  CAS  PubMed  Google Scholar 

  115. Zhao X, Rosenke R, Kronemann D, Brim B, Das SR, Dunah AW et al (2009) The effects of aging on N-methyl-d-aspartate receptor subunits in the synaptic membrane and relationships to long-term spatial memory. Neuroscience 162(4):933–945

    Article  CAS  PubMed  Google Scholar 

  116. Bodhinathan K, Kumar A, Foster TC (2007) Oxidative stress decreases NMDA receptor function in the hippocampus of aged animals. Soc Neurosci Abstr:N18/256.8

    Google Scholar 

  117. Brim BL, Haskell R, Awedikian R, Ellinwood NM, Jin L, Kumar A et al (2013) Memory in aged mice is rescued by enhanced expression of the GluN2B subunit of the NMDA receptor. Behav Brain Res 238:211–226

    Article  CAS  PubMed  Google Scholar 

  118. Kumar A, Foster TC (2013) Linking redox regulation of NMDAR synaptic function to cognitive decline during aging. J Neurosci 33(40):15710–15715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Lee WH, Kumar A, Rani A, Foster TC (2014) Role of antioxidant enzymes in redox regulation of N-methyl-D-aspartate receptor function and memory in middle-aged rats. Neurobiol Aging 35(6):1459–1468

    Article  CAS  PubMed  Google Scholar 

  120. Kumar A, Rani A, Scheinert RB, Ormerod BK, Foster TC (2018) Nonsteroidal anti-inflammatory drug, indomethacin improves spatial memory and NMDA receptor function in aged animals. Neurobiol Aging 70:184–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Bonhaus DW, Perry WB, McNamara JO (1990) Decreased density, but not number, of N-methyl-D-aspartate, glycine and phencyclidine binding sites in hippocampus of senescent rats. Brain Res 532(1–2):82–86

    Article  CAS  PubMed  Google Scholar 

  122. Kito S, Miyoshi R, Nomoto T (1990) Influence of age on NMDA receptor complex in rat brain studied by in vitro autoradiography. J Histochem Cytochem 38(12):1725–1731

    Article  CAS  PubMed  Google Scholar 

  123. Magnusson KR (1995) Differential effects of aging on binding sites of the activated NMDA receptor complex in mice. Mech Ageing Dev 84(3):227–243

    Article  CAS  PubMed  Google Scholar 

  124. Magnusson KR, Kresge D, Supon J (2006) Differential effects of aging on NMDA receptors in the intermediate versus the dorsal hippocampus. Neurobiol Aging 27(2):324–333

    Article  CAS  PubMed  Google Scholar 

  125. Miyoshi R, Kito S, Doudou N, Nomoto T (1991) Influence of age on N-methyl-D-aspartate antagonist binding sites in the rat brain studied by in vitro autoradiography. Synapse 8(3):212–217

    Article  CAS  PubMed  Google Scholar 

  126. Tamaru M, Yoneda Y, Ogita K, Shimizu J, Nagata Y (1991) Age-related decreases of the N-methyl-D-aspartate receptor complex in the rat cerebral cortex and hippocampus. Brain Res 542(1):83–90

    Article  CAS  PubMed  Google Scholar 

  127. Wenk GL, Walker LC, Price DL, Cork LC (1991) Loss of NMDA, but not GABA-A, binding in the brains of aged rats and monkeys. Neurobiol Aging 12(2):93–98

    Article  CAS  PubMed  Google Scholar 

  128. Billard JM, Rouaud E (2007) Deficit of NMDA receptor activation in CA1 hippocampal area of aged rats is rescued by D-cycloserine. Eur J Neurosci 25(8):2260–2268

    Article  PubMed  Google Scholar 

  129. Das SR, Magnusson KR (2008) Relationship between mRNA expression of splice forms of the zeta1 subunit of the N-methyl-D-aspartate receptor and spatial memory in aged mice. Brain Res 1207:142–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Gazzaley AH, Weiland NG, McEwen BS, Morrison JH (1996) Differential regulation of NMDAR1 mRNA and protein by estradiol in the rat hippocampus. J Neurosci 16(21):6830–6838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Magnusson KR, Cotman CW (1993) Age-related changes in excitatory amino acid receptors in two mouse strains. Neurobiol Aging 14(3):197–206

    Article  CAS  PubMed  Google Scholar 

  132. Wenk GL, Barnes CA (2000) Regional changes in the hippocampal density of AMPA and NMDA receptors across the lifespan of the rat. Brain Res 885(1):1–5

    Article  CAS  PubMed  Google Scholar 

  133. Araki T, Kato H, Nagaki S, Shuto K, Fujiwara T, Itoyama Y (1997) Effects of vinconate on age-related alterations in [3H]MK-801, [3H]glycine, sodium-dependent D-[3H]aspartate, [3H]FK-506 and [3H]PN200-110 binding in rats. Mech Ageing Dev 95(1–2):13–29

    Article  CAS  PubMed  Google Scholar 

  134. Shimada A, Mukhin A, Ingram DK, London ED (1997) N-methyl-D-aspartate receptor binding in brains of rats at different ages. Neurobiol Aging 18(3):329–333

    Article  CAS  PubMed  Google Scholar 

  135. Ingram DK, Garofalo P, Spangler EL, Mantione CR, Odano I, London ED (1992) Reduced density of NMDA receptors and increased sensitivity to dizocilpine-induced learning impairment in aged rats. Brain Res 580(1–2):273–280

    Article  CAS  PubMed  Google Scholar 

  136. Topic B, Willuhn I, Palomero-Gallagher N, Zilles K, Huston JP, Hasenohrl RU (2007) Impaired maze performance in aged rats is accompanied by increased density of NMDA, 5-HT1A, and alpha-adrenoceptor binding in hippocampus. Hippocampus 17(1):68–77

    Article  CAS  PubMed  Google Scholar 

  137. Serra M, Ghiani CA, Foddi MC, Motzo C, Biggio G (1994) NMDA receptor function is enhanced in the hippocampus of aged rats. Neurochem Res 19(4):483–487

    Article  CAS  PubMed  Google Scholar 

  138. Magnusson KR (2000) Declines in mRNA expression of different subunits may account for differential effects of aging on agonist and antagonist binding to the NMDA receptor. J Neurosci 20(5):1666–1674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Liu F, Day M, Muniz LC, Bitran D, Arias R, Revilla-Sanchez R et al (2008) Activation of estrogen receptor-beta regulates hippocampal synaptic plasticity and improves memory. Nat Neurosci 11(3):334–343

    Article  CAS  PubMed  Google Scholar 

  140. Mesches MH, Gemma C, Veng LM, Allgeier C, Young DA, Browning MD et al (2004) Sulindac improves memory and increases NMDA receptor subunits in aged Fischer 344 rats. Neurobiol Aging 25(3):315–324

    Article  CAS  PubMed  Google Scholar 

  141. Adams MM, Morrison JH, Gore AC (2001) N-methyl-D-aspartate receptor mRNA levels change during reproductive senescence in the hippocampus of female rats. Exp Neurol 170(1):171–179

    Article  CAS  PubMed  Google Scholar 

  142. Sonntag WE, Bennett SA, Khan AS, Thornton PL, Xu X, Ingram RL et al (2000) Age and insulin-like growth factor-1 modulate N-methyl-D-aspartate receptor subtype expression in rats. Brain Res Bull 51(4):331–338

    Article  CAS  PubMed  Google Scholar 

  143. Magnusson KR, Bai L, Zhao X (2005) The effects of aging on different C-terminal splice forms of the zeta1(NR1) subunit of the N-methyl-d-aspartate receptor in mice. Brain Res Mol Brain Res 135(1–2):141–149

    Article  CAS  PubMed  Google Scholar 

  144. Martinez Villayandre B, Paniagua MA, Fernandez-Lopez A, Chinchetru MA, Calvo P (2004) Effect of vitamin E treatment on N-methyl-D-aspartate receptor at different ages in the rat brain. Brain Res 1028(2):148–155

    Article  CAS  PubMed  Google Scholar 

  145. Magnusson KR (2001) Influence of diet restriction on NMDA receptor subunits and learning during aging. Neurobiol Aging 22(4):613–627

    Article  CAS  PubMed  Google Scholar 

  146. Dumas TC (2005) Developmental regulation of cognitive abilities: modified composition of a molecular switch turns on associative learning. Prog Neurobiol 76(3):189–211

    Article  CAS  PubMed  Google Scholar 

  147. Massey PV, Johnson BE, Moult PR, Auberson YP, Brown MW, Molnar E et al (2004) Differential roles of NR2A and NR2B-containing NMDA receptors in cortical long-term potentiation and long-term depression. J Neurosci 24(36):7821–7828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Blanpied TA, Scott DB, Ehlers MD (2002) Dynamics and regulation of clathrin coats at specialized endocytic zones of dendrites and spines. Neuron 36(3):435–449

    Article  CAS  PubMed  Google Scholar 

  149. Lau CG, Zukin RS (2007) NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders. Nat Rev Neurosci 8(6):413–426

    Article  CAS  PubMed  Google Scholar 

  150. Hardingham GE, Fukunaga Y, Bading H (2002) Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat Neurosci 5(5):405–414

    Article  CAS  PubMed  Google Scholar 

  151. Vanhoutte P, Bading H (2003) Opposing roles of synaptic and extrasynaptic NMDA receptors in neuronal calcium signalling and BDNF gene regulation. Curr Opin Neurobiol 13(3):366–371

    Article  CAS  PubMed  Google Scholar 

  152. Heidinger V, Manzerra P, Wang XQ, Strasser U, Yu SP, Choi DW et al (2002) Metabotropic glutamate receptor 1-induced upregulation of NMDA receptor current: mediation through the Pyk2/Src-family kinase pathway in cortical neurons. J Neurosci 22(13):5452–5461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Wang LY, Orser BA, Brautigan DL, MacDonald JF (1994) Regulation of NMDA receptors in cultured hippocampal neurons by protein phosphatases 1 and 2A. Nature 369(6477):230–232

    Article  CAS  PubMed  Google Scholar 

  154. Ben-Ari Y, Aniksztejn L, Bregestovski P (1992) Protein kinase C modulation of NMDA currents: an important link for LTP induction. Trends Neurosci 15(9):333–339

    Article  CAS  PubMed  Google Scholar 

  155. Chen L, Huang LY (1992) Protein kinase C reduces Mg2+ block of NMDA-receptor channels as a mechanism of modulation. Nature 356(6369):521–523

    Article  CAS  PubMed  Google Scholar 

  156. Raman IM, Tong G, Jahr CE (1996) Beta-adrenergic regulation of synaptic NMDA receptors by cAMP-dependent protein kinase. Neuron 16(2):415–421

    Article  CAS  PubMed  Google Scholar 

  157. Lieberman DN, Mody I (1994) Regulation of NMDA channel function by endogenous Ca2+-dependent phosphatase. Nature 369(6477):235–239

    Article  CAS  PubMed  Google Scholar 

  158. Chung HJ, Huang YH, Lau LF, Huganir RL (2004) Regulation of the NMDA receptor complex and trafficking by activity-dependent phosphorylation of the NR2B subunit PDZ ligand. J Neurosci 24(45):10248–10259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Gardoni F, Schrama LH, Kamal A, Gispen WH, Cattabeni F, Di Luca M (2001) Hippocampal synaptic plasticity involves competition between Ca2+/calmodulin-dependent protein kinase II and postsynaptic density 95 for binding to the NR2A subunit of the NMDA receptor. J Neurosci 21(5):1501–1509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Hallett PJ, Spoelgen R, Hyman BT, Standaert DG, Dunah AW (2006) Dopamine D1 activation potentiates striatal NMDA receptors by tyrosine phosphorylation-dependent subunit trafficking. J Neurosci 26(17):4690–4700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Lin Y, Jover-Mengual T, Wong J, Bennett MV, Zukin RS (2006) PSD-95 and PKC converge in regulating NMDA receptor trafficking and gating. Proc Natl Acad Sci U S A 103(52):19902–19907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Carroll RC, Zukin RS (2002) NMDA-receptor trafficking and targeting: implications for synaptic transmission and plasticity. Trends Neurosci 25(11):571–577

    Article  CAS  PubMed  Google Scholar 

  163. Scott DB, Blanpied TA, Swanson GT, Zhang C, Ehlers MD (2001) An NMDA receptor ER retention signal regulated by phosphorylation and alternative splicing. J Neurosci 21(9):3063–3072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Snyder EM, Nong Y, Almeida CG, Paul S, Moran T, Choi EY et al (2005) Regulation of NMDA receptor trafficking by amyloid-beta. Nat Neurosci 8(8):1051–1058

    Article  CAS  PubMed  Google Scholar 

  165. Foster TC, Sharrow KM, Masse JR, Norris CM, Kumar A (2001) Calcineurin links Ca2+ dysregulation with brain aging. J Neurosci 21(11):4066–4073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Coultrap SJ, Bickford PC, Browning MD (2008) Blueberry-enriched diet ameliorates age-related declines in NMDA receptor-dependent LTP. Age 30(4):263–272

    Article  PubMed  PubMed Central  Google Scholar 

  167. Aizenman E, Lipton SA, Loring RH (1989) Selective modulation of NMDA responses by reduction and oxidation. Neuron 2(3):1257–1263

    Article  CAS  PubMed  Google Scholar 

  168. Aizenman E (1995) Modulation of N-methyl-D-aspartate receptors by hydroxyl radicals in rat cortical neurons in vitro. Neurosci Lett 189(1):57–59

    Article  CAS  PubMed  Google Scholar 

  169. Sucher NJ, Lipton SA (1991) Redox modulatory site of the NMDA receptor-channel complex: regulation by oxidized glutathione. J Neurosci Res 30(3):582–591

    Article  CAS  PubMed  Google Scholar 

  170. Aizenman E, Hartnett KA, Reynolds IJ (1990) Oxygen free radicals regulate NMDA receptor function via a redox modulatory site. Neuron 5(6):841–846

    Article  CAS  PubMed  Google Scholar 

  171. Choi Y, Chen HV, Lipton SA (2001) Three pairs of cysteine residues mediate both redox and zn2+ modulation of the nmda receptor. J Neurosci 21(2):392–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Sullivan JM, Traynelis SF, Chen HS, Escobar W, Heinemann SF, Lipton SA (1994) Identification of two cysteine residues that are required for redox modulation of the NMDA subtype of glutamate receptor. Neuron 13(4):929–936

    Article  CAS  PubMed  Google Scholar 

  173. Foster TC (2006) Biological markers of age-related memory deficits: treatment of senescent physiology. CNS Drugs 20(2):153–166

    Article  PubMed  Google Scholar 

  174. Parihar MS, Kunz EA, Brewer GJ (2008) Age-related decreases in NAD(P)H and glutathione cause redox declines before ATP loss during glutamate treatment of hippocampal neurons. J Neurosci Res 86(10):2339–2352

    Article  CAS  PubMed  Google Scholar 

  175. Poon HF, Calabrese V, Calvani M, Butterfield DA (2006) Proteomics analyses of specific protein oxidation and protein expression in aged rat brain and its modulation by L-acetylcarnitine: insights into the mechanisms of action of this proposed therapeutic agent for CNS disorders associated with oxidative stress. Antioxid Redox Signal 8(3–4):381–394

    Article  CAS  PubMed  Google Scholar 

  176. Bodhinathan K, Kumar A, Foster TC (2010) Intracellular redox state alters NMDA receptor response during aging through Ca2+/calmodulin-dependent protein kinase II. J Neurosci 30(5):1914–1924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Bodhinathan K, Kumar A, Foster TC (2010) Redox sensitive calcium stores underlie enhanced after hyperpolarization of aged neurons: role for ryanodine receptor mediated calcium signaling. J Neurophysiol 104(5):2586–2593

    Article  PubMed  PubMed Central  Google Scholar 

  178. Haxaire C, Turpin FR, Potier B, Kervern M, Sinet PM, Barbanel G et al (2012) Reversal of age-related oxidative stress prevents hippocampal synaptic plasticity deficits by protecting d-serine-dependent NMDA receptor activation. Aging Cell 11(2):336–344

    Article  CAS  PubMed  Google Scholar 

  179. Robillard JM, Gordon GR, Choi HB, Christie BR, MacVicar BA (2011) Glutathione restores the mechanism of synaptic plasticity in aged mice to that of the adult. PLoS One 6(5):e20676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Kumar A, Yegla B, Foster TC (2018) Redox signaling in neurotransmission and cognition during aging. Antioxid Redox Signal 28(18):1724–1745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Schell MJ, Molliver ME, Snyder SH (1995) D-serine, an endogenous synaptic modulator: localization to astrocytes and glutamate-stimulated release. Proc Natl Acad Sci U S A 92(9):3948–3952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Williams SM, Diaz CM, Macnab LT, Sullivan RK, Pow DV (2006) Immunocytochemical analysis of D-serine distribution in the mammalian brain reveals novel anatomical compartmentalizations in glia and neurons. Glia 53(4):401–411

    Article  PubMed  Google Scholar 

  183. Wu S, Barger SW (2004) Induction of serine racemase by inflammatory stimuli is dependent on AP-1. Ann N Y Acad Sci 1035:133–146

    Article  CAS  PubMed  Google Scholar 

  184. Wu SZ, Bodles AM, Porter MM, Griffin WS, Basile AS, Barger SW (2004) Induction of serine racemase expression and D-serine release from microglia by amyloid beta-peptide. J Neuroinflammation 1(1):2

    Article  PubMed  PubMed Central  Google Scholar 

  185. Hayashi Y, Ishibashi H, Hashimoto K, Nakanishi H (2006) Potentiation of the NMDA receptor-mediated responses through the activation of the glycine site by microglia secreting soluble factors. Glia 53(6):660–668

    Article  PubMed  Google Scholar 

  186. Moriguchi S, Mizoguchi Y, Tomimatsu Y, Hayashi Y, Kadowaki T, Kagamiishi Y et al (2003) Potentiation of NMDA receptor-mediated synaptic responses by microglia. Brain Res Mol Brain Res 119(2):160–169

    Article  CAS  PubMed  Google Scholar 

  187. Rosi S, Ramirez-Amaya V, Hauss-Wegrzyniak B, Wenk GL (2004) Chronic brain inflammation leads to a decline in hippocampal NMDA-R1 receptors. J Neuroinflammation 1(1):12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Rosi S, Vazdarjanova A, Ramirez-Amaya V, Worley PF, Barnes CA, Wenk GL (2006) Memantine protects against LPS-induced neuroinflammation, restores behaviorally-induced gene expression and spatial learning in the rat. Neuroscience 142(4):1303–1315

    Article  CAS  PubMed  Google Scholar 

  189. Cao X, Cui Z, Feng R, Tang YP, Qin Z, Mei B et al (2007) Maintenance of superior learning and memory function in NR2B transgenic mice during ageing. Eur J Neurosci 25(6):1815–1822

    Article  PubMed  Google Scholar 

  190. Ly CV, Verstreken P (2006) Mitochondria at the synapse. Neuroscientist 12(4):291–299

    Article  CAS  PubMed  Google Scholar 

  191. Mattson MP, LaFerla FM, Chan SL, Leissring MA, Shepel PN, Geiger JD (2000) Calcium signaling in the ER: its role in neuronal plasticity and neurodegenerative disorders. Trends Neurosci 23(5):222–229

    Article  CAS  PubMed  Google Scholar 

  192. Verkhratsky A, Toescu EC (1998) Calcium and neuronal ageing. Trends Neurosci 21(1):2–7

    Article  CAS  PubMed  Google Scholar 

  193. Verkhratsky AJ, Petersen OH (1998) Neuronal calcium stores. Cell Calcium 24(5–6):333–343

    Article  CAS  PubMed  Google Scholar 

  194. Petersen OH, Gerasimenko OV, Gerasimenko JV, Mogami H, Tepikin AV (1998) The calcium store in the nuclear envelope. Cell Calcium 23(2–3):87–90

    Article  CAS  PubMed  Google Scholar 

  195. Petersen OH, Michalak M, Verkhratsky A (2005) Calcium signalling: past, present and future. Cell Calcium 38(3–4):161–169

    Article  CAS  PubMed  Google Scholar 

  196. Toescu EC, Verkhratsky A (2004) Ca2+ and mitochondria as substrates for deficits in synaptic plasticity in normal brain ageing. J Cell Mol Med 8(2):181–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Duchen MR (2000) Mitochondria and calcium: from cell signalling to cell death. J Physiol 529(Pt 1):57–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Nicholls DG, Budd SL (2000) Mitochondria and neuronal survival. Physiol Rev 80(1):315–360

    Article  CAS  PubMed  Google Scholar 

  199. Solovyova N, Veselovsky N, Toescu EC, Verkhratsky A (2002) Ca2+ dynamics in the lumen of the endoplasmic reticulum in sensory neurons: direct visualization of Ca2+-induced Ca2+ release triggered by physiological Ca2+ entry. EMBO J 21(4):622–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. McGuinness L, Bardo SJ, Emptage NJ (2007) The lysosome or lysosome-related organelle may serve as a Ca2+ store in the boutons of hippocampal pyramidal cells. Neuropharmacology 52(1):126–135

    Article  CAS  PubMed  Google Scholar 

  201. Toescu EC, Myronova N, Verkhratsky A (2000) Age-related structural and functional changes of brain mitochondria. Cell Calcium 28(5–6):329–338

    Article  CAS  PubMed  Google Scholar 

  202. Sanmartin CD, Paula-Lima AC, Garcia A, Barattini P, Hartel S, Nunez MT et al (2014) Ryanodine receptor-mediated Ca2+ release underlies iron-induced mitochondrial fission and stimulates mitochondrial Ca2+ uptake in primary hippocampal neurons. Front Mol Neurosci 7:13

    PubMed  PubMed Central  Google Scholar 

  203. Roth GS (1995) Changes in tissue responsiveness to hormones and neurotransmitters during aging. Exp Gerontol 30(3–4):361–368

    Article  CAS  PubMed  Google Scholar 

  204. Mizutani T, Nakashima S, Nozawa Y (1998) Changes in the expression of protein kinase C (PKC), phospholipases C (PLC) and D (PLD) isoforms in spleen, brain and kidney of the aged rat: RT-PCR and Western blot analysis. Mech Ageing Dev 105(1–2):151–172

    Article  CAS  PubMed  Google Scholar 

  205. Nicolle MM, Colombo PJ, Gallagher M, McKinney M (1999) Metabotropic glutamate receptor-mediated hippocampal phosphoinositide turnover is blunted in spatial learning-impaired aged rats. J Neurosci 19(21):9604–9610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Burnett DM, Daniell LC, Zahniser NR (1990) Decreased efficacy of inositol 1,4,5-trisphosphate to elicit calcium mobilization from cerebrocortical microsomes of aged rats. Mol Pharmacol 37(4):566–571

    CAS  PubMed  Google Scholar 

  207. Stutzmann GE, Smith I, Caccamo A, Oddo S, Laferla FM, Parker I (2006) Enhanced ryanodine receptor recruitment contributes to Ca2+ disruptions in young, adult, and aged Alzheimer’s disease mice. J Neurosci 26(19):5180–5189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Igwe OJ, Ning L (1993) Inositol 1,4,5-trisphosphate arm of the phosphatidylinositide signal transduction pathway in the rat cerebellum during aging. Neurosci Lett 164(1–2):167–170

    Article  CAS  PubMed  Google Scholar 

  209. Martini A, Battaini F, Govoni S, Volpe P (1994) Inositol 1,4,5-trisphosphate receptor and ryanodine receptor in the aging brain of Wistar rats. Neurobiol Aging 15(2):203–206

    Article  CAS  PubMed  Google Scholar 

  210. Simonyi A, Xia J, Igbavboa U, Wood WG, Sun GY (1998) Age differences in the expression of metabotropic glutamate receptor 1 and inositol 1,4,5-trisphosphate receptor in mouse cerebellum. Neurosci Lett 244(1):29–32

    Article  CAS  PubMed  Google Scholar 

  211. Long LH, Liu J, Liu RL, Wang F, Hu ZL, Xie N et al (2009) Differential effects of methionine and cysteine oxidation on [Ca2+] i in cultured hippocampal neurons. Cell Mol Neurobiol 29(1):7–15

    Article  CAS  PubMed  Google Scholar 

  212. Peuchen S, Duchen MR, Clark JB (1996) Energy metabolism of adult astrocytes in vitro. Neuroscience 71(3):855–870

    Article  CAS  PubMed  Google Scholar 

  213. Bull R, Finkelstein JP, Humeres A, Behrens MI, Hidalgo C (2007) Effects of ATP, Mg2+, and redox agents on the Ca2+ dependence of RyR channels from rat brain cortex. Am J Physiol Cell Physiol 293(1):C162–C171

    Article  CAS  PubMed  Google Scholar 

  214. Gokulrangan G, Zaidi A, Michaelis ML, Schoneich C (2007) Proteomic analysis of protein nitration in rat cerebellum: effect of biological aging. J Neurochem 100(6):1494–1504

    CAS  PubMed  Google Scholar 

  215. Hidalgo C, Bull R, Behrens MI, Donoso P (2004) Redox regulation of RyR-mediated Ca2+ release in muscle and neurons. Biol Res 37(4):539–552

    PubMed  Google Scholar 

  216. Alford S, Frenguelli BG, Schofield JG, Collingridge GL (1993) Characterization of Ca2+ signals induced in hippocampal CA1 neurones by the synaptic activation of NMDA receptors. J Physiol 469:693–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Matias C, Dionisio JC, Quinta-Ferreira ME (2002) Thapsigargin blocks STP and LTP related calcium enhancements in hippocampal CA1 area. Neuroreport 13(18):2577–2580

    Article  CAS  PubMed  Google Scholar 

  218. Yamazaki Y, Fujii S, Goto JI, Fujiwara H, Mikoshiba K (2015) Activation of inositol 1,4,5-trisphosphate receptors during preconditioning low-frequency stimulation suppresses subsequent induction of long-term potentiation in hippocampal CA1 neurons. Neuroscience 311:195–206

    Article  CAS  PubMed  Google Scholar 

  219. Sugita M, Yamazaki Y, Goto JI, Fujiwara H, Aihara T, Mikoshiba K et al (2016) Role of postsynaptic inositol 1, 4, 5-trisphosphate receptors in depotentiation in guinea pig hippocampal CA1 neurons. Brain Res 1642:154–162

    Article  CAS  PubMed  Google Scholar 

  220. Arias-Cavieres A, Adasme T, Sanchez G, Munoz P, Hidalgo C (2018) Raynodine receptor-mediated calcium release has a key role in hippocampal LTD induction. Front Cell Neurosci 12:403

    Article  PubMed  PubMed Central  Google Scholar 

  221. Arias-Cavieres A, Adasme T, Sanchez G, Munoz P, Hidalgo C (2017) Aging impairs hippocampal- dependent recognition memory and LTP and prevents the associated RyR up-regulation. Front Aging Neurosci 9:111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  222. Gant JC, Sama MM, Landfield PW, Thibault O (2006) Early and simultaneous emergence of multiple hippocampal biomarkers of aging is mediated by Ca2+−induced Ca2+ release. J Neurosci 26(13):3482–3490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Kumar A, Foster TC (2004) Enhanced long-term potentiation during aging is masked by processes involving intracellular calcium stores. J Neurophysiol 91(6):2437–2444

    Article  PubMed  Google Scholar 

  224. Paula-Lima AC, Adasme T, Hidalgo C (2014) Contribution of Ca2+ release channels to hippocampal synaptic plasticity and spatial memory: potential redox modulation. Antioxid Redox Signal 21(6):892–914

    Article  CAS  PubMed  Google Scholar 

  225. Disterhoft JF, Oh MM (2006) Learning, aging and intrinsic neuronal plasticity. Trends Neurosci 29(10):587–599

    Article  CAS  PubMed  Google Scholar 

  226. Disterhoft JF, Oh MM (2007) Alterations in intrinsic neuronal excitability during normal aging. Aging Cell 6(3):327–336

    Article  CAS  PubMed  Google Scholar 

  227. Rex CS, Kramar EA, Colgin LL, Lin B, Gall CM, Lynch G (2005) Long-term potentiation is impaired in middle-aged rats: regional specificity and reversal by adenosine receptor antagonists. J Neurosci 25(25):5956–5966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Norris CM, Korol DL, Foster TC (1996) Increased susceptibility to induction of long-term depression and long- term potentiation reversal during aging. J Neurosci 16(17):5382–5392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Shankar S, Teyler TJ, Robbins N (1998) Aging differentially alters forms of long-term potentiation in rat hippocampal area CA1. J Neurophysiol 79(1):334–341

    Article  CAS  PubMed  Google Scholar 

  230. Diana G, Domenici MR, Loizzo A (1994) Scotti de Carolis A, Sagratella S. Age and strain differences in rat place learning and hippocampal dentate gyrus frequency-potentiation. Neurosci Lett 171(1–2):113–116

    Article  CAS  PubMed  Google Scholar 

  231. Kumar A, Thinschmidt JS, Foster TC, King MA (2007) Aging effects on the limits and stability of Long-term synaptic potentiation and depression in rat hippocampal area CA1. J Neurophysiol 98(2):594–601

    Article  PubMed  Google Scholar 

  232. Barnes CA, Rao G, McNaughton BL (1996) Functional integrity of NMDA-dependent LTP induction mechanisms across the lifespan of F-344 rats. Learn Mem 3(2–3):124–137

    Article  CAS  PubMed  Google Scholar 

  233. Watabe AM, O’Dell TJ (2003) Age-related changes in theta frequency stimulation-induced long-term potentiation. Neurobiol Aging 24(2):267–272

    Article  PubMed  Google Scholar 

  234. Zamani MR, Desmond NL, Levy WB (2000) Estradiol modulates long-term synaptic depression in female rat hippocampus. J Neurophysiol 84(4):1800–1808

    Article  CAS  PubMed  Google Scholar 

  235. Kemp N, McQueen J, Faulkes S, Bashir ZI (2000) Different forms of LTD in the CA1 region of the hippocampus: role of age and stimulus protocol. Eur J Neurosci 12(1):360–366

    Article  CAS  PubMed  Google Scholar 

  236. Dudek SM, Bear MF (1993) Bidirectional long-term modification of synaptic effectiveness in the adult and immature hippocampus. J Neurosci 13(7):2910–2918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Hsu KS, Huang CC, Liang YC, Wu HM, Chen YL, Lo SW et al (2002) Alterations in the balance of protein kinase and phosphatase activities and age-related impairments of synaptic transmission and long-term potentiation. Hippocampus 12(6):787–802

    Article  CAS  PubMed  Google Scholar 

  238. Vouimba RM, Foy MR, Foy JG, Thompson RF (2000) 17beta-estradiol suppresses expression of long-term depression in aged rats. Brain Res Bull 53(6):783–787

    Article  CAS  PubMed  Google Scholar 

  239. Moore CI, Browning MD, Rose GM (1993) Hippocampal plasticity induced by primed burst, but not long-term potentiation, stimulation is impaired in area CA1 of aged Fischer 344 rats. Hippocampus 3(1):57–66

    Article  CAS  PubMed  Google Scholar 

  240. Deupree DL, Bradley J, Turner DA (1993) Age-related alterations in potentiation in the CA1 region in F344 rats. Neurobiol Aging 14(3):249–258

    Article  CAS  PubMed  Google Scholar 

  241. Rosenzweig ES, Rao G, McNaughton BL, Barnes CA (1997) Role of temporal summation in age-related long-term potentiation- induction deficits. Hippocampus 7(5):549–558

    Article  CAS  PubMed  Google Scholar 

  242. Tong G, Jahr CE (1994) Regulation of glycine-insensitive desensitization of the NMDA receptor in outside-out patches. J Neurophysiol 72(2):754–761

    Article  CAS  PubMed  Google Scholar 

  243. Sah P, Faber ES (2002) Channels underlying neuronal calcium-activated potassium currents. Prog Neurobiol 66(5):345–353

    Article  CAS  PubMed  Google Scholar 

  244. Kumar A, Foster T (2007) Environmental enrichment decreases the afterhyperpolarization in senescent rats. Brain Res 1130(1):103–107

    Article  CAS  PubMed  Google Scholar 

  245. Disterhoft JF, Oh MM (2006) Pharmacological and molecular enhancement of learning in aging and Alzheimer’s disease. J Physiol Paris 99(2–3):180–192

    Article  CAS  PubMed  Google Scholar 

  246. Kumar A, Rani A, Tchigranova O, Lee WH, Foster TC (2012) Influence of late-life exposure to environmental enrichment or exercise on hippocampal function and CA1 senescent physiology. Neurobiol Aging 33(4):828 e1–e17

    Article  Google Scholar 

  247. Froemke RC, Poo MM, Dan Y (2005) Spike-timing-dependent synaptic plasticity depends on dendritic location. Nature 434(7030):221–225

    Article  CAS  PubMed  Google Scholar 

  248. Power JM, Wu WW, Sametsky E, Oh MM, Disterhoft JF (2002) Age-related enhancement of the slow outward calcium-activated potassium current in hippocampal CA1 pyramidal neurons in vitro. J Neurosci 22(16):7234–7243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Kerr DS, Campbell LW, Hao SY, Landfield PW (1989) Corticosteroid modulation of hippocampal potentials: increased effect with aging. Science 245(4925):1505–1509

    Article  CAS  PubMed  Google Scholar 

  250. Pitler TA, Landfield PW (1990) Aging-related prolongation of calcium spike duration in rat hippocampal slice neurons. Brain Res 508(1):1–6

    Article  CAS  PubMed  Google Scholar 

  251. Gong LW, Gao TM, Huang H, Zhou KX, Tong Z (2002) ATP modulation of large conductance Ca2+-activated K(+) channels via a functionally associated protein kinase A in CA1 pyramidal neurons from rat hippocampus. Brain Res 951(1):130–134

    Article  CAS  PubMed  Google Scholar 

  252. Disterhoft JF, Moyer JR Jr, Thompson LT, Kowalska M (1993) Functional aspects of calcium-channel modulation. Clin Neuropharmacol 16(Suppl 1):S12–S24

    Article  PubMed  Google Scholar 

  253. Power JM, Oh MM, Disterhoft JF (2001) Metrifonate decreases sI(AHP) in CA1 pyramidal neurons in vitro. J Neurophysiol 85(1):319–322

    Article  CAS  PubMed  Google Scholar 

  254. Moyer JR Jr, Power JM, Thompson LT, Disterhoft JF (2000) Increased excitability of aged rabbit CA1 neurons after trace eyeblink conditioning. J Neurosci 20(14):5476–5482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Murphy GG, Fedorov NB, Giese KP, Ohno M, Friedman E, Chen R et al (2004) Increased neuronal excitability, synaptic plasticity, and learning in aged Kvbeta1.1 knockout mice. Curr Biol 14(21):1907–1915

    Article  CAS  PubMed  Google Scholar 

  256. Azad SC, Eder M, Simon W, Hapfelmeier G, Dodt HU, Zieglgansberger W et al (2004) The potassium channel modulator flupirtine shifts the frequency-response function of hippocampal synapses to favour LTD in mice. Neurosci Lett 370(2–3):186–190

    Article  CAS  PubMed  Google Scholar 

  257. Kumar A, Bodhinathan K, Foster TC (2009) Susceptibility to calcium dysregulation during brain aging. Front Aging Neurosci 1:2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Phillips RG, Meier TJ, Giuli LC, McLaughlin JR, Ho DY, Sapolsky RM (1999) Calbindin D28K gene transfer via herpes simplex virus amplicon vector decreases hippocampal damage in vivo following neurotoxic insults. J Neurochem 73(3):1200–1205

    Article  CAS  PubMed  Google Scholar 

  259. Dore K, Stein IS, Brock JA, Castillo PE, Zito K, Sjostrom PJ (2017) Unconventional NMDA receptor signaling. J Neurosci 37(45):10800–10807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Zorumski CF, Izumi Y (2012) NMDA receptors and metaplasticity: mechanisms and possible roles in neuropsychiatric disorders. Neurosci Biobehav Rev 36(3):989–1000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Abraham WC, Williams JM (2008) LTP maintenance and its protein synthesis-dependence. Neurobiol Learn Mem 89(3):260–268

    Article  CAS  PubMed  Google Scholar 

  262. Annunziato L, Amoroso S, Pannaccione A, Cataldi M, Pignataro G, D’Alessio A et al (2003) Apoptosis induced in neuronal cells by oxidative stress: role played by caspases and intracellular calcium ions. Toxicol Lett 139(2–3):125–133

    Article  CAS  PubMed  Google Scholar 

  263. Squier TC (2001) Oxidative stress and protein aggregation during biological aging. Exp Gerontol 36(9):1539–1550

    Article  CAS  PubMed  Google Scholar 

  264. Serrano F, Klann E (2004) Reactive oxygen species and synaptic plasticity in the aging hippocampus. Ageing Res Rev 3(4):431–443

    Article  CAS  PubMed  Google Scholar 

  265. Suzuki K, Nakamura M, Hatanaka Y, Kayanoki Y, Tatsumi H, Taniguchi N (1997) Induction of apoptotic cell death in human endothelial cells treated with snake venom: implication of intracellular reactive oxygen species and protective effects of glutathione and superoxide dismutases. J Biochem (Tokyo) 122(6):1260–1264

    Article  CAS  Google Scholar 

  266. Lu C, Chan SL, Fu W, Mattson MP (2002) The lipid peroxidation product 4-hydroxynonenal facilitates opening of voltage-dependent Ca2+ channels in neurons by increasing protein tyrosine phosphorylation. J Biol Chem 277(27):24368–24375

    Article  CAS  PubMed  Google Scholar 

  267. Akaishi T, Nakazawa K, Sato K, Saito H, Ohno Y, Ito Y (2004) Modulation of voltage-gated Ca2+ current by 4-hydroxynonenal in dentate granule cells. Biol Pharm Bull 27(2):174–179

    Article  CAS  PubMed  Google Scholar 

  268. Gong L, Gao TM, Huang H, Tong Z (2000) Redox modulation of large conductance calcium-activated potassium channels in CA1 pyramidal neurons from adult rat hippocampus. Neurosci Lett 286(3):191–194

    Article  CAS  PubMed  Google Scholar 

  269. Lu C, Chan SL, Haughey N, Lee WT, Mattson MP (2001) Selective and biphasic effect of the membrane lipid peroxidation product 4-hydroxy-2,3-nonenal on N-methyl-D-aspartate channels. J Neurochem 78(3):577–589

    Article  CAS  PubMed  Google Scholar 

  270. Kamsler A, Segal M (2004) Hydrogen peroxide as a diffusible signal molecule in synaptic plasticity. Mol Neurobiol 29(2):167–178

    Article  CAS  PubMed  Google Scholar 

  271. Ullrich V, Namgaladze D, Frein D (2003) Superoxide as inhibitor of calcineurin and mediator of redox regulation. Toxicol Lett 139(2–3):107–110

    Article  CAS  PubMed  Google Scholar 

  272. Lin CH, Yeh SH, Leu TH, Chang WC, Wang ST, Gean PW (2003) Identification of calcineurin as a key signal in the extinction of fear memory. J Neurosci 23(5):1574–1579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Gorlach A, Bertram K, Hudecova S, Krizanova O (2015) Calcium and ROS: a mutual interplay. Redox Biol 6:260–271

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  274. Gant JC, Blalock EM, Chen KC, Kadish I, Porter NM, Norris CM et al (2014) FK506-binding protein 1b/12.6: a key to aging-related hippocampal Ca2+ dysregulation? Eur J Pharmacol 739:74–82

    Article  CAS  PubMed  Google Scholar 

  275. Gant JC, Chen KC, Norris CM, Kadish I, Thibault O, Blalock EM et al (2011) Disrupting function of FK506-binding protein 1b/12.6 induces the Ca(2)+−dysregulation aging phenotype in hippocampal neurons. J Neurosci 31(5):1693–1703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Supported by National Institute of Aging grants R37AG036800, RO1AG049711, RO1AG037984, and RO1AG052258 and the Evelyn F. McKnight Brain Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, A. (2020). Calcium Signaling During Brain Aging and Its Influence on the Hippocampal Synaptic Plasticity. In: Islam, M. (eds) Calcium Signaling. Advances in Experimental Medicine and Biology, vol 1131. Springer, Cham. https://doi.org/10.1007/978-3-030-12457-1_39

Download citation

Publish with us

Policies and ethics