Skip to main content

Stimulus-Secretion Coupling in Beta-Cells: From Basic to Bedside

  • Chapter
  • First Online:
Calcium Signaling

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1131))

Abstract

Insulin secretion in humans is usually induced by mixed meals, which upon ingestion, increase the plasma concentration of glucose, fatty acids, amino acids, and incretins like glucagon-like peptide 1. Beta-cells can stay in the off-mode, ready-mode or on-mode; the mode-switching being determined by the open state probability of the ATP-sensitive potassium channels, and the activity of enzymes like glucokinase, and glutamate dehydrogenase. Mitochondrial metabolism is critical for insulin secretion. A sound understanding of the intermediary metabolism, electrophysiology, and cell signaling is essential for comprehension of the entire spectrum of the stimulus-secretion coupling. Depolarization brought about by inhibition of the ATP sensitive potassium channel, together with the inward depolarizing currents through the transient receptor potential (TRP) channels, leads to electrical activities, opening of the voltage-gated calcium channels, and exocytosis of insulin. Calcium- and cAMP-signaling elicited by depolarization, and activation of G-protein-coupled receptors, including the free fatty acid receptors, are intricately connected in the form of networks at different levels. Activation of the glucagon-like peptide 1 receptor augments insulin secretion by amplifying calcium signals by calcium induced calcium release (CICR). In the treatment of type 2 diabetes, use of the sulfonylureas that act on the ATP sensitive potassium channel, damages the beta cells, which eventually fail; these drugs do not improve the cardiovascular outcomes. In contrast, drugs acting through the glucagon-like peptide-1 receptor protect the beta-cells, and improve cardiovascular outcomes. The use of the glucagon-like peptide 1 receptor agonists is increasing and that of sulfonylurea is decreasing. A better understanding of the stimulus-secretion coupling may lead to the discovery of other molecular targets for development of drugs for the prevention and treatment of type 2 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

[Ca2+]c :

Cytoplasmic free Ca2+ concentration

EPAC:

Exchange protein directly activated by cAMP

KATP :

ATP-sensitive potassium channel

NBD:

Nucleotide binding domain

PKA:

Protein kinase A

SCHAD:

short chain 3-hydroxyacyl-CoA dehydrogenase

SUR1:

Sulfonylurea receptor 1

VGCC:

Voltage-gated Ca2+ channel

References

  1. Holz GG, Kuhtreiber WM, Habener JF (1993) Pancreatic beta-cells are rendered glucose-competent by the insulinotropic hormone glucagon-like peptide-1(7-37). Nature 361(6410):362–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Song SH, McIntyre SS, Shah H, Veldhuis JD, Hayes PC, Butler PC (2000) Direct measurement of pulsatile insulin secretion from the portal vein in human subjects. J Clin Endocrinol Metab 85(12):4491–4499

    CAS  PubMed  Google Scholar 

  3. Islam MS (2011) TRP channels of islets. Adv Exp Med Biol 704:811–830

    Article  CAS  PubMed  Google Scholar 

  4. Gloyn AL, Pearson ER, Antcliff JF, Proks P, Bruining GJ, Slingerland AS et al (2004) Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes. N Engl J Med 350(18):1838–1849

    Article  CAS  PubMed  Google Scholar 

  5. Islam MS (2014) Calcium signaling in the islets. In: Islam MS (ed) Islets of Langerhans, 2nd edn. Springer, Dordrecht, pp 605–632

    Google Scholar 

  6. Islam MS (2002) The ryanodine receptor calcium channel of beta-cells: molecular regulation and physiological significance. Diabetes 51(5):1299–1309

    Article  CAS  PubMed  Google Scholar 

  7. Martin F, Soria B (1996) Glucose-induced [Ca2+]i oscillations in single human pancreatic islets. Cell Calcium 20(5):409–414

    Article  CAS  PubMed  Google Scholar 

  8. Quesada I, Todorova MG, Alonso-Magdalena P, Beltra M, Carneiro EM, Martin F et al (2006) Glucose induces opposite intracellular Ca2+ concentration oscillatory patterns in identified alpha- and beta-cells within intact human islets of Langerhans. Diabetes 55(9):2463–2469

    Article  CAS  PubMed  Google Scholar 

  9. Kindmark H, Kohler M, Arkhammar P, Efendic S, Larsson O, Linder S et al (1994) Oscillations in cytoplasmic free calcium concentration in human pancreatic islets from subjects with normal and impaired glucose tolerance. Diabetologia 37(11):1121–1131

    Article  CAS  PubMed  Google Scholar 

  10. Hellman B, Gylfe E, Bergsten P, Grapengiesser E, Lund PE, Berts A et al (1994) Glucose induces oscillatory Ca2+ signalling and insulin release in human pancreatic beta cells. Diabetologia 37(Suppl 2):S11–S20

    Article  CAS  PubMed  Google Scholar 

  11. Nordenskjöld F, Andersson B, Islam MS (2019) Expression of the inositol 1,4,5-trisphosphate receptor and the ryanodine receptor Ca2+-release channels in the beta-cells and alpha- cells of the human islets of Langerhans. Adv Exp Med Biol 1131:271–281

    Google Scholar 

  12. Rowlands J, Heng J, Newsholme P, Carlessi R (2018) Pleiotropic effects of GLP-1 and analogs on cell signaling, metabolism, and function. Front Endocrinol (Lausanne) 9:672

    Article  Google Scholar 

  13. Pinney SE, Ganapathy K, Bradfield J, Stokes D, Sasson A, Mackiewicz K et al (2013) Dominant form of congenital hyperinsulinism maps to HK1 region on 10q. Horm Res Paediatr 80(1):18–27

    Article  CAS  PubMed  Google Scholar 

  14. Henquin JC, Sempoux C, Marchandise J, Godecharles S, Guiot Y, Nenquin M et al (2013) Congenital hyperinsulinism caused by hexokinase I expression or glucokinase-activating mutation in a subset of beta-cells. Diabetes 62(5):1689–1696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Henquin JC, Nenquin M, Guiot Y, Rahier J, Sempoux C (2015) Human Insulinomas show distinct patterns of insulin secretion in vitro. Diabetes 64(10):3543–3553

    Article  CAS  PubMed  Google Scholar 

  16. Pino MF, Kim KA, Shelton KD, Lindner J, Odili S, Li C et al (2007) Glucokinase thermolability and hepatic regulatory protein binding are essential factors for predicting the blood glucose phenotype of missense mutations. J Biol Chem 282(18):13906–13916

    Article  CAS  PubMed  Google Scholar 

  17. Chakera AJ, Steele AM, Gloyn AL, Shepherd MH, Shields B, Ellard S et al (2015) Recognition and Management of Individuals with Hyperglycemia because of a heterozygous Glucokinase mutation. Diabetes Care 38(7):1383–1392

    Article  CAS  PubMed  Google Scholar 

  18. Bennett K, James C, Mutair A, Al-Shaikh H, Sinani A, Hussain K (2011) Four novel cases of permanent neonatal diabetes mellitus caused by homozygous mutations in the glucokinase gene. Pediatr Diabetes 12(3 Pt 1):192–196

    Article  PubMed  Google Scholar 

  19. Gribble FM, Tucker SJ, Haug T, Ashcroft FM (1998) MgATP activates the beta cell KATP channel by interaction with its SUR1 subunit. Proc Natl Acad Sci U S A 95(12):7185–7190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Macmullen CM, Zhou Q, Snider KE, Tewson PH, Becker SA, Aziz AR et al (2011) Diazoxide-unresponsive congenital hyperinsulinism in children with dominant mutations of the beta-cell sulfonylurea receptor SUR1. Diabetes 60(6):1797–1804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ponmani C, Gannon H, Hussain K, Senniappan S (2013) Paradoxical hypoglycaemia associated with diazoxide therapy for hyperinsulinaemic hypoglycaemia. Horm Res Paediatr 80(2):129–133

    Article  CAS  PubMed  Google Scholar 

  22. de Lonlay P, Fournet JC, Rahier J, Gross-Morand MS, Poggi-Travert F, Foussier V et al (1997) Somatic deletion of the imprinted 11p15 region in sporadic persistent hyperinsulinemic hypoglycemia of infancy is specific of focal adenomatous hyperplasia and endorses partial pancreatectomy. J Clin Invest 100(4):802–807

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kapoor RR, Flanagan SE, Arya VB, Shield JP, Ellard S, Hussain K (2013) Clinical and molecular characterisation of 300 patients with congenital hyperinsulinism. Eur J Endocrinol 168(4):557–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sempoux C, Guiot Y, Dahan K, Moulin P, Stevens M, Lambot V et al (2003) The focal form of persistent hyperinsulinemic hypoglycemia of infancy: morphological and molecular studies show structural and functional differences with insulinoma. Diabetes 52(3):784–794

    Article  CAS  PubMed  Google Scholar 

  25. Henquin JC, Nenquin M, Sempoux C, Guiot Y, Bellanne-Chantelot C, Otonkoski T et al (2011) In vitro insulin secretion by pancreatic tissue from infants with diazoxide-resistant congenital hyperinsulinism deviates from model predictions. J Clin Invest 121(10):3932–3942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Snider KE, Becker S, Boyajian L, Shyng SL, MacMullen C, Hughes N et al (2013) Genotype and phenotype correlations in 417 children with congenital hyperinsulinism. J Clin Endocrinol Metab 98(2):E355–E363

    Article  CAS  PubMed  Google Scholar 

  27. Yorifuji T, Horikawa R, Hasegawa T, Adachi M, Soneda S, Minagawa M et al (2017) Clinical practice guidelines for congenital hyperinsulinism. Clin Pediatr Endocrinol 26(3):127–152

    Article  PubMed  PubMed Central  Google Scholar 

  28. Li C, Ackermann AM, Boodhansingh KE, Bhatti TR, Liu C, Schug J et al (2017) Functional and metabolomic consequences of KATP channel inactivation in human islets. Diabetes 66(7):1901–1913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Thornton PS, MacMullen C, Ganguly A, Ruchelli E, Steinkrauss L, Crane A et al (2003) Clinical and molecular characterization of a dominant form of congenital hyperinsulinism caused by a mutation in the high-affinity sulfonylurea receptor. Diabetes 52(9):2403–2410

    Article  CAS  PubMed  Google Scholar 

  30. Wilson DF, Cember ATJ, Matschinsky FM (2018) Glutamate dehydrogenase: role in regulating metabolism and insulin release in pancreatic beta-cells. J Appl Physiol (1985) 125(2):419–428

    Article  CAS  Google Scholar 

  31. Schwaller B (2012) The regulation of a cell’s Ca2+ signaling toolkit: the Ca2+ homeostasome. Adv Exp Med Biol 740:1–25

    Article  CAS  PubMed  Google Scholar 

  32. Bowman P, Sulen A, Barbetti F, Beltrand J, Svalastoga P, Codner E et al (2018) Effectiveness and safety of long-term treatment with sulfonylureas in patients with neonatal diabetes due to KCNJ11 mutations: an international cohort study. Lancet Diabetes Endocrinol 6(8):637–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. MacDonald PE, Salapatek AM, Wheeler MB (2002) Glucagon-like peptide-1 receptor activation antagonizes voltage-dependent repolarizing K(+) currents in beta-cells: a possible glucose-dependent insulinotropic mechanism. Diabetes 51(Suppl 3):S443–S447

    Article  CAS  PubMed  Google Scholar 

  34. Torekov SS, Iepsen E, Christiansen M, Linneberg A, Pedersen O, Holst JJ et al (2014) KCNQ1 long QT syndrome patients have hyperinsulinemia and symptomatic hypoglycemia. Diabetes 63(4):1315–1325

    Article  CAS  PubMed  Google Scholar 

  35. Yasuda K, Miyake K, Horikawa Y, Hara K, Osawa H, Furuta H et al (2008) Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nat Genet 40(9):1092–1097

    Article  CAS  PubMed  Google Scholar 

  36. Nauck MA, Meier JJ (2018) Incretin hormones: their role in health and disease. Diabetes Obes Metab 20(Suppl 1):5–21

    Article  CAS  PubMed  Google Scholar 

  37. Light PE, Manning Fox JE, Riedel MJ, Wheeler MB (2002) Glucagon-like peptide-1 inhibits pancreatic ATP-sensitive potassium channels via a protein kinase A- and ADP-dependent mechanism. Mol Endocrinol 16(9):2135–2144

    Article  CAS  PubMed  Google Scholar 

  38. Ma Z, Bjorklund A, Islam MS (2017) A TRPM4 inhibitor 9-Phenanthrol inhibits glucose- and glucagon-like peptide 1-induced insulin secretion from rat islets of Langerhans. J Diabetes Res 2017:5131785

    PubMed  PubMed Central  Google Scholar 

  39. Marabita F, Islam MS (2017) Expression of transient receptor potential channels in the purified human pancreatic beta-cells. Pancreas 46(1):97–101

    Article  CAS  PubMed  Google Scholar 

  40. Pang B, Kim S, Li D, Ma Z, Sun B, Zhang X et al (2017) Glucagon-like peptide-1 potentiates glucose-stimulated insulin secretion via the transient receptor potential melastatin 2 channel. Exp Ther Med 14(5):5219–5227

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Bari MR, Akbar S, Eweida M, Kuhn FJ, Gustafsson AJ, Luckhoff A et al (2009) H2O2-induced Ca2+ influx and its inhibition by N-(p-amylcinnamoyl) anthranilic acid in the beta-cells: involvement of TRPM2 channels. J Cell Mol Med 13(9B):3260–3267

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hodson DJ, Mitchell RK, Bellomo EA, Sun G, Vinet L, Meda P et al (2013) Lipotoxicity disrupts incretin-regulated human beta cell connectivity. J Clin Invest 123(10):4182–4194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Islam MS (2010) Calcium signaling in the islets. Adv Exp Med Biol 654:235–259

    Article  CAS  PubMed  Google Scholar 

  44. Krishnan K, Ma Z, Bjorklund A, Islam MS (2015) Calcium signaling in a genetically engineered human pancreatic beta-cell line. Pancreas 44(5):773–777

    Article  CAS  PubMed  Google Scholar 

  45. Holz GG, Leech CA, Heller RS, Castonguay M, Habener JF (1999) cAMP-dependent mobilization of intracellular Ca2+ stores by activation of ryanodine receptors in pancreatic beta-cells. A Ca2+ signaling system stimulated by the insulinotropic hormone glucagon-like peptide-1-(7-37). J Biol Chem 274(20):14147–14156

    Article  CAS  PubMed  Google Scholar 

  46. Kang G, Joseph JW, Chepurny OG, Monaco M, Wheeler MB, Bos JL et al (2003) Epac-selective cAMP analog 8-pCPT-2′-O-Me-cAMP as a stimulus for Ca2+-induced Ca2+ release and exocytosis in pancreatic beta-cells. J Biol Chem 278(10):8279–8285

    Article  CAS  PubMed  Google Scholar 

  47. Suga S, Kanno T, Nakano K, Takeo T, Dobashi Y, Wakui M (1997) GLP-I(7-36) amide augments Ba2+ current through L-type Ca2+ channel of rat pancreatic beta-cell in a cAMP-dependent manner. Diabetes 46(11):1755–1760

    Article  CAS  PubMed  Google Scholar 

  48. Jacobo SM, Guerra ML, Hockerman GH (2009) Cav1.2 and Cav1.3 are differentially coupled to glucagon-like peptide-1 potentiation of glucose-stimulated insulin secretion in the pancreatic beta-cell line INS-1. J Pharmacol Exp Ther 331(2):724–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gromada J, Bokvist K, Ding WG, Holst JJ, Nielsen JH, Rorsman P (1998) Glucagon-like peptide 1 (7-36) amide stimulates exocytosis in human pancreatic beta-cells by both proximal and distal regulatory steps in stimulus-secretion coupling. Diabetes 47(1):57–65

    Article  CAS  PubMed  Google Scholar 

  50. Yada T, Itoh K, Nakata M (1993) Glucagon-like peptide-1-(7-36)amide and a rise in cyclic adenosine 3′,5′-monophosphate increase cytosolic free Ca2+ in rat pancreatic beta-cells by enhancing Ca2+ channel activity. Endocrinology 133(4):1685–1692

    Article  CAS  PubMed  Google Scholar 

  51. Kang G, Chepurny OG, Rindler MJ, Collis L, Chepurny Z, Li WH et al (2005) A cAMP and Ca2+ coincidence detector in support of Ca2+-induced Ca2+ release in mouse pancreatic beta cells. J Physiol 566(Pt 1):173–188

    Article  CAS  PubMed  Google Scholar 

  52. Dyachok O, Gylfe E (2004) Ca2+-induced Ca2+ release via inositol 1,4,5-trisphosphate receptors is amplified by protein kinase A and triggers exocytosis in pancreatic beta-cells. J Biol Chem 279(44):45455–45461

    Article  CAS  PubMed  Google Scholar 

  53. Bruton JD, Lemmens R, Shi CL, Persson-Sjogren S, Westerblad H, Ahmed M et al (2003) Ryanodine receptors of pancreatic beta-cells mediate a distinct context-dependent signal for insulin secretion. FASEB J 17(2):301–303

    Article  CAS  PubMed  Google Scholar 

  54. Wu B, Wei S, Petersen N, Ali Y, Wang X, Bacaj T et al (2015) Synaptotagmin-7 phosphorylation mediates GLP-1-dependent potentiation of insulin secretion from beta-cells. Proc Natl Acad Sci U S A 112(32):9996–10001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Unger RH, Cherrington AD (2012) Glucagonocentric restructuring of diabetes: a pathophysiologic and therapeutic makeover. J Clin Invest 122(1):4–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang Y, Parajuli KR, Fava GE, Gupta R, Xu W, Nguyen LU et al (2018) GLP-1 receptor in pancreatic alpha cells regulates glucagon secretion in a glucose-dependent bidirectional manner. Diabetes 68(1):34–44

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  57. Ramracheya R, Chapman C, Chibalina M, Dou H, Miranda C, Gonzalez A et al (2018) GLP-1 suppresses glucagon secretion in human pancreatic alpha-cells by inhibition of P/Q-type Ca2+ channels. Physiol Rep 6(17):e13852

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Faerch K, Torekov SS, Vistisen D, Johansen NB, Witte DR, Jonsson A et al (2015) GLP-1 response to Oral glucose is reduced in prediabetes, screen-detected type 2 diabetes, and obesity and influenced by sex: the ADDITION-PRO Study. Diabetes 64(7):2513–2525

    Article  CAS  PubMed  Google Scholar 

  59. Calanna S, Christensen M, Holst JJ, Laferrere B, Gluud LL, Vilsboll T et al (2013) Secretion of glucagon-like peptide-1 in patients with type 2 diabetes mellitus: systematic review and meta-analyses of clinical studies. Diabetologia 56(5):965–972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ruetten H, Gebauer M, Raymond RH, Calle RA, Cobelli C, Ghosh A et al (2018) Mixed meal and intravenous L-arginine tests both stimulate incretin release across glucose tolerance in man: lack of correlation with beta cell function. Metab Syndr Relat Disord 16(8):406–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Azoulay L, Suissa S (2017) Sulfonylureas and the risks of cardiovascular events and death: a methodological meta-regression analysis of the observational studies. Diabetes Care 40(5):706–714

    Article  CAS  PubMed  Google Scholar 

  62. Marso SP, Bain SC, Consoli A, Eliaschewitz FG, Jodar E, Leiter LA et al (2016) Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med 375(19):1834–1844

    Article  CAS  PubMed  Google Scholar 

  63. Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JF, Nauck MA et al (2016) Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med 375(4):311–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gunther T, Tulipano G, Dournaud P, Bousquet C, Csaba Z, Kreienkamp HJ et al (2018) International Union of Basic and Clinical Pharmacology. CV. Somatostatin receptors: structure, function, ligands, and new nomenclature. Pharmacol Rev 70(4):763–835

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Strowski MZ, Parmar RM, Blake AD, Schaeffer JM (2000) Somatostatin inhibits insulin and glucagon secretion via two receptors subtypes: an in vitro study of pancreatic islets from somatostatin receptor 2 knockout mice. Endocrinology 141(1):111–117

    Article  CAS  PubMed  Google Scholar 

  66. Strowski MZ, Kohler M, Chen HY, Trumbauer ME, Li Z, Szalkowski D et al (2003) Somatostatin receptor subtype 5 regulates insulin secretion and glucose homeostasis. Mol Endocrinol 17(1):93–106

    Article  CAS  PubMed  Google Scholar 

  67. Braun M (2014) The somatostatin receptor in human pancreatic beta-cells. Vitam Horm 95:165–193

    Article  CAS  PubMed  Google Scholar 

  68. Kailey B, van de Bunt M, Cheley S, Johnson PR, MacDonald PE, Gloyn AL et al (2012) SSTR2 is the functionally dominant somatostatin receptor in human pancreatic beta- and alpha-cells. Am J Physiol Endocrinol Metab 303(9):E1107–E1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Liu W, Shao PP, Liang GB, Bawiec J, He J, Aster SD et al (2018) Discovery and pharmacology of a novel somatostatin subtype 5 (SSTR5) antagonist: synergy with DPP-4 inhibition. ACS Med Chem Lett 9(11):1082–1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Salehi A, Qader SS, Grapengiesser E, Hellman B (2007) Pulses of somatostatin release are slightly delayed compared with insulin and antisynchronous to glucagon. Regul Pept 144(1–3):43–49

    Article  CAS  PubMed  Google Scholar 

  71. Oberg K (2018) Management of functional neuroendocrine tumors of the pancreas. Gland Surg 7(1):20–27

    Article  PubMed  PubMed Central  Google Scholar 

  72. Vozza A, Parisi G, De Leonardis F, Lasorsa FM, Castegna A, Amorese D et al (2014) UCP2 transports C4 metabolites out of mitochondria, regulating glucose and glutamine oxidation. Proc Natl Acad Sci U S A 111(3):960–965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Anedda A, Rial E, Gonzalez-Barroso MM (2008) Metformin induces oxidative stress in white adipocytes and raises uncoupling protein 2 levels. J Endocrinol 199(1):33–40

    Article  CAS  PubMed  Google Scholar 

  74. Ferrara CT, Boodhansingh KE, Paradies E, Fiermonte G, Steinkrauss LJ, Topor LS et al (2017) Novel hypoglycemia phenotype in congenital hyperinsulinism due to dominant mutations of uncoupling protein 2. J Clin Endocrinol Metab 102(3):942–949

    Article  PubMed  Google Scholar 

  75. Li C, Chen P, Palladino A, Narayan S, Russell LK, Sayed S et al (2010) Mechanism of hyperinsulinism in short-chain 3-hydroxyacyl-CoA dehydrogenase deficiency involves activation of glutamate dehydrogenase. J Biol Chem 285(41):31806–31818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Davenport AP, Alexander SP, Sharman JL, Pawson AJ, Benson HE, Monaghan AE et al (2013) International union of basic and clinical pharmacology. LXXXVIII. G protein-coupled receptor list: recommendations for new pairings with cognate ligands. Pharmacol Rev 65(3):967–986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhao Y, Wang L, Qiu J, Zha D, Sun Q, Chen C (2013) Linoleic acid stimulates [Ca2+]i increase in rat pancreatic beta-cells through both membrane receptor- and intracellular metabolite-mediated pathways. PLoS One 8(4):e60255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Fujiwara K, Maekawa F, Yada T (2005) Oleic acid interacts with GPR40 to induce Ca2+ signaling in rat islet beta-cells: mediation by PLC and L-type Ca2+ channel and link to insulin release. Am J Physiol Endocrinol Metab 289(4):E670–E677

    Article  CAS  PubMed  Google Scholar 

  79. Psichas A, Larraufie PF, Goldspink DA, Gribble FM, Reimann F (2017) Chylomicrons stimulate incretin secretion in mouse and human cells. Diabetologia 60(12):2475–2485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Guo B, Guo S, Huang J, Li J, Li J, Chen Q et al (2018) Design and optimization of 2,3-dihydrobenzo[b][1,4]dioxine propanoic acids as novel GPR40 agonists with improved pharmacokinetic and safety profiles. Bioorg Med Chem 26(22):5780–5791

    Article  CAS  PubMed  Google Scholar 

  81. Sundstrom L, Myhre S, Sundqvist M, Ahnmark A, McCoull W, Raubo P et al (2017) The acute glucose lowering effect of specific GPR120 activation in mice is mainly driven by glucagon-like peptide 1. PLoS One 12(12):e0189060

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Matsumoto K, Yoshitomi T, Ishimoto Y, Tanaka N, Takahashi K, Watanabe A et al (2018) DS-8500a, an orally available G protein-coupled receptor 119 agonist, upregulates glucagon-like Peptide-1 and enhances glucose-dependent insulin secretion and improves glucose homeostasis in type 2 diabetic rats. J Pharmacol Exp Ther 367(3):509–517

    Article  CAS  PubMed  Google Scholar 

  83. Yamagata K, Senokuchi T, Lu M, Takemoto M, Fazlul Karim M, Go C et al (2011) Voltage-gated K+ channel KCNQ1 regulates insulin secretion in MIN6 beta-cell line. Biochem Biophys Res Commun 407(3):620–625

    Article  CAS  PubMed  Google Scholar 

  84. Moore BD, Jin RU, Lo H, Jung M, Wang H, Battle MA et al (2016) Transcriptional regulation of X-box-binding protein one (XBP1) by hepatocyte nuclear factor 4alpha (HNF4Alpha) is vital to Beta-cell function. J Biol Chem 291(12):6146–6157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Malmgren S, Nicholls DG, Taneera J, Bacos K, Koeck T, Tamaddon A et al (2009) Tight coupling between glucose and mitochondrial metabolism in clonal beta-cells is required for robust insulin secretion. J Biol Chem 284(47):32395–32404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Fex M, Nicholas LM, Vishnu N, Medina A, Sharoyko VV, Nicholls DG et al (2018) The pathogenetic role of beta-cell mitochondria in type 2 diabetes. J Endocrinol 236(3):R145–RR59

    Article  CAS  PubMed  Google Scholar 

  87. Koeck T, Olsson AH, Nitert MD, Sharoyko VV, Ladenvall C, Kotova O et al (2011) A common variant in TFB1M is associated with reduced insulin secretion and increased future risk of type 2 diabetes. Cell Metab 13(1):80–91

    Article  CAS  PubMed  Google Scholar 

  88. Sorenson RL, Lindell DV, Elde RP (1980) Glucose stimulation of somatostatin and insulin release from the isolated, perfused rat pancreas. Diabetes 29(9):747–751

    Article  CAS  PubMed  Google Scholar 

  89. Grodsky GM (1972) A threshold distribution hypothesis for packet storage of insulin and its mathematical modeling. J Clin Invest 51(8):2047–2059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Henquin JC, Ishiyama N, Nenquin M, Ravier MA, Jonas JC (2002) Signals and pools underlying biphasic insulin secretion. Diabetes 51(Suppl 1):S60–S67

    Article  CAS  PubMed  Google Scholar 

  91. Davies MJ, Rayman G, Grenfell A, Gray IP, Day JL, Hales CN (1994) Loss of the first phase insulin response to intravenous glucose in subjects with persistent impaired glucose tolerance. Diabet Med 11(5):432–436

    Article  CAS  PubMed  Google Scholar 

  92. Nyholm B, Porksen N, Juhl CB, Gravholt CH, Butler PC, Weeke J et al (2000) Assessment of insulin secretion in relatives of patients with type 2 (non-insulin-dependent) diabetes mellitus: evidence of early beta-cell dysfunction. Metabolism 49(7):896–905

    Article  CAS  PubMed  Google Scholar 

  93. O’Rahilly S, Turner RC, Matthews DR (1988) Impaired pulsatile secretion of insulin in relatives of patients with non-insulin-dependent diabetes. N Engl J Med 318(19):1225–1230

    Article  PubMed  Google Scholar 

  94. Prasad RB, Groop L (2015) Genetics of type 2 diabetes-pitfalls and possibilities. Genes (Basel) 6(1):87–123

    Article  CAS  Google Scholar 

  95. Wood AR, Jonsson A, Jackson AU, Wang N, van Leewen N, Palmer ND et al (2017) A genome-wide association study of IVGTT-based measures of first-phase insulin secretion refines the underlying physiology of type 2 diabetes variants. Diabetes 66(8):2296–2309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Cerasi E, Efendic S, Thornqvist C, Luft R (1979) Effect of two sulphonylureas on the dose kinetics of glucose-induced insulin release in normal and diabetic subjects. Acta Endocrinol 91(2):282–293

    Article  CAS  Google Scholar 

  97. Delawter DE, Moss JM, Tyroler S, Canary JJ (1959) Secondary failure of response to tolbutamide treatment. J Am Med Assoc 171:1786–1792

    Article  CAS  PubMed  Google Scholar 

  98. Doliba NM, Qin W, Vatamaniuk MZ, Li C, Zelent D, Najafi H et al (2004) Restitution of defective glucose-stimulated insulin release of sulfonylurea type 1 receptor knockout mice by acetylcholine. Am J Physiol Endocrinol Metab 286(5):E834–E843

    Article  CAS  PubMed  Google Scholar 

  99. Gutniak M, Orskov C, Holst JJ, Ahren B, Efendic S (1992) Antidiabetogenic effect of glucagon-like peptide-1 (7-36)amide in normal subjects and patients with diabetes mellitus. N Engl J Med 326(20):1316–1322

    Article  CAS  PubMed  Google Scholar 

  100. Gelin L, Li J, Corbin KL, Jahan I, Nunemaker CS (2018) Metformin inhibits mouse islet insulin secretion and alters intracellular calcium in a concentration-dependent and duration-dependent manner near the circulating range. J Diabetes Res 2018:9163052

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Leclerc I, Woltersdorf WW, da Silva XG, Rowe RL, Cross SE, Korbutt GS et al (2004) Metformin, but not leptin, regulates AMP-activated protein kinase in pancreatic islets: impact on glucose-stimulated insulin secretion. Am J Physiol Endocrinol Metab 286(6):E1023–E1031

    Article  CAS  PubMed  Google Scholar 

  102. Meier JJ, Bonadonna RC (2013) Role of reduced beta-cell mass versus impaired beta-cell function in the pathogenesis of type 2 diabetes. Diabetes Care 36(Suppl 2):S113–S119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Chen C, Cohrs CM, Stertmann J, Bozsak R, Speier S (2017) Human beta cell mass and function in diabetes: recent advances in knowledge and technologies to understand disease pathogenesis. Mol Metab 6(9):943–957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Financial support was obtained from the Karolinska Institutet and the Uppsala County Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Shahidul Islam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Islam, M.S. (2020). Stimulus-Secretion Coupling in Beta-Cells: From Basic to Bedside. In: Islam, M. (eds) Calcium Signaling. Advances in Experimental Medicine and Biology, vol 1131. Springer, Cham. https://doi.org/10.1007/978-3-030-12457-1_37

Download citation

Publish with us

Policies and ethics